JPH0527093B2 - - Google Patents

Info

Publication number
JPH0527093B2
JPH0527093B2 JP22312186A JP22312186A JPH0527093B2 JP H0527093 B2 JPH0527093 B2 JP H0527093B2 JP 22312186 A JP22312186 A JP 22312186A JP 22312186 A JP22312186 A JP 22312186A JP H0527093 B2 JPH0527093 B2 JP H0527093B2
Authority
JP
Japan
Prior art keywords
container
substrate
gate valve
minute
reduced pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22312186A
Other languages
Japanese (ja)
Other versions
JPS6377026A (en
Inventor
Kyohiro Kawasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22312186A priority Critical patent/JPS6377026A/en
Publication of JPS6377026A publication Critical patent/JPS6377026A/en
Publication of JPH0527093B2 publication Critical patent/JPH0527093B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13392Gaskets; Spacers; Sealing of cells spacers dispersed on the cell substrate, e.g. spherical particles, microfibres

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Coating Apparatus (AREA)
  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、液晶パネルのギヤツプ規制用に用い
られるスペーサ等の微小物体の散布方法および散
布装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method and apparatus for dispersing minute objects such as spacers used for gap regulation in liquid crystal panels.

従来の技術 液晶パネルは、一対の基板(多くの場合透光性
絶縁基板、例えばガラス板)の一主面上の所定の
領域に配向膜を印刷等によつて形成し、乾燥した
布で配向膜を摩擦する等していわゆるラビング等
の配向処理を施した後、配向膜面を対向させて間
隙数μmの閉空間を形成し、この閉空間に液晶を
充填し、使用する液晶の特性に応じて偏光板を貼
付して液晶パネルを完成するようになされてい
る。
BACKGROUND ART Liquid crystal panels are manufactured by forming an alignment film on a predetermined area on one main surface of a pair of substrates (transparent insulating substrates, such as glass plates in most cases) by printing, etc., and then aligning the film with a dry cloth. After applying an alignment treatment such as rubbing the film, the surfaces of the alignment films are made to face each other to form a closed space with a gap of several micrometers, and this closed space is filled with liquid crystal to determine the characteristics of the liquid crystal to be used. Accordingly, a polarizing plate is attached to complete the liquid crystal panel.

液晶パネルをカラー化するためには、一方の基
板上に染色されたゼラチン等の着色層を配置する
のが一般的である。
In order to color a liquid crystal panel, it is common to arrange a colored layer such as dyed gelatin on one substrate.

第5図は単純マトリクス型の液晶パネルの分解
された状態を示す斜視図である。一方のガラス板
2の一主面上には透明導電膜よりなる走査線4群
が形成されており、もう一方のガラス板1の一主
面上には同じく信号線5群が形成されている。一
対のガラス板1,2は走査線4と信号線5とが概
ね直交するように貼り合わされる。シール材3は
液晶を閉じ込める空間を形成すると同時に、一対
のガラス基板1,2を接着して一体化する。シー
ル材3のパターンに形成された切欠部6は液晶の
注入時に液晶の通路を確保するために必要である
が、パネル化した後は図示していない封口剤によ
つて埋められる。画像を表示する領域では液晶を
配向させるために有機系の薄膜、例えばポリイミ
ド系(PIQ)の樹脂が配向膜7として選択的に形
成されている。
FIG. 5 is a perspective view showing an exploded state of a simple matrix type liquid crystal panel. Four groups of scanning lines made of a transparent conductive film are formed on one main surface of one glass plate 2, and five groups of signal lines are similarly formed on one main surface of the other glass plate 1. . A pair of glass plates 1 and 2 are bonded together so that scanning lines 4 and signal lines 5 are approximately orthogonal to each other. The sealing material 3 forms a space that confines the liquid crystal, and at the same time adheres and integrates the pair of glass substrates 1 and 2. The notches 6 formed in the pattern of the sealing material 3 are necessary to ensure a passage for the liquid crystal when the liquid crystal is injected, but are filled with a sealant (not shown) after the panel is formed. In the image display area, an organic thin film such as polyimide (PIQ) resin is selectively formed as an alignment film 7 in order to align the liquid crystal.

第6図はカラー化された液晶パネルを走査線に
平行に切断した場合の断面図を示す。液晶8と接
して配向膜7があり、一対のガラス基板1,2と
シール材3で構成される閉空間には液晶8が充填
され、この閉空間の厚みを所定の値に保つべく絶
縁性材料がスペーサ13として散布される。例え
ば、ガラスフアイバやプラスチツクボール等が使
用される。9は信号線5と走査線4とが導電性異
物などによつて短絡するのを防止したり、液晶に
直流電流が流れて液晶の諸特性が劣化するのを回
避するための透明性絶縁薄膜、例えばシリカ
(SiO2)フイルムである。
FIG. 6 shows a cross-sectional view of a colored liquid crystal panel cut parallel to the scanning line. There is an alignment film 7 in contact with the liquid crystal 8, a closed space made up of a pair of glass substrates 1 and 2 and a sealing material 3 is filled with the liquid crystal 8, and an insulating layer is used to keep the thickness of this closed space at a predetermined value. Material is distributed as spacers 13. For example, glass fibers, plastic balls, etc. are used. Reference numeral 9 denotes a transparent insulating thin film for preventing the signal line 5 and the scanning line 4 from being short-circuited by conductive foreign matter, and for avoiding deterioration of various properties of the liquid crystal due to direct current flowing through the liquid crystal. , for example, a silica (SiO 2 ) film.

10は例えばゼラチンなどの有機薄膜を染料で
着色することによつて形成された着色層で、所定
の分光特性を有するR、G、Bの三原色がカラー
フイルタの光学設計によつて配置される。着色層
10の隣り合う間隙は光源光に大して不透明な薄
膜層11で埋めると、コントラスト比の高い画像
が得られ有利である。いわゆるブラツクマトリク
ス処理であるが、薄膜層11の不透明化はクロム
などの金属薄膜を用いてもよく、またR、G、B
の着色層を重ね合わせたり、あるいは新たに黒色
着色層を設けてもよい。
Reference numeral 10 denotes a colored layer formed by coloring an organic thin film such as gelatin with dye, and the three primary colors R, G, and B having predetermined spectral characteristics are arranged according to the optical design of the color filter. It is advantageous to fill the gaps between adjacent colored layers 10 with thin film layers 11 that are largely opaque to the light source, since an image with a high contrast ratio can be obtained. Although this is a so-called black matrix treatment, a metal thin film such as chromium may be used to make the thin film layer 11 opaque, and R, G, B
The colored layers may be superimposed, or a new black colored layer may be provided.

12は偏光板で、液晶8にTN(ツイストネマ
チツク)系の材料を用いる場合には上下2枚必要
であるが、GH(ゲストホスト)系の材料を用い
る場合には1枚でよい。走査線4や信号線5への
電気信号の供給はシール材3より外周部へ延長さ
れたガラス基板1,2上で、導電薄膜が被着され
たフイルム端子を走査電極端子群や信号電極端子
群に圧接する手段(実装)によつてなされるのが
一般的である。
Reference numeral 12 denotes a polarizing plate, and if a TN (twisted nematic) material is used for the liquid crystal 8, two plates are required, one for the upper and the lower, but one is sufficient if a GH (guest host) material is used. Electric signals are supplied to the scanning lines 4 and signal lines 5 by connecting film terminals coated with a conductive thin film to the scanning electrode terminal group and the signal electrode terminals on the glass substrates 1 and 2 extending from the sealing material 3 to the outer periphery. This is generally done by means of pressing the group (mounting).

さて、スペーサ13は、現時点では第7図に示
すような散布装置を用いて基板上に散布されるの
が一般的である。まず、ほぼ密閉状態に近い容器
14を用意し、容器14の底部に出入口15より
基板16を設置する。次に、容器14内上方の受
皿17内に所定量のスペーサ材、例えばガラスフ
アイバ18を入れる。そして受皿17上方より乾
燥した空気や窒素などのガスをパイプ19より送
り込み、ガラスフアイバ18を容器14内で舞い
上らせる。舞い上つたガラスフアイバ18は時間
の進行につれて自然落下し、基板16上に散布さ
れる。したがつて基板16上に散布されるガラス
フアイバ18の量は受皿17内に入れておいた量
に比例し、また均一な散布のためには受皿17の
形状や送り込むガスの量や速度が制御要素であ
る。
Now, at present, the spacers 13 are generally dispersed onto the substrate using a dispersing device as shown in FIG. First, a nearly sealed container 14 is prepared, and the substrate 16 is installed at the bottom of the container 14 through the entrance/exit 15. Next, a predetermined amount of spacer material, such as glass fiber 18, is placed in the upper tray 17 inside the container 14. Then, dry air or gas such as nitrogen is sent from above the saucer 17 through the pipe 19, causing the glass fiber 18 to fly up inside the container 14. The flying glass fibers 18 naturally fall over time and are scattered onto the substrate 16. Therefore, the amount of glass fiber 18 sprinkled onto the substrate 16 is proportional to the amount placed in the saucer 17, and the shape of the saucer 17 and the amount and speed of the gas to be sent are controlled to ensure uniform distribution. is an element.

発明が解決しようとする問題点 しかしながら、上記のようなスペーサの散布方
法では、大気中での自然落下を利用しているので
スパーサ材が小さくなるほど落下速度が遅くな
り、処理時間が長くなることが避けられない。す
なわち、スペーサがガラスフアイバの場合、フア
イバ長が短いほど、また、フアイバ径が小さいほ
ど処理時間が長くなる。スペーサがプラスチツク
ボールになるとその傾向はさらに著しく、例えば
フアイバ径が5μmでフアイバ長が50μmの場合に
2分かかる落下時間が、同径のプラスチツクボー
ルでは20分もかかり、生産性が著しく低下してし
まう。また、落下時間を短縮するために受皿17
と基板16を接近させると、プラスチツクボール
の飛翔距離が短かくなつて散布の均一性が損なわ
れるという問題点を有している。
Problems to be Solved by the Invention However, the method of dispersing spacers as described above uses natural falling in the atmosphere, so the smaller the spacer material, the slower the falling speed and the longer the processing time. Inevitable. That is, when the spacer is a glass fiber, the shorter the fiber length and the smaller the fiber diameter, the longer the processing time. This tendency becomes even more pronounced when the spacer is made of plastic balls; for example, when the fiber diameter is 5 μm and the fiber length is 50 μm, it takes 2 minutes to fall, but a plastic ball of the same diameter takes 20 minutes, which significantly reduces productivity. Put it away. In addition, in order to shorten the falling time, the saucer 17
If the substrate 16 is brought close to the substrate 16, the flying distance of the plastic balls becomes shorter, resulting in a problem in that the uniformity of the dispersion is impaired.

本発明はかかる点に鑑みなされたもので、散布
時間が粒径の大きさに左右されず、また均一性も
確保できる微小物体散布方法および散布装置を提
供することを目的とする。
The present invention was made in view of the above, and an object of the present invention is to provide a method and a device for dispersing minute objects, which do not depend on the size of the particle size and can ensure uniformity of the dispersion time.

問題点を解決するための手段 本発明は、散布を行う容器内を減圧し、散布を
行つた後に前記容器内の減圧状態を解除するよう
にしたものである。
Means for Solving the Problems In the present invention, the pressure inside the container for spraying is reduced, and after the spraying is performed, the reduced pressure state in the container is released.

作 用 本発明は上記した構成により、微小物体の散布
時に容器内が減圧状態になるため、微小物体の落
下速度が形状や大きさに左右されないものとな
る。
Effects According to the above-described configuration of the present invention, the pressure inside the container is reduced when dispersing minute objects, so that the falling speed of the minute objects is not affected by the shape or size.

実施例 第1図は本発明の第1の実施例における微小物
体散布装置の構成図で、20はホースまたはパイ
プ19を通して受皿17内のスペーサ18を吹き
飛ばすためのガスの供給を制御するバルブ、21
は容器14内を減圧するための排気装置で、例え
ばロータリーポンプ、22は排気装置21と容器
14とを結ぶホースまたはパイプ、23は減圧機
能を制御するバルブ、24のホースまたはパイプ
とバルブ25,26が減圧下の容器14を大気圧
に解放するための制御系である。
Embodiment FIG. 1 is a configuration diagram of a micro object dispersing device according to a first embodiment of the present invention, in which 20 is a valve that controls the supply of gas for blowing off the spacer 18 in the saucer 17 through a hose or pipe 19;
22 is a hose or pipe that connects the exhaust device 21 and the container 14; 23 is a valve that controls the pressure reduction function; 24 is a hose or pipe and a valve 25; 26 is a control system for releasing the container 14 under reduced pressure to atmospheric pressure.

以上のように構成された本実施例の微小物体散
布装置について、以下その散布方法と動作を説明
する。
The dispersion method and operation of the micro object dispersing device of this embodiment configured as described above will be explained below.

出入口15より容器14内底部に基板16を設
置する。次に受皿17に所定量のスペーサ材18
を入れる。27はスペーサ材の自動供給機で、例
えばスプーン状の供給皿が受皿17上方で反転す
るような機構が考えられる。その後ストツプバル
ブ23を開いて容器14内を排気する。減圧状態
を維持するためには図示はしないが出入口15の
外周部にはゴム製のOリング等を設置せねばなら
ない。容器14内が所定の真空度に達したところ
でストツプバルブ20を短時間開いてパイプ19
より乾燥ガスを供給し受皿17に吹きつける。容
器14内が減圧であるためパイプ19を通過する
乾燥ガスの流速は早く、スペーサ18は容器14
内で舞い上がつて拡散する。そして一定時間経過
後、バルブ23を閉じ、パイプ24より乾燥した
空気や窒素を送り込み、容器14内を大気圧に解
放し、スペーサ18が散布された基板16を取り
出してスペーサ18の散布工程が終了する。なお
バルブ25,26は減圧を解除するために送り込
まれる乾燥ガスの流速を制御し散布されたスペー
サ18が再び舞い上るのを防ぐための制御弁で、
一般的にはスローリーク,フルリークと呼ばれ
る。同様に28は送り込まれるガスを直接基板1
6に到達するのを回避するための拡散ダンパであ
る。
A substrate 16 is installed at the inner bottom of the container 14 through the entrance/exit 15. Next, a predetermined amount of spacer material 18 is placed on the saucer 17.
Put in. Reference numeral 27 denotes an automatic spacer material supplying machine, which may have a mechanism in which a spoon-shaped supply tray is inverted above the saucer 17, for example. Thereafter, the stop valve 23 is opened to exhaust the inside of the container 14. In order to maintain a reduced pressure state, although not shown, a rubber O-ring or the like must be installed around the outer periphery of the entrance/exit 15. When the inside of the container 14 reaches a predetermined degree of vacuum, the stop valve 20 is opened for a short time and the pipe 19 is opened.
More dry gas is supplied and blown onto the saucer 17. Since the pressure inside the container 14 is reduced, the flow rate of the drying gas passing through the pipe 19 is fast, and the spacer 18
It soars within and spreads. After a certain period of time has elapsed, the valve 23 is closed, dry air or nitrogen is sent through the pipe 24, the inside of the container 14 is released to atmospheric pressure, and the substrate 16 on which the spacers 18 have been spread is taken out, and the process of spreading the spacers 18 is completed. do. The valves 25 and 26 are control valves that control the flow rate of the drying gas sent to release the reduced pressure and prevent the scattered spacers 18 from flying up again.
Generally called slow leak or full leak. Similarly, 28 directs the gas to the substrate 1.
This is a diffusion damper to avoid reaching 6.

以上のように本実施例によれば、スペーサ材の
散布環境が減圧下であるためスペーサ材の形状や
大きさによらず散布時間を一定で、かつ短時間と
することができる。
As described above, according to this embodiment, since the environment in which the spacer material is sprayed is under reduced pressure, the spraying time can be kept constant and short regardless of the shape and size of the spacer material.

第2図は本発明の第2の実施例を示す微小物体
散布装置の構成図で、第1図の実施例と異なるの
が受皿30とパイプ31を有する箱型容器29が
スペーサ材の供給と分散を担う部位として容器1
4外に設置されている点である。
FIG. 2 is a block diagram of a micro object dispersing device showing a second embodiment of the present invention. The difference from the embodiment of FIG. Container 1 as the part responsible for dispersion
4.It is located outside.

前記のように構成された第2の実施例の微小物
体散布装置について、以下その動作を説明する。
The operation of the second embodiment of the minute object dispersing device configured as described above will be described below.

受皿30にスペーサ18を入れてパイプ31よ
り乾燥したガスを送り込むと、舞い上つたスペー
サ18は箱型容器29内に充満する。そこで容器
14内が排気装置21によつて減圧下にある時、
バルブ20を短時間開いて箱型容器29内に充満
しているスペーサ18を容器14に転送すること
ができる。他の動作は第1の実施例と同様であ
り、32は容器14内に送り込まれたスペーサ1
8が直接基板16に吹きつけられるのを防止する
ための拡散ダンパーである。
When the spacer 18 is placed in the saucer 30 and dry gas is fed through the pipe 31, the spacer 18 that flies up fills the box-shaped container 29. Therefore, when the inside of the container 14 is under reduced pressure by the exhaust device 21,
The valve 20 can be opened briefly to transfer the spacer 18 filling the box-shaped container 29 to the container 14. The other operations are the same as in the first embodiment, and 32 is the spacer 1 sent into the container 14.
8 is a diffusion damper for preventing the air from being blown directly onto the substrate 16.

以上のように本実施例では微小物体の供給場所
が容器14外にあるため後で述べる実施例のよう
に容器14が常時減圧下にあつても微小物体の供
給に支障をきたさない、即ち連続処理が行える点
と、微小物体が2度にわたつて急激な攪拌を受け
るので散布の均一性が向上するという個有の効果
が付加される。
As described above, in this embodiment, the supply location of the minute objects is outside the container 14, so even if the container 14 is constantly under reduced pressure as in the embodiment described later, there is no problem in the supply of the minute objects, that is, the supply of the minute objects is continuous. This method has the unique effect of improving the uniformity of dispersion because the microscopic objects are rapidly agitated twice.

第3図と第4図は第1および第2の実施例を連
続生産が可能となるようにした微小物体の散布装
置の構成図である。まず、第1の実施例に対応し
た第3図aの構成では、出入口15より第1の容
器33に入れられた基板16は第1の排気系41
によつて第1の容器33内が所定の真空圧に排気
せられるまで待機する。次に第1の容器33と第
2の容器14とを連結するゲートバルブ34を開
き、基板16を常時減圧下にある第2の容器14
に移動してゲートベルブ34を閉じる。第2の容
器14内でスペーサの散布が終了すると再びゲー
トバルブ34を開いて基板16を第1の容器33
に移動してゲートバルブ34を閉じる。その後パ
イプ24よりリークバルブ25,26を用いて基
板16上の散布されたスペーサが移動しないよう
に乾燥ガスを送り込み第1の容器33を大気圧に
解放する。そして大気圧解放後、出入口15より
基板16を取り出して1回の散布工程が終了す
る。42は第2の容器14を減圧する排気系であ
り、35,44は調整時等第2の容器14を大気
中に解放するために必要なパイプとリークバルブ
である。
FIGS. 3 and 4 are block diagrams of a device for dispersing minute objects that enables continuous production of the first and second embodiments. First, in the configuration shown in FIG. 3a corresponding to the first embodiment, the substrate 16 placed in the first container 33 through the entrance/exit port 15 is transferred to the first exhaust system 41.
The process waits until the inside of the first container 33 is evacuated to a predetermined vacuum pressure. Next, the gate valve 34 connecting the first container 33 and the second container 14 is opened, and the substrate 16 is transferred to the second container 14 which is constantly under reduced pressure.
to close the gate bell 34. When the spacer dispersion is completed in the second container 14, the gate valve 34 is opened again and the substrate 16 is transferred to the first container 33.
and close the gate valve 34. Thereafter, dry gas is fed through the pipe 24 using the leak valves 25 and 26 so that the spacers spread on the substrate 16 do not move, and the first container 33 is released to atmospheric pressure. After the atmospheric pressure is released, the substrate 16 is taken out from the entrance/exit 15, and one spraying process is completed. 42 is an exhaust system for reducing the pressure of the second container 14, and 35 and 44 are pipes and leak valves necessary for releasing the second container 14 into the atmosphere during adjustment, etc.

第3図bはさらに生産性を高めるために真空待
機室たる第3の容器38を加えた構成となつてお
り、基板16は入口15より第1の容器33に入
つて所定の真空度になるまで待機する。そして第
1のゲートバルブ34より第2の容器14へ移動
し、スペーサの散布が終了すると第2のゲートバ
ルブ36が開いて減圧下の第3の容器38へ移動
する。さらに第2のゲートバルブ36が閉じら
れ、パイプ39よりリークバルブ40,41を用
いて基板16上の散布されたスペーサが移動しな
いように乾燥ガスを送り込み第3の容器38を大
気圧に解放する。そして出口37より基板16を
取り出して1回の散布工程が終了する。43は第
3の容器38を減圧する排気系である。なお第3
図において基板16が移動する搬送系は図示され
ていないが、例えば多数のローラーが並べられ
て、各ローラーが回転することにより物を運搬す
る運搬ローラー、あるいはベルトコンベア等一般
的な移動手段でかまわない。
FIG. 3b shows a configuration in which a third container 38 serving as a vacuum standby chamber is added to further increase productivity, and the substrate 16 enters the first container 33 through the inlet 15 to reach a predetermined degree of vacuum. Wait until. Then, it moves to the second container 14 through the first gate valve 34, and when the dispersion of spacers is finished, the second gate valve 36 opens and moves to the third container 38 under reduced pressure. Further, the second gate valve 36 is closed, and dry gas is sent from the pipe 39 using the leak valves 40 and 41 so that the spacers spread on the substrate 16 do not move, and the third container 38 is released to atmospheric pressure. . Then, the substrate 16 is taken out from the outlet 37, and one spraying process is completed. 43 is an exhaust system that reduces the pressure of the third container 38. Furthermore, the third
Although the conveyance system by which the substrate 16 is moved is not shown in the figure, it may be a conveyance roller in which a large number of rollers are lined up and each roller rotates to convey the object, or a general moving means such as a belt conveyor. do not have.

第4図は第3図と比べると微小物体の供給機構
29が散布が行なわれる第2の容器14外に設け
られている以外は同様な構成になつている。
FIG. 4 has the same structure as FIG. 3 except that the supply mechanism 29 for the minute objects is provided outside the second container 14 in which the dispersion is performed.

なお以上の説明において16は基板であつた
が、基板が複数枚積載されたトレー等の治具であ
つても差支えないことは言うまでもない。
In the above description, 16 is a substrate, but it goes without saying that it may be a jig such as a tray on which a plurality of substrates are stacked.

発明の効果 以上説明したように、本発明においては、スペ
ーサ等の微小物体を減圧環境下で散布するため、
その形状や大きさによらず散布時間を一定かつ短
時間とすることができ、その実用的効果は大き
く、また連続生産に伴う量産性の向上も著しい。
Effects of the Invention As explained above, in the present invention, in order to disperse minute objects such as spacers in a reduced pressure environment,
The spraying time can be kept constant and short regardless of its shape or size, which has great practical effects, and also significantly improves mass productivity due to continuous production.

また、本発明は散布すべき微小物体が小さけれ
ば小さい程有効であり、またその適用範囲も液晶
パネルにおけるスペーサに限られるものでない。
Further, the present invention is more effective as the minute objects to be scattered are smaller, and its scope of application is not limited to spacers in liquid crystal panels.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図,第2図,第3図a,bおよび第4図
a,bは本発明の一実施例における微小物体散布
装置の斜視図及び断面図、第5図は液晶パネルの
分解斜視図、第6図は同パネルの断面図、第7図
は従来例の微小物体散布装置の構成を示す断面図
である。 16……基板、17……散布容器、17,30
……微小物体の受皿、18……微小物体(スペー
サ)、27,29……微小物体の供給機、19…
…パイプ、20……ストツプバルブ、25,2
6,35,40,41……リークバルブ、21…
…真空ポンプ、33,38……真空待機室、3
4,36……ゲートバルブ、41,42,43…
…排気系。
Fig. 1, Fig. 2, Fig. 3 a, b, and Fig. 4 a, b are a perspective view and a sectional view of a micro object dispersing device according to an embodiment of the present invention, and Fig. 5 is an exploded perspective view of a liquid crystal panel. , FIG. 6 is a sectional view of the same panel, and FIG. 7 is a sectional view showing the configuration of a conventional micro object dispersing device. 16...Substrate, 17...Scatter container, 17,30
...Receptacle for minute objects, 18...Minute objects (spacer), 27, 29... Feeder for minute objects, 19...
...Pipe, 20...Stop valve, 25,2
6, 35, 40, 41...leak valve, 21...
...Vacuum pump, 33,38...Vacuum standby chamber, 3
4, 36...gate valve, 41, 42, 43...
...Exhaust system.

Claims (1)

【特許請求の範囲】 1 容器内底部に基板を設置し、微小物体を前記
容器内の所定の位置に設けられた受皿に供給し、
前記容器内を減圧し、減圧下の前記受皿上の微小
物体をガスの吹きつけによつて飛散させ、微小物
体を飛散させて一定時間経過後に前記容器内を大
気圧に解放するようにした微小物体散布方法。 2 大気圧下の第1の容器内に基板を設置し、前
記基板が設置された第1の容器内を減圧し、ゲー
トバルブを介して第1の容器に隣接し常時減圧下
にある第2の容器内底部に前記ゲートバルブを開
いて前記基板を移動させ、前記ゲートバルブを閉
じた後、あらかじめ微小物体を保持させた供給手
段より前記第2の容器内の所定の位置に設けられ
た受皿に前記微小物体を供給し、前記受皿上の微
小物体をガスの吹きつけによつて飛散させ、微小
物体を飛散させて一定時間経過後、前記ゲートバ
ルブを開いて減圧下にある前記第1の容器内に基
板を移動させ、前記ゲートバルブを閉じた後、前
記第1の容器内を大気圧に解放するようにした微
小物体散布方法。 3 大気圧下の第1の容器内に基板を設置し、前
記基板が設置された第1の容器内を減圧し、第1
のゲートバルブを介して第1の容器に隣接し常時
減圧下にある第2の容器底部に前記第1のゲート
バルブを開いて前記基板を移動させ、前記第1の
ゲートバルブを閉じた後、あらかじめ微小物体を
保持させた供給手段より前記第2の容器内の所定
の位置に設けられた受皿に前記微小物体を供給
し、前記受皿上の微小物体をガスの吹きつけによ
つて飛散させ、微小物体を飛散させて一定時間経
過後、第2のゲートバルブを介して第2の容器に
隣接し減圧下にある第3の容器内に前記第2のゲ
ートバルブを開いて基板を移動させ、前記第2の
ゲートバルブを閉じた後、前記第3の容器内を大
気圧に解放するようにした微小物体散布方法。 4 ガス吹きつけパイプと受皿を有する箱状容器
にストツプバルブを有するパイプで接続された容
器内底部に基板を設置し、前記容器内を減圧した
後に前記受皿に微小物体を供給し、前記受皿上の
微小物体をガスの吹きつけによつて飛散させ、前
記ストツプバルブを短時間開き、一定時間経過
後、前記容器内を大気圧に解放するようにした微
小物体散布方法。 5 大気圧下の第1の容器内に基板を設置し、前
記基板が設置された第1の容器内を減圧し、ゲー
トバルブを介して第1の容器に隣接するとともに
ガス吹きつけパイプと受皿を有する箱状容器にス
トツプバルブを有するパイプで接続され常時減圧
下にある第2の容器底部に前記ゲートバルブを開
いて前記基板を移動させ、前記ゲートバルブを閉
じた後、前記受皿に微小物体を供給し、前記受皿
上の微小物体をガスの吹きつけによつて飛散さ
せ、前記ストツプバルブを短時間開き、一定時間
経過後、前記ゲートバルブを開いて減圧下にある
前記第1の容器内に基板を移動させ、前記ゲート
バルブを閉じた後、前記第1の容器内を大気圧に
解放するようにした微小物体散布方法。 6 大気圧下の第1の容器内に基板を設置し、前
記基板が設置された第1の容器内を減圧し、第1
のゲートバルブを介して第1の容器に隣接すると
ともにガス吹きつけパイプと受皿を有する箱状容
器にストツプバルブを有するパイプで接続され常
時減圧下にある第2の容器底部に前記ゲートバル
ブを開いて前記基板を移動させ、前記ゲートバル
ブを閉じた後、前記受皿に微小物体を供給し、前
記受皿上の微小物体をガスの吹きつけによつて飛
散させ、前記ストツプバルブを短時間開き、一定
時間経過後、第2のゲートバルブを介して第2の
容器に隣接し減圧下にある第3の容器内に前記第
2のゲートバルブを開いて基板を移動させ、前記
第2のゲートバルブを閉じた後、前記第3の容器
内を大気圧に解放するようにした微小物体散布方
法。 7 減圧状態を維持しうる容器と、前記容器内底
部に基板を設置するための開閉可能な扉と、前記
容器内を排気する手段と、前記容器の減圧状態を
解除する手段と、微小物体を反転機構を有するス
プーン状の供給皿より前記容器内の所定の位置に
供給する手段と、前記容器内の前記微小物体をガ
スの吹きつけによつて飛散させ前記基板上に散布
する手段とを備えた微小物体散布装置。 8 微小物体の受皿とガス吹きつけパイプを有す
る箱型容器が容器外にあり、前記箱型容器と容器
との間がストツプバルブを有するパイプによつて
接続されていることを特徴とする特許請求の範囲
第7項記載の微小物体散布装置。 9 減圧状態を維持しうる第2の容器と、前記第
2の容器内の所定の位置に微小物体を供給する手
段と、前記微小物体を飛散させる手段と、前記第
2の容器にゲートバルブを介して隣接する第1の
容器と、前記第1,第2の容器を排気する手段
と、前記第1,第2の容器の減圧状態を解除する
手段と、ゲートバルブを通過して第1,第2,第
1の容器の順に基板を移動させる手段とを備えた
微小物体散布装置。 10 減圧状態を維持しうる第2の容器と、前記
第2の容器内の所定の位置に微小物体を供給する
手段と、前記微小物体を飛散させる手段と、前記
第2の容器にゲートバルブを介して隣接する第1
と第3の容器と、前記第1,第2,第3の容器を
排気する手段と、前記第1,第2,第3の容器の
減圧状態を解除する手段と、ゲートバルブを通過
して第1,第2,第3の容器の順に基板を移動さ
せる手段とを備えた微小物体散布装置。 11 微小物体の受皿とガス吹きつけパイプを有
する箱型容器が第2の容器外にあり、前記箱型容
器と第2の容器との間がストツプバルブを有する
パイプによつて接続されていることを特徴とする
特許請求の範囲第9項あるいは第10項にいずれ
か記載の微小物体散布装置。
[Claims] 1. A substrate is installed at the bottom of the container, and a minute object is supplied to a tray provided at a predetermined position in the container,
The inside of the container is reduced in pressure, the micro objects on the saucer under reduced pressure are scattered by blowing gas, the micro objects are scattered, and the inside of the container is released to atmospheric pressure after a certain period of time has elapsed. Object scattering method. 2. A substrate is installed in a first container under atmospheric pressure, the pressure inside the first container in which the substrate is installed is reduced, and a second container adjacent to the first container and always under reduced pressure is placed through a gate valve. The substrate is moved by opening the gate valve at the inner bottom of the second container, and after closing the gate valve, a receiving tray is placed at a predetermined position in the second container by a supply means that holds a minute object in advance. The minute object is supplied to the receiver, the minute object on the saucer is scattered by blowing gas, and after a certain period of time has elapsed since the minute object has been scattered, the gate valve is opened to release the first object under reduced pressure. A method for dispersing minute objects, comprising moving a substrate into a container, closing the gate valve, and then releasing the inside of the first container to atmospheric pressure. 3 Place the substrate in a first container under atmospheric pressure, reduce the pressure in the first container in which the substrate is placed, and
Opening the first gate valve to move the substrate to the bottom of the second container which is adjacent to the first container and under constant reduced pressure via the gate valve, and closing the first gate valve, Supplying the minute object to a tray provided at a predetermined position in the second container from a supply means that holds the minute object in advance, and scattering the minute object on the tray by blowing gas, After a certain period of time has elapsed after scattering the microscopic objects, opening the second gate valve and moving the substrate into a third container adjacent to the second container under reduced pressure via a second gate valve; A method for dispersing minute objects, wherein after closing the second gate valve, the inside of the third container is released to atmospheric pressure. 4. A box-shaped container having a gas blowing pipe and a saucer is connected to the bottom of the container by a pipe having a stop valve, and a substrate is installed at the bottom of the container, and after reducing the pressure inside the container, a minute object is supplied to the saucer, and A method for dispersing minute objects, comprising scattering minute objects by blowing gas, opening the stop valve for a short time, and releasing the inside of the container to atmospheric pressure after a certain period of time has elapsed. 5. Place the substrate in a first container under atmospheric pressure, reduce the pressure in the first container in which the substrate is installed, and connect the first container with the gas blowing pipe and the saucer via the gate valve. The gate valve is opened at the bottom of the second container, which is connected by a pipe with a stop valve to a box-shaped container having a stop valve, and the substrate is moved. After closing the gate valve, a minute object is placed in the receiving tray. The fine objects on the receiving tray are dispersed by blowing gas, the stop valve is opened for a short time, and after a certain period of time, the gate valve is opened and the substrate is placed in the first container under reduced pressure. , and after closing the gate valve, the inside of the first container is released to atmospheric pressure. 6 Place the substrate in a first container under atmospheric pressure, reduce the pressure in the first container in which the substrate is placed, and
The gate valve is opened at the bottom of a second container which is adjacent to the first container through a gate valve and which is connected by a pipe having a stop valve to a box-shaped container having a gas blowing pipe and a saucer, and which is constantly under reduced pressure. After moving the substrate and closing the gate valve, a minute object is supplied to the tray, the minute object on the tray is scattered by blowing gas, and the stop valve is opened for a short time, and a certain period of time elapses. After that, the second gate valve was opened and the substrate was moved into a third container adjacent to the second container under reduced pressure via the second gate valve, and the second gate valve was closed. Then, the inside of the third container is released to atmospheric pressure. 7. A container capable of maintaining a reduced pressure state, an openable/closable door for installing a substrate at the inner bottom of the container, a means for evacuating the inside of the container, a means for releasing the reduced pressure state of the container, and a means for removing minute objects. A means for supplying the microscopic objects in the container to a predetermined position in the container from a spoon-shaped supply tray having an inversion mechanism, and a means for scattering the microscopic objects in the container by blowing gas onto the substrate. Micro object scattering device. 8. A box-shaped container having a receptacle for minute objects and a gas blowing pipe is located outside the container, and the box-shaped container and the container are connected by a pipe having a stop valve. The micro object dispersing device according to scope 7. 9 A second container capable of maintaining a reduced pressure state, a means for supplying a microscopic object to a predetermined position within the second container, a means for scattering the microscopic object, and a gate valve provided in the second container. means for evacuating the first and second containers, means for releasing the reduced pressure state of the first and second containers, and the first and second containers adjacent to each other through the gate valve. A micro object dispersing device comprising: means for moving a substrate in the order of the second container and the first container. 10 A second container capable of maintaining a reduced pressure state, a means for supplying a microscopic object to a predetermined position within the second container, a means for scattering the microscopic object, and a gate valve provided in the second container. first adjacent through
and a third container; means for evacuating the first, second, and third containers; and means for releasing the reduced pressure state of the first, second, and third containers; A micro object dispersing device comprising means for moving a substrate in order of first, second and third containers. 11. A box-shaped container having a receptacle for minute objects and a gas blowing pipe is located outside the second container, and the box-shaped container and the second container are connected by a pipe having a stop valve. A micro object dispersing device according to claim 9 or 10.
JP22312186A 1986-09-19 1986-09-19 Method and device for scattering particulate body Granted JPS6377026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22312186A JPS6377026A (en) 1986-09-19 1986-09-19 Method and device for scattering particulate body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22312186A JPS6377026A (en) 1986-09-19 1986-09-19 Method and device for scattering particulate body

Publications (2)

Publication Number Publication Date
JPS6377026A JPS6377026A (en) 1988-04-07
JPH0527093B2 true JPH0527093B2 (en) 1993-04-20

Family

ID=16793143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22312186A Granted JPS6377026A (en) 1986-09-19 1986-09-19 Method and device for scattering particulate body

Country Status (1)

Country Link
JP (1) JPS6377026A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3825842A1 (en) * 1988-07-29 1990-02-01 Nokia Unterhaltungselektronik METHOD FOR APPLYING DISTANCE ELEMENTS OF A LIQUID CRYSTAL CELL, AND A DEVICE FOR CARRYING OUT THE METHOD
WO1999022269A1 (en) * 1997-10-27 1999-05-06 Sekisui Chemical Co., Ltd. Apparatus for spraying microparticles and spraying method using the apparatus, and method for manufacturing liquid crystal display

Also Published As

Publication number Publication date
JPS6377026A (en) 1988-04-07

Similar Documents

Publication Publication Date Title
US6139634A (en) Apparatus for manufacturing electronic devices
TW575764B (en) Liquid crystal cell, display device, and method of fabricating liquid crystal cell
JPH06313870A (en) Substrate assembly device
JPH0926578A (en) Liquid crystal display panel and manufacture thereof
CN101303522A (en) Colored filter with spacer, liquid crystal display device and method for making the same
JP2006259743A (en) Method for manufacturing liquid crystal display element
JPH0527093B2 (en)
US6517979B1 (en) Coating method, coating system, method of manufacturing color filter substrate employing the coating method, and liquid crystal display device employing the color filter substrate manufactured in accordance with the coating method
CN100376988C (en) Liquid crystal display panel
US7817238B2 (en) Liquid crystal display device and method of manufacturing the same
JP2001174819A (en) Method of forming coating film, method of producing liquid crystal device and film forming device
CN107238965A (en) A kind of display panel and preparation method thereof
US20050280768A1 (en) Method for manufacturing liquid crystal display device
JPS6377025A (en) Device and method for scattering particulate body
KR100411149B1 (en) Method and device for diffusing spacer of liquid crystal panel and liquid crystal panel structure fabricated by the same
JP3809043B2 (en) Manufacturing method of liquid crystal display device
JPH0363628A (en) Spacer and formation thereof
CN110147015A (en) Display panel coating method and apparatus for coating
JPH035728A (en) Scattering method for extremely small body
JPH0394230A (en) Liquid crystal panel
JPH0553121A (en) Production of liquid crystal element
KR20050105569A (en) Ink jet type spacer injection equipment and method of forming spacer on lcd substrate using the same equipment
JPH08266996A (en) Rotary coating method
KR101186516B1 (en) Apparatus for drying glass and method of fabricating liquid crystal display device using the same
JPS6396633A (en) Spacer dispersing device for liquid crystal panel