JPH05270917A - Sic sintered compact and calcining method thereof - Google Patents

Sic sintered compact and calcining method thereof

Info

Publication number
JPH05270917A
JPH05270917A JP4064608A JP6460892A JPH05270917A JP H05270917 A JPH05270917 A JP H05270917A JP 4064608 A JP4064608 A JP 4064608A JP 6460892 A JP6460892 A JP 6460892A JP H05270917 A JPH05270917 A JP H05270917A
Authority
JP
Japan
Prior art keywords
sic
firing
molding
sintered body
sintered compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4064608A
Other languages
Japanese (ja)
Other versions
JP2968882B2 (en
Inventor
Shigeru Hanzawa
茂 半澤
Tsuneo Komiyama
常夫 古宮山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13263151&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05270917(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP4064608A priority Critical patent/JP2968882B2/en
Publication of JPH05270917A publication Critical patent/JPH05270917A/en
Application granted granted Critical
Publication of JP2968882B2 publication Critical patent/JP2968882B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a SiC sintered compact free from warpages and cracks and also cavities at the center, excellent in resistance to oxidation and spalling. CONSTITUTION:The objective SiC sintered compact having the following characteristics: (1) containing, as constituents, at least SiC and Si; (2) flexural strength: >=15kg/mm<2>; (3) porosity: <=1.0%; (4) porosity difference between the surface layer and center: <20%; and (5) difference in flexural strength between the surface layer and center: <20%. This sintered compact can be obtained by calcining through the following process: feedstock comprising SiC powder, graphite powder, organic binder and water or organic solvent is molded, and the resulting form is set upright and calcined in a vacuum or in an inert gas atmosphere containing metallic silicon at reduced pressures at 1350-2500 deg.C. This SiC sintered compact can be preferably used for ceramic tools such as the shelf boards for quick burning ovens or saggers emphasizing resistance to oxidation and spalling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、SiC質焼結体および
その焼成方法に係り、さらに詳しくは、タイル焼成など
の迅速焼成炉用棚板などとして好ましく使用されるSi
C質焼結体とその焼成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a SiC-based sintered body and a firing method thereof, and more specifically, Si preferably used as a shelf plate for a rapid firing furnace such as tile firing.
The present invention relates to a C-sintered body and a firing method thereof.

【0002】[0002]

【従来の技術】炭化珪素(SiC)質焼結体は、その優
れた耐熱性、耐火性から工業上重要な地位を占めてお
り、例えば陶磁器焼成用の棚板、その他半導体焼成用炉
芯管などに多用されている。このようなSiC質焼結体
の中で、SiCとSiを構成成分として含むSi−Si
C焼結体が知られている。このSi−SiC焼結体はS
iC粒子にカーボン(C)微粉末および有機バインダー
を添加し、これを流し込み成形、押出成形またはプレス
成形等により成形後、Si雰囲気中で焼成することによ
り製造されている。
2. Description of the Related Art Sintered silicon carbide (SiC) materials occupy an important industrial position due to their excellent heat resistance and fire resistance. For example, shelf plates for firing ceramics and other furnace core tubes for firing semiconductors. It is often used for. Among such SiC-based sintered bodies, Si-Si containing SiC and Si as constituent components
C sintered body is known. This Si-SiC sintered body is S
It is manufactured by adding carbon (C) fine powder and an organic binder to iC particles, molding them by casting, extrusion molding, press molding or the like, and then firing them in a Si atmosphere.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、流し込
み成形による方法で得られる焼結体では、表層と中心部
で密度および気孔率に大きな差ができ、極端な場合には
中心部に巣ができるという問題があった。押出成形で
は、例えば板状に押出しする場合反りが発生するほか、
口金が高価であるという問題があった。プレス成形の場
合には、成形時にラミネーション(層状の剥離)が生じ
易く、また保形性が低いため取扱い時に破損が生じるこ
とがあった。Si−SiC焼結体の製造に際してプレス
成形を用いることができれば量産化、工業化に好適と考
えられるが、前記したような問題があった。
However, in the sintered body obtained by the casting method, there is a large difference in the density and the porosity between the surface layer and the central portion, and in the extreme case, a cavity is formed in the central portion. There was a problem. In extrusion molding, for example, warpage occurs when extruding into a plate shape,
There was a problem that the base was expensive. In the case of press molding, lamination (layered peeling) is likely to occur at the time of molding, and the shape retention is low, which may cause damage during handling. If press molding can be used in the production of the Si-SiC sintered body, it is considered to be suitable for mass production and industrialization, but there are the above-mentioned problems.

【0004】また、本発明者が検討したところ、成形体
をSi雰囲気中で焼成するに際しても、焼成条件、すな
わち雰囲気、焼成温度、昇温速度等をいかに制御するか
によって得られる焼結体の特性が大きく左右されること
がわかってきた。従って、本発明は例えばプレス成形な
どによって得られた成形体の焼成方法とそれによって得
られる特性の優れたSiC質焼結体を提供することを目
的とするものである。
Further, the inventors of the present invention have studied and found that even when a molded body is fired in a Si atmosphere, a sintered body obtained by controlling firing conditions, that is, atmosphere, firing temperature, temperature rising rate, etc. It has become clear that the characteristics are greatly affected. Therefore, it is an object of the present invention to provide a method for firing a molded body obtained by, for example, press molding and a SiC-based sintered body having excellent properties obtained by the method.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明によれ
ば、SiCとSiを少なくとも構成成分として含むSi
C質焼結体であって、曲げ強度が15kg/mm2以上、気孔
率が1.0%以下で、かつ中心部と表層部の気孔率の差
が20%以内であり、中心部と表層部の曲げ強度差が2
0%以内であり、耐酸化性および耐スポーリング性に優
れたことを特徴とするSiC質焼結体、が提供される。
That is, according to the present invention, Si containing at least SiC and Si as constituent components is used.
C-sintered body having a bending strength of 15 kg / mm 2 or more, a porosity of 1.0% or less, and a difference in porosity between the central portion and the surface layer portion of 20% or less, and the central portion and the surface layer. Bending strength difference of 2
Provided is a SiC-based sintered body characterized by being within 0% and excellent in oxidation resistance and spalling resistance.

【0006】また、本発明によれば、SiC粉体、黒鉛
粉、有機質バインダーおよび水分または有機溶剤を含有
してなる成形用原料を用い、これを成形した後、得られ
る成形体をを立設して焼成するにあたり、金属シリコン
雰囲気でかつ減圧の不活性ガス雰囲気又は真空中におい
て、1350〜2500℃で焼成することを特徴とする
SiC質焼結体の焼成方法、が提供される。本発明にお
いては、1350〜1500℃の間に、0〜50℃/hr
の昇温速度で昇温する昇温過程を少なくとも一度以上有
し、かつこの昇温過程を2時間以上維持することが、S
iとCの反応を促進してSiCの生成を充分に行なうた
めに好ましい。
Further, according to the present invention, a molding raw material containing SiC powder, graphite powder, an organic binder and water or an organic solvent is used. In the firing, a firing method for a SiC-based sintered body is provided, which comprises firing at 1350 to 2500 ° C. in a metal silicon atmosphere and a reduced pressure inert gas atmosphere or vacuum. In the present invention, 0 to 50 ° C./hr between 1350 and 1500 ° C.
It is necessary to have at least one or more temperature raising process of raising the temperature at the temperature raising rate of S and maintain the temperature raising process for 2 hours or more.
It is preferable because the reaction between i and C is promoted to sufficiently produce SiC.

【0007】[0007]

【作用】本発明は、雰囲気、焼成温度、昇温速度等の焼
成条件を特定とし、特性の優れたSiC質焼結体を得る
ための焼成方法とそれによって得られた特定物性を有す
るSiC質焼結体である。このような特定物性を有する
SiC質焼結体は、耐酸化性および耐スポーリング性に
優れており、タイル焼成などの迅速焼成炉用棚板などと
して好ましく使用される。まず、本発明で用いる成形用
原料について説明する。成形用原料としては、SiC微
粉とSiC粗粉を含むことが好ましい。SiC微粉は、
好ましくは平均粒径が1〜10μmで、しかも0.1〜
15μmの粒径範囲に90重量%以上の粒子が分布する
ものであり、SiC粗粉は、好ましくは平均粒径が25
〜1500μm、しかも20〜2000μmの粒径範囲
に90重量%以上の粒子が分布するものである。また、
SiC微粉とSiC粗粉の含有割合は10/90〜90
/10の範囲が好ましい。
The present invention specifies a firing condition such as an atmosphere, a firing temperature and a temperature rising rate, and a firing method for obtaining a SiC quality sintered body having excellent characteristics, and a SiC quality having the specific physical properties obtained by the firing method. It is a sintered body. The SiC-based sintered body having such specific physical properties has excellent oxidation resistance and spalling resistance, and is preferably used as a shelf plate for a rapid firing furnace such as tile firing. First, the molding raw material used in the present invention will be described. The molding raw material preferably contains SiC fine powder and SiC coarse powder. SiC fine powder is
Preferably, the average particle size is 1 to 10 μm, and 0.1 to
90% by weight or more of particles are distributed in a particle size range of 15 μm, and the SiC coarse powder preferably has an average particle size of 25.
90% by weight or more of the particles are distributed in a particle size range of ˜1500 μm and 20 to 2000 μm. Also,
The content ratio of SiC fine powder and SiC coarse powder is 10/90 to 90
The range of / 10 is preferable.

【0008】また成形用原料には黒鉛粉を含むが、その
粒度としては、好ましくは平均粒径が0.1〜20μm
で、0.05〜30μmの粒径範囲に90重量%以上分
布するものを用いる。黒鉛粉は、SiC微粉とSiC粗
粉の合計量に対して0.5〜25重量%含有する。そし
て、このSiCの微粉と粗粉、および黒鉛粉に、さらに
有機質バインダーと水分または有機溶剤を含有して成形
用原料が構成される。なお、有機質バインダーとしては
メチルセルロース、イソバン等が好ましく用いられ、そ
の含有量はSiC微粉とSiC粗粉の合計量に対して
0.1〜5.0重量%である。また、水分または有機溶
剤の含有量はSiC微粉とSiC粗粉の合計量に対して
0.5〜5.0重量%である。
The molding raw material contains graphite powder, and its particle size is preferably 0.1 to 20 μm in average particle size.
Then, those having a distribution of 90% by weight or more in the particle size range of 0.05 to 30 μm are used. The graphite powder is contained in an amount of 0.5 to 25% by weight based on the total amount of the SiC fine powder and the SiC coarse powder. The SiC fine powder and coarse powder, and the graphite powder further contain an organic binder and water or an organic solvent to form a raw material for molding. As the organic binder, methyl cellulose, isoban, etc. are preferably used, and the content thereof is 0.1 to 5.0% by weight based on the total amount of the SiC fine powder and the SiC coarse powder. Further, the content of water or the organic solvent is 0.5 to 5.0% by weight based on the total amount of the SiC fine powder and the SiC coarse powder.

【0009】このような所定粒度のSiC微粉、SiC
粗粉および黒鉛粉を所定量含有し、さらに有機質バイン
ダーと水分又は有機溶剤を含有した成形用原料を混合
し、この混合物を好ましくはボールミル又はフレットミ
ル等の粉砕機を用いて原料を調整する。この調整の際、
黒鉛の凝集粒子の90重量%以上が解砕されるまで解砕
することが好ましい。尚、ここで解砕度は20mm×2
0mmの成形型に適量、解砕前の原料を入れプレス成形
した時にプレス面にある黒鉛凝集粉の数と解砕後の原料
のそれを拡大鏡で測定することによりその比を求めて計
算される。
SiC fine powder having such a predetermined particle size, SiC
A raw material for molding which contains a predetermined amount of coarse powder and graphite powder and further contains an organic binder and water or an organic solvent is mixed, and the mixture is preferably adjusted by using a pulverizer such as a ball mill or a fret mill. When making this adjustment
It is preferable to disintegrate until 90% by weight or more of the agglomerated particles of graphite are disintegrated. The crushing degree here is 20 mm x 2
The ratio is calculated by measuring the number of agglomerated graphite particles on the press surface and the raw material after crushing with a magnifying glass when press-molding by putting an appropriate amount of raw material before crushing into a 0 mm mold. It

【0010】次に、得られた成形用原料を成形するが、
成形方法としてはプレス成形が好ましい。又プレス成形
としては油圧プレスが好ましい。また油圧プレス圧とし
ては通常50〜2000kgf/cm2 を用いる。なお、油圧
プレス後の成形体に対しラバープレスを施すことは、成
形体ひいては焼結体の均質性を増すため有効である。
又、成形体が肉薄の場合には、上記プレスを施すに際
し、成形圧の1/2以下の圧力で原料を予備成形して原
料中に含まれる空気を除去し、次いで所定の成形圧で成
形することが、ラミネーションの発生防止の観点から好
ましい。
Next, the obtained molding raw material is molded,
Press molding is preferable as a molding method. A hydraulic press is preferable as the press molding. The hydraulic press pressure is usually 50 to 2000 kgf / cm 2 . It should be noted that it is effective to subject the compact after the hydraulic pressing to rubber pressing because it increases the homogeneity of the compact and eventually the sintered compact.
When the molded body is thin, when the above-mentioned pressing is performed, the raw material is pre-molded at a pressure of 1/2 or less of the molding pressure to remove air contained in the raw material, and then molded at a predetermined molding pressure. It is preferable from the viewpoint of preventing the occurrence of lamination.

【0011】上記したように成形して得られる成形体
を、金属シリコン雰囲気下(焼成時に金属シリコンが溶
融し、成形体は金属シリコンの液相下に置かれる)にお
いて所定の条件で焼成することにより、耐酸化性および
耐スポーリング性の優れた焼結体を得ることができる。
上記焼成に際しては、成形体を立設して焼成することが
反り発生防止のために重要である。ここで立設とは、成
形体が例えば棚板などの板状成形体の場合、垂直方向に
立てて焼成することを云う。また、成形体を立設するに
際しては、各成形体の間隔を2mm以上、好ましくは5
mm以上とし、さらに板状成形体の場合には肉厚の1/
2以上の間隔を設けることが、Siのしみ出しによる各
成形体同士の接着防止の観点から好ましい。
The molded product obtained by molding as described above is fired under a predetermined condition in a metallic silicon atmosphere (the metallic silicon is melted during firing and the molded body is placed in the liquid phase of metallic silicon). Thereby, a sintered body having excellent oxidation resistance and spalling resistance can be obtained.
At the time of the above firing, it is important to stand and fire the molded body to prevent warpage. Here, the term "standing" means that when the molded product is a plate-shaped molded product such as a shelf plate, it is stood in the vertical direction and fired. When the molded products are erected, the interval between the molded products is 2 mm or more, preferably 5 mm.
mm or more, and in the case of a plate-shaped molded body, 1 / of the wall thickness
It is preferable to provide an interval of 2 or more from the viewpoint of preventing adhesion between the molded products due to the seepage of Si.

【0012】次に、焼成条件としては、基本的に、金属
シリコン雰囲気でかつ減圧の不活性ガス雰囲気又は真空
中において、1350〜2500℃で焼成することが必
要である。そして、SiとCの反応を促進してSiCの
生成を充分に行なうため、1350〜1500℃の温度
範囲を、0〜50℃/hrの昇温速度で昇温する昇温過程
を少なくとも一度以上有し、かつこの昇温過程を2時間
以上維持するようにすることが好ましい。また、不活性
ガス雰囲気としては、SiCとの反応性を考慮すると、
2 ガス雰囲気は不適当であり、その他のアルゴン(A
r)ガス、ヘリウム(He)ガスなどの雰囲気下が好ま
しい。
Next, as the firing conditions, it is basically necessary to perform firing at 1350 to 2500 ° C. in a metal silicon atmosphere and a reduced pressure inert gas atmosphere or vacuum. Then, in order to promote the reaction between Si and C to sufficiently generate SiC, the temperature raising process of raising the temperature range of 1350 to 1500 ° C. at a heating rate of 0 to 50 ° C./hr is performed at least once or more. In addition, it is preferable that the temperature rising process is maintained for 2 hours or more. Further, as the inert gas atmosphere, considering the reactivity with SiC,
N 2 gas atmosphere is unsuitable, and other argon (A
An atmosphere of r) gas, helium (He) gas, or the like is preferable.

【0013】以下具体的な焼成スケジュールを説明す
る。まず、室温から約600℃までは10Torr以下、好
ましくは0.01〜0.1の真空下で焼成する。約60
0℃〜約1000℃の間は、50Torr以下、好ましくは
0.1〜10Torrの真空下あるいはアルゴンガス等の雰
囲気下で焼成する。次に、約1000℃から最高温度
(約1600〜約2500℃の間)まではアルゴンガス
雰囲気で減圧下とすることがSiCへのSiの濡れ性が
改善されるため好ましい。
A specific firing schedule will be described below. First, firing is performed under vacuum of 10 Torr or less, preferably 0.01 to 0.1 from room temperature to about 600 ° C. About 60
Firing is performed under a vacuum of 50 Torr or less, preferably 0.1 to 10 Torr or an atmosphere such as argon gas between 0 ° C and about 1000 ° C. Next, from about 1000 ° C. to the maximum temperature (between about 1600 to about 2500 ° C.), it is preferable to reduce the pressure in an argon gas atmosphere because the wettability of Si with SiC is improved.

【0014】なお上記焼成工程のうち、1350〜15
00℃の間を、0〜50℃/hrの昇温速度で昇温する昇
温過程を少なくとも一度以上有し、かつこの昇温過程を
2時間以上維持するように制御することが重要である。
これは、約1420℃が金属Siの溶解温度であり、溶
解されたSiとCとの反応を促進し、Si+C→SiC
の反応を充分に行なうことができる。以上のような条件
で焼成されたSiC質焼結体は、反り、切れが発生せ
ず、しかも中心部に巣がなく、また特性的には強度が大
きくて気孔率が小さいものである。そして、このSiC
質焼結体はさらに中心部と表層部の気孔率および強度の
差が所定以下に小さいもので、耐酸化性および耐スポー
リング性に優れたものである。
Among the above firing steps, 1350 to 15
It is important to have a temperature increasing process of increasing the temperature between 00 ° C. at a temperature increasing rate of 0 to 50 ° C./hr at least once, and to control this temperature increasing process for 2 hours or more. ..
This is because the melting temperature of metallic Si is about 1420 ° C., which promotes the reaction between dissolved Si and C, and Si + C → SiC
Can be sufficiently performed. The SiC-based sintered body that has been fired under the above conditions does not warp or break, has no cavities in the center, and is characteristically high in strength and low in porosity. And this SiC
The quality sintered body has a difference in porosity and strength between the central portion and the surface layer portion that is smaller than a predetermined value, and is excellent in oxidation resistance and spalling resistance.

【0015】即ち、得られるSiC質焼結体は、SiC
とSiを少なくとも構成成分として含むSiC質焼結体
であって、曲げ強度が15kg/mm2以上、気孔率が1.0
%以下で、かつ中心部と表層部の気孔率の差が20%以
内であり、中心部と表層部の曲げ強度差が20%以内で
あり、耐酸化性および耐スポーリング性に優れたもので
ある。SiC質焼結体の気孔率が1.0%を超える場
合、あるいは中心部と表層部の気孔率の差が20%を超
える場合には、強度、および耐酸化性、耐スポーリング
性が低くなる。
That is, the obtained SiC-based sintered body is SiC
A SiC-based sintered body containing at least Si and Si as constituent components, having a bending strength of 15 kg / mm 2 or more and a porosity of 1.0.
% Or less, the difference in porosity between the central portion and the surface layer portion is within 20%, the difference in bending strength between the central portion and the surface layer portion is within 20%, and excellent in oxidation resistance and spalling resistance. Is. If the porosity of the SiC sintered body exceeds 1.0%, or if the difference in porosity between the central portion and the surface layer portion exceeds 20%, strength, oxidation resistance, and spalling resistance are low. Become.

【0016】[0016]

【実施例】以下、本発明を実施例に基づいて更に詳細に
説明するが、本発明はこれらの実施例に限られるもので
はない。 (耐スポーリング性(△T)の評価方法)焼結体の70
%面積で肉厚10mmのアルミナレンガを積載し、一定
温度T2の炉から大気中(温度T1 )に引き出してクラ
ックが発生する△T(=T2 −T1 )を測定した。 (耐酸化性の評価方法)焼結体を、1150℃で100
hr、H2 O+O2 のガス中に置き、その増量分(△
W)を測定した。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to these examples. (Evaluation method of spalling resistance (ΔT)) 70 of sintered body
%, An alumina brick having a wall thickness of 10 mm was loaded and pulled out from a furnace having a constant temperature T 2 into the atmosphere (temperature T 1 ), and ΔT (= T 2 −T 1 ) at which a crack was generated was measured. (Evaluation Method of Oxidation Resistance) The sintered body was measured at 1150 ° C.
It was placed in a gas of hr and H 2 O + O 2 and the amount of increase (△
W) was measured.

【0017】(実施例1〜6、比較例1〜2)平均粒
径、粒径分布および含有率を表1のように変えたSiC
微粉、SiC粗粉および黒鉛粉に、有機質バインダー
(メチルセルロース)および水分または有機溶剤を外配
で表1に示す割合で配合し、成形用原料を得た。次に、
これらの成形用原料をボールミルを用いて表1のような
黒鉛凝集粒子の解砕度となるように解砕した。ボールミ
ルとしては、1100rpm で、ボールは表面にプラスチ
ックスがコートされたモノボールを使用した。次に、解
砕された成形用原料を金型内に導入し、油圧プレスを用
い表1の圧力で成形し、表1に示す各種肉厚の板状成形
体を得た。
(Examples 1 to 6 and Comparative Examples 1 and 2) SiC in which the average particle size, particle size distribution and content are changed as shown in Table 1.
Fine powder, SiC coarse powder, and graphite powder were mixed with an organic binder (methyl cellulose) and water or an organic solvent in a proportion shown in Table 1 by external distribution to obtain a raw material for molding. next,
These molding raw materials were crushed using a ball mill so that the graphite agglomerated particles had a crushing degree as shown in Table 1. The ball mill used was a monoball having a surface coated with plastics at 1100 rpm. Next, the crushed molding raw material was introduced into a mold and molded under a pressure of Table 1 using a hydraulic press to obtain plate-shaped molded bodies of various thicknesses shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】次いで、この板状成形体のうち、200×
30×10(厚さ)(mm)のものを表2に示す条件で焼
成し、SiC質焼結体を得た。得られたSiC質焼結体
の気孔率、曲げ強度を表2に示す。なお、表層部は表面
から3mmまでの部分、中心部は表面から3mm〜7mmの部
分として測定した。また、SiC質焼結体の耐スポーリ
ング性(△T)および耐酸化性(△W)を評価した。結
果を表2に示す。表2に示すように、実施例1〜6の焼
結体は比較例1〜2の焼結体に比し、気孔率が小さく、
しかもその差が小さく、曲げ強度が大きいことがわか
る。また、△Tは大きいが、△Wは小さく、耐スポーリ
ング性および耐酸化性に優れていることも判明した。
Next, of this plate-shaped molded body, 200 ×
Those of 30 × 10 (thickness) (mm) were fired under the conditions shown in Table 2 to obtain a SiC-based sintered body. Table 2 shows the porosity and bending strength of the obtained SiC-based sintered body. The surface layer portion was measured as a portion 3 mm from the surface, and the central portion was measured as a portion 3 mm to 7 mm from the surface. Further, the spalling resistance (ΔT) and the oxidation resistance (ΔW) of the SiC sintered body were evaluated. The results are shown in Table 2. As shown in Table 2, the sintered bodies of Examples 1 to 6 have smaller porosity than the sintered bodies of Comparative Examples 1 and 2,
Moreover, it can be seen that the difference is small and the bending strength is large. It was also found that ΔT was large, but ΔW was small, and the spalling resistance and oxidation resistance were excellent.

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【発明の効果】以上説明した通り、本発明によれば、雰
囲気、焼成温度、昇温速度等の焼成条件を特定としたの
で、反り、切れがなく、中心部に巣がない、耐酸化性お
よび耐スポーリング性に優れたSiC質焼結体を得るこ
とができる。得られるSiC質焼結体は、耐酸化性、耐
スポーリング性を重視する迅速焼成炉用棚板、匣鉢、サ
ヤなどの窯道具、特にローラーハースキルンを用いたタ
イル焼成用棚板に好ましく用いることができる。
As described above, according to the present invention, the firing conditions such as the atmosphere, the firing temperature, and the heating rate are specified, so that there is no warp or break, there is no nest in the center, and the oxidation resistance is high. Further, a SiC-based sintered body having excellent spalling resistance can be obtained. The obtained SiC-based sintered body is preferable for shelf boards for rapid firing furnaces that place importance on oxidation resistance and spalling resistance, kiln tools such as saggers and pods, and particularly for tile firing shelf boards using a roller hearth kiln. Can be used.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 SiCとSiを少なくとも構成成分とし
て含むSiC質焼結体であって、曲げ強度が15kg/mm2
以上、気孔率が1.0%以下で、かつ中心部と表層部の
気孔率の差が20%以内であり、中心部と表層部の曲げ
強度差が20%以内であり、耐酸化性および耐スポーリ
ング性に優れたことを特徴とするSiC質焼結体。
1. A SiC-based sintered body containing SiC and Si as at least constituents, and having a bending strength of 15 kg / mm 2.
As described above, the porosity is 1.0% or less, the difference in porosity between the central portion and the surface layer portion is within 20%, the bending strength difference between the central portion and the surface layer portion is within 20%, and the oxidation resistance and A SiC-based sintered body having excellent spalling resistance.
【請求項2】 SiC粉体、黒鉛粉、有機質バインダー
および水分または有機溶剤を含有してなる成形用原料を
用い、これを成形した後、得られる成形体をを立設して
焼成するにあたり、金属シリコン雰囲気でかつ減圧の不
活性ガス雰囲気又は真空中において、1350〜250
0℃で焼成することを特徴とするSiC質焼結体の焼成
方法。
2. A molding raw material containing a SiC powder, a graphite powder, an organic binder and water or an organic solvent is used. After molding the molding raw material, the molding obtained is erected and fired. 1350 to 250 in a metal silicon atmosphere and in a reduced pressure inert gas atmosphere or vacuum
A method for firing a SiC-based sintered body, which comprises firing at 0 ° C.
【請求項3】 1350〜1500℃の間に、0〜50
℃/hrの昇温速度で昇温する昇温過程を少なくとも一度
以上有し、かつこの昇温過程を2時間以上維持する請求
項2記載の焼成方法。
3. Between 1350 and 1500 ° C., 0-50
The firing method according to claim 2, further comprising at least one heating step for heating at a heating rate of ° C / hr and maintaining the heating step for 2 hours or more.
【請求項4】 成形をプレス成形により行う請求項2記
載の焼成方法。
4. The firing method according to claim 2, wherein the molding is performed by press molding.
JP4064608A 1992-03-23 1992-03-23 SiC-based sintered body and method of firing the same Expired - Lifetime JP2968882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4064608A JP2968882B2 (en) 1992-03-23 1992-03-23 SiC-based sintered body and method of firing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4064608A JP2968882B2 (en) 1992-03-23 1992-03-23 SiC-based sintered body and method of firing the same

Publications (2)

Publication Number Publication Date
JPH05270917A true JPH05270917A (en) 1993-10-19
JP2968882B2 JP2968882B2 (en) 1999-11-02

Family

ID=13263151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4064608A Expired - Lifetime JP2968882B2 (en) 1992-03-23 1992-03-23 SiC-based sintered body and method of firing the same

Country Status (1)

Country Link
JP (1) JP2968882B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014108896A (en) * 2012-11-30 2014-06-12 Nihon Ceratec Co Ltd SiC/Si COMPOSITE MATERIAL BODY AND METHOD OF PRODUCING THE SAME
CN109851337A (en) * 2019-01-08 2019-06-07 广东山摩新材料科技有限公司 A kind of high temperature dichroite-mullite refractory slab and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014108896A (en) * 2012-11-30 2014-06-12 Nihon Ceratec Co Ltd SiC/Si COMPOSITE MATERIAL BODY AND METHOD OF PRODUCING THE SAME
CN109851337A (en) * 2019-01-08 2019-06-07 广东山摩新材料科技有限公司 A kind of high temperature dichroite-mullite refractory slab and preparation method thereof

Also Published As

Publication number Publication date
JP2968882B2 (en) 1999-11-02

Similar Documents

Publication Publication Date Title
US4560668A (en) Substantially pore-free shaped articles of polycrystalline silicon carbide, and a process for their manufacture by isostatic hot-pressing
CN104744047B (en) Method for preparing silicon nitride crucible through reactive sintering
US4564601A (en) Shaped polycrystalline silicon carbide articles and isostatic hot-pressing process
JPH05270917A (en) Sic sintered compact and calcining method thereof
JP2535480B2 (en) Creep resistance Si-SiC quality sintered body
US5840436A (en) Spalling-resistant, creep-resistant and oxidation-resistant setters
JP2002220282A (en) Aluminum nitride sintered compact and method of manufacture
US5443773A (en) Process for producing high strength alumina
JP3437194B2 (en) Oxidation resistant Si-SiC sintered body
JP3142359B2 (en) Press molding method
JP2001089270A (en) Method of producing silicon impregnated silicon carbide ceramic member
WO1993025859A1 (en) Shelf plate having anti-spalling, anti-creep and oxidation resistant properties
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JPH08208336A (en) Si-sic sintered compact having oxidation and creep resistance
JP2758313B2 (en) Sporing-resistant shelf
JPS6374978A (en) Ceramic composite body
JP3137737B2 (en) Si-SiC shelf
JP2003071555A (en) MANUFACTURING METHOD FOR Si-SiC COMPOSITE MATERIAL
JP5002087B2 (en) CHROMIA SINTERED BODY AND ITS MANUFACTURING METHOD
JPH06340479A (en) Production of silicon carbide base material for jig for production of semiconductor
JP3142663B2 (en) Zirconia kiln tools
JPH0611272A (en) Si-sic sintered shelf board
JPH06144966A (en) Si-sic refractory
JP3382702B2 (en) Setter and its manufacturing method
JPH05105525A (en) Production of highly heat conductive aluminum nitride sintered compact

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 13