JPH0527059B2 - - Google Patents

Info

Publication number
JPH0527059B2
JPH0527059B2 JP58223933A JP22393383A JPH0527059B2 JP H0527059 B2 JPH0527059 B2 JP H0527059B2 JP 58223933 A JP58223933 A JP 58223933A JP 22393383 A JP22393383 A JP 22393383A JP H0527059 B2 JPH0527059 B2 JP H0527059B2
Authority
JP
Japan
Prior art keywords
level
measured
output signal
light
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58223933A
Other languages
Japanese (ja)
Other versions
JPS60114749A (en
Inventor
Hideyuki Matsubara
Toshio Hashimoto
Kenichi Konno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP22393383A priority Critical patent/JPS60114749A/en
Publication of JPS60114749A publication Critical patent/JPS60114749A/en
Publication of JPH0527059B2 publication Critical patent/JPH0527059B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は表面欠陥計測装置に係り、特に、各種
被計測物の表面欠陥を計測するのに好適な表面欠
陥計測装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a surface defect measuring device, and particularly to a surface defect measuring device suitable for measuring surface defects of various objects to be measured.

〔発明の背景〕[Background of the invention]

各種被計測物の表面欠陥を計測する装置とし
て、従来、光学式表面欠陥計測装置が用いられて
いた。この種従来の装置は、被計測物の表面に光
を照射し被計測物の表面に照射された光の反射光
を受光し、この受光量を基に、被計測物の表面に
欠陥が生じたか否かを計測するように構成されて
いた。
Conventionally, optical surface defect measuring devices have been used as devices for measuring surface defects of various objects to be measured. This kind of conventional equipment irradiates the surface of the object to be measured with light and receives the reflected light of the irradiated light on the surface of the object to be measured.Based on the amount of light received, defects are generated on the surface of the object to be measured. It was configured to measure whether or not the test was successful.

ところが、従来の装置では、被計測物の表面に
ゴミ等が付着されていた場合でも、被計測物の表
面に傷等の欠陥が生じたこととして判定してしま
い、傷等のない良品のものでも不良品として廃棄
される恐れがあつた。そこで、従来の装置を用い
て検査する場合には、不良品になつたものを人手
によつて再検査を行なうか、又は前工程に洗浄機
を設置し、被計測物の表面を清浄することが行な
われていた。そのため、従来の装置を用いたので
は、被計測物の表面欠陥を計測する際、歩留りが
低下したり、再検査工数が増加したり、あるいは
設備投資額が増加するという問題があつた。な
お、特開昭57−13340号公報及び特開昭58−62543
号公報に記載されている方法を採用することも考
えられるが、これらの方法では、複数の光源が必
要であつたり、複数の受光素子が必要であつたり
し、装置が大型化するという不具合がある。
However, with conventional devices, even if there is dust or the like on the surface of the object to be measured, it is determined that there is a defect such as a scratch on the surface of the object to be measured. However, there was a risk that it would be discarded as a defective product. Therefore, when inspecting using conventional equipment, it is necessary to manually re-inspect defective products, or to install a cleaning machine in the previous process to clean the surface of the object to be measured. was being carried out. Therefore, when conventional devices are used to measure surface defects on objects to be measured, there are problems such as a decrease in yield, an increase in the number of re-inspection steps, or an increase in equipment investment. In addition, Japanese Patent Application Publication No. 57-13340 and Japanese Patent Application Publication No. 58-62543
It is possible to adopt the method described in the publication, but these methods require multiple light sources or multiple light receiving elements, and have the disadvantage of increasing the size of the device. be.

[発明の目的] 本発明の目的は、単一の光源からの光を被測定
物に照射し被測定物からの反射光を基に被計測物
の表面欠陥の有無を確実に計測することができる
表面欠陥計測装置を提供することにある。
[Object of the Invention] An object of the present invention is to irradiate the object with light from a single light source and reliably measure the presence or absence of surface defects on the object based on the reflected light from the object. The purpose of the present invention is to provide a surface defect measuring device that is capable of measuring surface defects.

[発明の概要] 前記目的を達成するために、本発明は、光軸が
変化するビーム光を順次放射するスキヤナと、ス
キヤナからのビーム光を被測定物の表面に向けて
順次照射する第1の投光部と、スキヤナからのビ
ーム光を被測定物の側面に向けて順次照射する第
2の投光部と、被計測物の表面に照射された光の
反射光を受光し受光量に応じたレベルの電気信号
を出力する第1の光電変換部と、被計測物の側面
に照射されたビーム光のうち少なくとも被計測物
の表面側を通過したビーム光を受光し、受光した
ビーム光の位置に応じてレベルの異なる2系統の
電気信号を出力する第2の光電変換部と、第2の
光電変換部出力の各系統の電気信号のレベルの比
を求め、この求めた比に応じた信号を出力する演
算部と、複数の基準レベルが設定され演算部及び
第1の光電変換部の各出力信号と前記基準レベル
とを比較し、これらの比較結果を基に被計測物に
対する計測結果を判定し、判定結果を出力する判
定部と、を含み、前記判定部は、第1の光電変換
部の出力信号のレベルが、第1の光電変換部の出
力信号に対応づけられ被計測物が良品であるとき
の第1の基準レベルと異なり、演算部の出力信号
のレベルが、演算部の出力信号に対応づけられ被
計測物が良品であるときの第2の基準レベルと異
なるとき、被計測物の表面に物が付着したことを
判定し、第1の光電変換部の出力信号のレベルが
第1の基準レベルと異なり、演算部の出力信号の
レベルが第2の基準レベルと一致したときには被
計測物の表面に傷等の欠陥が生じたことを判定
し、第1の光電変換部の出力信号のレベルが第1
の基準レベルと一致し、演算部の出力信号のレベ
ルが第2の基準レベルに一致したときには被計測
物が良品であることを判定する、ことを特徴とす
る。
[Summary of the Invention] In order to achieve the above object, the present invention provides a scanner that sequentially emits beam light whose optical axis changes, and a first scanner that sequentially irradiates the beam light from the scanner toward the surface of an object to be measured. a second light projector that sequentially irradiates the beam light from the scanner toward the side of the object to be measured, and a second light projector that receives the reflected light from the surface of the object to be measured and adjusts the amount of light received. a first photoelectric conversion unit that outputs an electric signal of a corresponding level; and a first photoelectric conversion unit that receives at least the beam light that has passed through the surface side of the object to be measured out of the beam light irradiated to the side surface of the object to be measured, and the received beam light. The second photoelectric conversion unit outputs two systems of electrical signals with different levels depending on the position of A calculation unit that outputs a signal, and a plurality of reference levels are set, and each output signal of the calculation unit and the first photoelectric conversion unit is compared with the reference level, and measurements on the object to be measured are performed based on the results of these comparisons. a determination unit that determines the result and outputs the determination result, and the determination unit is configured to match the level of the output signal of the first photoelectric conversion unit with the output signal of the first photoelectric conversion unit to be measured. When the level of the output signal of the calculation unit is different from the first reference level when the object is a non-defective item, and the level of the output signal of the calculation unit is different from the second reference level when the object to be measured is a non-defective item, which is associated with the output signal of the calculation unit. , it is determined that an object has adhered to the surface of the object to be measured, and the level of the output signal of the first photoelectric conversion section is different from the first reference level, and the level of the output signal of the calculation section is equal to the second reference level. When they match, it is determined that a defect such as a scratch has occurred on the surface of the object to be measured, and the level of the output signal of the first photoelectric conversion section is set to the first level.
The object to be measured is determined to be a non-defective product when the level of the output signal of the arithmetic unit matches the second reference level.

〔発明の実施例〕[Embodiments of the invention]

以下、図面に基づいて本発明の好適な実施例を
説明する。
Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第1図には、本発明の好適な実施例の構成が示
されている。
FIG. 1 shows the configuration of a preferred embodiment of the present invention.

第1図において、治具10に支持されモータ1
2の駆動に応じて移動可能な被計測物(以下ワー
クと称する)14の表面には、第1の投光部から
ビーム光が照射されており、又、ワーク14の側
面には第2の投光部からのビーム光が照射されて
いる。即ち、レーザ発振器16から出射されたレ
ーザビームが、オプチカルスキヤナ18、レンズ
20を介してワーク14の表面と、オプチカルス
キヤナ18、スリツト22、レンズ24、反射鏡
26を介してワーク14の側面に照射されてい
る。
In FIG. 1, a motor 1 is supported by a jig 10.
The surface of an object to be measured (hereinafter referred to as a workpiece) 14, which can be moved according to the drive of the workpiece 2, is irradiated with a beam light from a first light projecting section, and the side surface of the workpiece 14 is irradiated with a second light beam. A beam of light from the light projector is irradiated. That is, the laser beam emitted from the laser oscillator 16 passes through the optical scanner 18 and the lens 20 to the surface of the workpiece 14, and passes through the optical scanner 18, the slit 22, the lens 24, and the reflecting mirror 26 to the side surface of the workpiece 14. is irradiated.

オプチカルスキヤナ18は計測ユニツト28か
ら出力される駆動信号Sによつて角度θ1の範囲で
回転できるように構成されている。このため、オ
プチカルスキヤナ18が角度θ1の範囲で回転する
と、レンズ24に照射されるレーザ光が角度θ2
範囲で移動するビーム光として反射鏡26に照射
され、レンズ20に照射されるレーザ光は角度θ3
の範囲で変化するビーム光となつてレンズ20を
介してワーク14の表面に照射される。
The optical scanner 18 is configured to be able to rotate within a range of angle θ 1 in response to a drive signal S output from a measurement unit 28 . Therefore, when the optical scanner 18 rotates within the range of angle θ 1 , the laser light irradiated onto the lens 24 is irradiated onto the reflecting mirror 26 as a beam light moving within the range of angle θ 2 , and is irradiated onto the lens 20 . The angle of the laser beam is θ 3
The surface of the workpiece 14 is irradiated via the lens 20 as a beam of light that changes within a range of .

ワーク14の表面に照射されたレーザ光はワー
ク14の表面で反射し、その反射光の一部がレン
ズ30を介して受光素子32に伝送される。レン
ズ30、受光素子32、増幅器34から構成され
た第1の光電変換部は、ワーク14の表面に照射
された光の反射光を受光し、受光量に応じたレベ
ルの電気信号VSを出力するように構成されてい
る。即ち、ワーク14の表面から反射した光がレ
ンズ30を介して受光素子32に伝送されると、
受光素子32によつて受光量に応じたレベルの電
気信号が出力され、この電気信号が増幅器34で
所定の増幅度に増幅されて出力される。
The laser beam irradiated onto the surface of the workpiece 14 is reflected by the surface of the workpiece 14, and a portion of the reflected light is transmitted to the light receiving element 32 via the lens 30. A first photoelectric conversion unit composed of a lens 30, a light receiving element 32, and an amplifier 34 receives reflected light from the light irradiated onto the surface of the workpiece 14, and outputs an electrical signal V S at a level corresponding to the amount of received light. is configured to do so. That is, when the light reflected from the surface of the workpiece 14 is transmitted to the light receiving element 32 via the lens 30,
The light receiving element 32 outputs an electrical signal having a level corresponding to the amount of light received, and this electrical signal is amplified to a predetermined amplification degree by the amplifier 34 and output.

このように受光素子32は、受光量に応じたレ
ベルの電気信号を出力するように構成されている
ので、増幅器34の出力信号VSのレベルは、第
2図に示されるように、ワーク14の表面にゴミ
等の物が付着したり、ワーク14の表面に傷等の
欠陥が生じていたりすることがないときには、乱
反射が少ないため高レベルV1となり、一方、ワ
ーク14の表面に物が付着していたり、あるいは
ワーク14の表面に傷等の欠陥が生じていたとき
には、乱反射が増えて受光量が減少するため電圧
V1よりも低レベルとなる。即ち、増幅器34の
出力信号VSは、ワーク14の表面に物が付着し
ていたり、あるいはワーク14の表面に傷等の欠
陥が生じていた場合にはそのレベルが低下する。
In this way, the light receiving element 32 is configured to output an electrical signal of a level corresponding to the amount of light received, so that the level of the output signal V S of the amplifier 34 is adjusted to the level of the workpiece 1 When there are no objects such as dust attached to the surface of the workpiece 14 or defects such as scratches on the surface of the workpiece 14, the level V1 is high because there is little diffused reflection. If the surface of the workpiece 14 is damaged or has defects such as scratches, the voltage will increase because diffused reflection will increase and the amount of light received will decrease.
The level is lower than V 1 . That is, the level of the output signal V S of the amplifier 34 decreases when something is attached to the surface of the work 14 or when a defect such as a scratch occurs on the surface of the work 14 .

一方、ワーク14の側面に照射されたレーザ光
はレンズ36を介して受光素子38に伝送され
る。レンズ36、受光素子38から構成される第
2の光電変換部はワーク14の側面に照射された
レーザ光のうち少なくともワーク14の表面側を
通過したレーザ光を受光し、受光したレーザ光の
位置に応じてレベルの異なる2系統の電気信号を
出力するように構成されている。
On the other hand, the laser beam irradiated onto the side surface of the workpiece 14 is transmitted to the light receiving element 38 via the lens 36. A second photoelectric conversion unit composed of a lens 36 and a light receiving element 38 receives at least the laser beam that has passed through the front surface side of the workpiece 14 among the laser beams irradiated on the side surface of the workpiece 14, and determines the position of the received laser beam. It is configured to output two systems of electrical signals with different levels depending on the level.

即ち、本実施例においては、第3図に示される
ように、ワーク14の表面にゴミ等が付着されて
いないときには、受光素子38にレーザ光10
0,102が受光されるが、ワーク14の表面に
ゴミ40等が付着した場合にはレーザ光102は
受光素子38には伝送されず、レーザ光104が
受光素子38に伝送されることになる。そこで本
実施例においては、ワーク14の側面に照射され
たレーザ光のうちワーク14の表面側を通過した
レーザ光を受光し、受光したレーザ光の位置に応
じてレベルの異なる2系統の電気信号を出力する
こととしている。受光素子38はP・I・Nの3
層で構成されたPIN形位置検出素子であり、受光
面が抵抗層であるP層で構成され、受光面の両端
にそれぞれ電極が設けられている。そして受光面
に光が入射すると入射した光のエネルギーに比例
して生じたキヤリアが電流源となり、入射点と各
電極との間の抵抗に逆比例して分配される電流が
各電極から取り出される。ここで、両電極間の抵
抗をRとし、入射点と各電極間の抵抗をR1、R2
とすると、各電極からは次式で示される電流i1
i2が出力される。
That is, in this embodiment, as shown in FIG. 3, when no dust or the like is attached to the surface of the workpiece 14, the laser beam 10
0,102 is received, but if dust 40 or the like adheres to the surface of the workpiece 14, the laser beam 102 will not be transmitted to the light receiving element 38, but the laser beam 104 will be transmitted to the light receiving element 38. . Therefore, in this embodiment, among the laser beams irradiated on the side surface of the workpiece 14, the laser beam that has passed through the front side of the workpiece 14 is received, and two systems of electrical signals with different levels are generated depending on the position of the received laser beam. is to be output. The light receiving element 38 has three types: P, I, and N.
It is a PIN type position detection element composed of layers, and the light receiving surface is composed of a P layer which is a resistive layer, and electrodes are provided at both ends of the light receiving surface. When light is incident on the light receiving surface, a carrier generated in proportion to the energy of the incident light becomes a current source, and a current is extracted from each electrode that is distributed in inverse proportion to the resistance between the incident point and each electrode. . Here, the resistance between both electrodes is R, and the resistance between the incident point and each electrode is R 1 , R 2
Then, the current from each electrode is expressed by the following equation i 1 ,
i 2 is output.

i1=R2/R1+R2i ……(1) i2=R1/R1+R2i ……(2) ここに、iは発生した全電流(i=i1+i2)を
示す。
i 1 = R 2 / R 1 + R 2 i ...(1) i 2 = R 1 /R 1 + R 2 i ...(2) Here, i is the total current generated (i = i 1 + i 2 ) show.

上記(1)、(2)式から、受光素子38の各電極の出
力電圧VA、VBは次式によつてあらわされる。
From the above equations (1) and (2), the output voltages V A and V B of each electrode of the light receiving element 38 are expressed by the following equations.

VA=i1×R1 ……(3) VB=i2×R2 ……(4) ここで、受光素子38へ入力するレーザ光量が
常に一定とした場合、受光素子38の出力電圧の
和は受光位置が変わつても一定となる。
V A = i 1 × R 1 ...(3) V B = i 2 × R 2 ... (4) Here, if the amount of laser light input to the light receiving element 38 is always constant, the output voltage of the light receiving element 38 The sum remains constant even if the light receiving position changes.

VC=VA+VB ……一定 このとき、VA、又はVBの値が受光位置に相当
する。
V C = V A + V B ... constant At this time, the value of V A or V B corresponds to the light receiving position.

しかし、受光素子38へ入射するレーザ光量は
常に一定とはかぎらず、レーザ光量の変動分をキ
ヤンセルする。従つて、次式のいずれかにより受
光位置を求めることができる。
However, the amount of laser light incident on the light receiving element 38 is not always constant, and variations in the amount of laser light are canceled out. Therefore, the light receiving position can be determined using either of the following equations.

VQ=VA/VA+VB ……(5) VQ=VB/VA+VB ……(6) VQ=VA−VB/VA+VB ……(7) 受光素子38の各系統の電気信号は演算部42
の増幅器44,46に供給されている。
V Q =V A /V A +V B ...(5) V Q =V B /V A +V B ...(6) V Q =V A −V B /V A +V B ...(7) Photodetector The electrical signals of each of the 38 systems are processed by the calculation unit 42.
amplifiers 44 and 46.

演算部42は増幅器44,46及び演算部48
から構成されている。増幅器44,46はそれぞ
れ受光素子38からの出力信号VA,VBの各信号
をそれぞれ所定のレベルVA′,VB′に増幅し演算
器48に供給するように構成されている。
The calculation unit 42 includes amplifiers 44, 46 and a calculation unit 48.
It consists of The amplifiers 44 and 46 are configured to amplify the output signals V A and V B from the light receiving element 38 to predetermined levels V A ′ and V B ′, respectively, and supply them to the arithmetic unit 48 .

演算器48は増幅器44,46の各出力信号
VA′,VB′を加算した信号VADD=VA′+VB′を求
め、この信号と基準電圧V3比較する。このとき
レーザ光がワーク14によつてさえぎられていれ
ば、受光素子38にはレーザ光が入射しないの
で、VA′,VB′は約0Vである。一方、レーザ光が
ワーク14の上面をかすめて受光素子38へ直接
入射すると、VA′,VB′は急激に高くなり、VADD
は3〜5V程度となる。このときVADD>V3となる
ので、次式によつて受光位置を求めるための演算
を行う。
The arithmetic unit 48 receives each output signal of the amplifiers 44 and 46.
A signal V ADD =V A ′+V B ′ is obtained by adding V A ′ and V B , and this signal is compared with the reference voltage V 3 . At this time, if the laser beam is blocked by the workpiece 14, the laser beam will not be incident on the light receiving element 38, so V A ′ and V B ′ are approximately 0V. On the other hand, when the laser beam passes over the top surface of the workpiece 14 and directly enters the light receiving element 38, V A ′ and V B ′ suddenly increase, and V ADD
will be about 3 to 5V. At this time, since V ADD >V 3 , calculations are performed to determine the light receiving position using the following equation.

VQ={(VA′−VB′)/(VV′+VB′)} 上記の式によつて得られたVQをサンプルホー
ルドし、VQ=VPとして出力するようになつてい
る。そして、ワーク14の表面にゴミ40等が付
着していないときは、受光素子38にはレーザ光
100,104,102が順次入射されので、第
4図に示されるように、VP=V2の信号が出力さ
れる。一方、ワーク14の表面にゴミ40等が付
着しているときは受光素子38にはレーザ光10
0,104のみが入射し、同一サンプリング時点
でVB′のレベルがVA′レベルよりも僅かに低下し、
VP>V2の信号が出力されることになる。そして
これらの信号は計測ユニツト28に供給される。
V Q = {(V A ′−V B ′)/(V V ′+V B ′)} V Q obtained by the above formula is sampled and held and output as V Q =V P. ing. When no dust 40 or the like is attached to the surface of the workpiece 14, the laser beams 100, 104, and 102 are sequentially incident on the light receiving element 38, so that V P =V 2 as shown in FIG. signal is output. On the other hand, when dust 40 or the like is attached to the surface of the workpiece 14, the laser beam 10 is transmitted to the light receiving element 38.
Only 0.0,104 is incident, and the level of V B ' is slightly lower than the level of V A ' at the same sampling point,
A signal with V P > V 2 will be output. These signals are then supplied to the measurement unit 28.

計測ユニツト28は、判定部及び駆動部から構
成されている。この駆動部はオプチカルスキヤナ
18を駆動するための駆動信号Sを出力すると共
にモータドライバ50を駆動する駆動信号DP
出力するように構成されている。
The measurement unit 28 is composed of a determining section and a driving section. This drive section is configured to output a drive signal S for driving the optical scanner 18 and a drive signal D P for driving the motor driver 50.

判定部には、複数の基準レベルが設定されてお
り、判定部はこの基準レベルと出力信号VS,VP
とをそれぞれ比較し、これらの比較結果を基にワ
ーク14に対する計測結果を判定し、判定結果を
出力するように構成されている。
A plurality of reference levels are set in the judgment section, and the judgment section uses these reference levels and the output signals V S , V P
The measurement results for the workpiece 14 are determined based on the results of these comparisons, and the determination results are output.

判定部に設定されている第1の基準レベルは、
出力信号VSに対応づけられ、ワーク14が良品
であるときのレベル、即ち第2図に示されるレベ
ルV1に設定されおり、第2の基準レベルは、演
算部48の出力信号VPに対応づけられ、ワーク
14が良品であるときのレベル即ち、第4図のc
に示されるレベルV2に対応して設定されている。
The first reference level set in the judgment section is
The second reference level corresponds to the output signal V S and is set to the level when the workpiece 14 is a good product, that is, the level V 1 shown in FIG . The level when the workpiece 14 is a good product, that is, the level c in FIG.
It is set corresponding to level V 2 shown in .

以上のように構成された本実施例における装置
において、計測ユニツト28からオプチカルスキ
ヤナ18に三角波状駆動信号Sが与えられると、
オプチカルスキヤナ18が角度θ1の範囲で回転
し、レーザ発振器16からのレーザ光がレンズ2
0を介してワーク14の表面側に照射されると共
に、レーザ光がレンズ24、反射鏡26を介して
ワーク14の側面に照射される。このとき、駆動
信号Sと同期した移動パルス信号DPがモータ用
ドライバ50に供給され、モータ12の回転駆動
によつてワーク14が移動する。オプチカルスキ
ヤナ18及びワーク14の移動に伴なつて、計測
ユニツト28は、駆動信号Sによる角度θ1の範囲
内におけるワーク14の表面を1スキヤン毎に測
定するために、角度θ3内での受光素子32の出力
信号を取り込むと共に、角度θ2の範囲での受光素
子38の出力を取り込み、1スキヤナ毎のタイミ
ングで出力信号VS,VPと第1、第2の基準レベ
ルを比較し、これらの比較結果を基にワーク14
に対する計測結果を判定し、判定結果を出力す
る。
In the apparatus of this embodiment configured as described above, when the triangular wave drive signal S is applied from the measurement unit 28 to the optical scanner 18,
The optical scanner 18 rotates within the range of angle θ 1 , and the laser beam from the laser oscillator 16 is transmitted to the lens 2.
The laser beam is irradiated onto the front side of the workpiece 14 through the laser beam 24 and the side surface of the workpiece 14 through the lens 24 and the reflecting mirror 26. At this time, a movement pulse signal D P synchronized with the drive signal S is supplied to the motor driver 50, and the workpiece 14 is moved by the rotational drive of the motor 12. As the optical scanner 18 and the workpiece 14 move, the measurement unit 28 measures the surface of the workpiece 14 within the angle θ 3 for each scan by the drive signal S. The output signal of the light receiving element 32 is taken in, and the output of the light receiving element 38 in the range of angle θ 2 is taken in, and the output signals V S and V P are compared with the first and second reference levels at the timing of each scanner. , based on these comparison results, work 14
Determine the measurement results for and output the determination results.

即ち、第5図のaに示されるように、出力信号
VSと第1の基準レベルが異なり、出力信号VP
第2の基準レベルが異なるときワーク14の表面
に物等が付着したことを判定し、第5図のbに示
されるように、出力信号VSのレベルが第1の基
準レベルと異なり、出力信号VPのレベルが第2
の基準レベルV2と一致したときには、ワーク1
4の表面に傷、鋳巣等の欠陥が生じたことを判定
し、第5図のcに示されるように出力信号VS
出力レベルが第1の基準レベルV1と一致し、出
力信号VPのレベルが第2の基準レベルV2に一致
したときにはワーク14が良品であることを判定
する。これらの判定結果を、外部の表示装置等に
供給して表示するようにすれば、表示装置に表示
された内容によつてワーク14の表面欠陥の有無
を正確に判定することができる。
That is, as shown in FIG. 5a, the output signal
When V S is different from the first reference level and the output signal V P is different from the second reference level, it is determined that something has adhered to the surface of the workpiece 14, and as shown in FIG. 5b, The level of the output signal V S is different from the first reference level, and the level of the output signal V P is different from the first reference level.
When the reference level V 2 of
4, the output level of the output signal V S matches the first reference level V 1 as shown in Fig. 5 c, and the output signal When the level of V P matches the second reference level V 2 , it is determined that the work 14 is a good product. By supplying and displaying these determination results on an external display device or the like, it is possible to accurately determine the presence or absence of a surface defect on the workpiece 14 based on the content displayed on the display device.

このように本実施例においては、ワーク14の
表面欠陥を計測する際、ワーク14の表面に傷、
物の付着等の欠陥が生じているか、又、ワーク1
4が良品であるか否かをそれぞれ判定することが
できる。
In this way, in this embodiment, when measuring surface defects on the workpiece 14, scratches and
Is there any defect such as adhesion of objects or workpiece 1?
It is possible to determine whether or not each item No. 4 is a good product.

このため、ワーク14の表面にゴミや切粉等が
付着していたものを傷等による不良品として判定
することがないので、不良品を再検査する必要も
なく、さらに前工程に洗浄機を設置する必要がな
い。従つて本実施例によれば、歩留りの向上、再
検査工数の削減、設備投資額を低減することがで
きる。
Therefore, a workpiece 14 with dust, chips, etc. attached to its surface will not be judged as a defective product due to scratches, etc., so there is no need to re-inspect a defective product, and a washing machine is installed in the previous process. No need to install. Therefore, according to this embodiment, it is possible to improve yield, reduce re-inspection man-hours, and reduce equipment investment.

又、前記実施例によれば、目視によつてワーク
14の表面欠陥を検査しなくてもワーク14の表
面欠陥の計測を確実に行なえるので、計測作業の
能率の向上が図れると共に、品質の向上を図るこ
とができる。
Furthermore, according to the embodiment, the surface defects on the workpiece 14 can be reliably measured without visually inspecting the surface defects on the workpiece 14, so that the efficiency of the measurement work can be improved and the quality can be improved. You can improve your performance.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、単一の
光源からの光を被計測物の表面と側面に照射し、
各面からの反射光を複数の受光素子で受光し、こ
の受光結果に従つて被計測物の表面欠陥を計測す
るようにしたため、被計測物の表面欠陥を確実に
計測できるとともに装置の小型化に寄与すること
ができる。
As explained above, according to the present invention, light from a single light source is irradiated onto the surface and side surfaces of an object to be measured,
The reflected light from each surface is received by multiple light-receiving elements, and the surface defects of the object to be measured are measured based on the results of this light reception, which makes it possible to reliably measure surface defects of the object and downsize the device. can contribute to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2
図はレーザービームの角度と電圧との関係を示す
線図、第3図は第1図に示す第2の光電変換部の
構成を説明するための図、第4図のa〜cは第1
図に示す演算部の動作を説明するための波形図、
第5図のa〜cはそれぞれレーザビーム角度と電
圧との関係を示す線図である。 12……モータ、14……ワーク、16……レ
ーザ発振器、18……オプチカルスキヤナ、2
0,24,36……レンズ、28……計測ユニツ
ト、32,38……受光素子、42……演算部、
34,44,46……増幅器、48……演算器。
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
The figure is a diagram showing the relationship between the angle of the laser beam and the voltage, FIG. 3 is a diagram for explaining the configuration of the second photoelectric conversion section shown in FIG. 1, and a to c in FIG.
A waveform diagram for explaining the operation of the arithmetic unit shown in the figure,
5A to 5C are diagrams showing the relationship between laser beam angle and voltage, respectively. 12...Motor, 14...Work, 16...Laser oscillator, 18...Optical scanner, 2
0, 24, 36... Lens, 28... Measurement unit, 32, 38... Light receiving element, 42... Arithmetic unit,
34, 44, 46...Amplifier, 48...Arithmetic unit.

Claims (1)

【特許請求の範囲】[Claims] 1 光軸が変化するビーム光を順次放射するスキ
ヤナと、スキヤナからのビーム光を被測定物の表
面に向けて順次照射する第1の投光部と、スキヤ
ナからのビーム光を被測定物の側面に向けて順次
照射する第2の投光部と、被計測物の表面に照射
された光の反射光を受光した受光量に応じたレベ
ルの電気信号を出力する第1の光電変換部と、被
計測物の側面に照射されたビーム光のうち少なく
とも被計測物の表面側を通過したビーム光を受光
し、受光したビーム光の位置に応じてレベルの異
なる2系統の電気信号を出力する第2の光電変換
部と、第2の光電変換部出力の各系統の電気信号
のレベルの比を求め、この求めた比に応じた信号
を出力する演算部と、複数の基準レベルが設定さ
れ演算部及び第1の光電変換部の各出力信号と前
記基準レベルとを比較し、これらの比較結果を基
に被計測物に対する計測結果を判定し、判定結果
を出力する判定部と、を含み、前記判定部は、第
1の光電変換部の出力信号のレベルが、第1の光
電変換部の出力信号に対応づけられ被計測物が良
品であるときの第1の基準レベルと異なり、演算
部の出力信号のレベルが、演算部の出力信号に対
応づけられ被計測物が良品であるときの第2の基
準レベルと異なるとき、被計測物の表面に物が付
着したことを判定し、第1の光電変換部の出力信
号のレベルが第1の基準レベルと異なり、演算部
の出力信号のレベルが第2の基準レベルと一致し
たときには被計測物の表面に傷等の欠陥が生じた
ことを判定し、第1の光電変換部の出力信号のレ
ベルが第1の基準レベルと一致し、演算部の出力
信号のレベルが第2の基準レベルに一致したとき
には被計測物が良品であることを判定する、こと
を特徴とする表面欠陥計測装置。
1. A scanner that sequentially emits a beam light whose optical axis changes, a first light projector that sequentially irradiates the beam light from the scanner toward the surface of the object to be measured, and a scanner that emits the beam light from the scanner toward the surface of the object to be measured. a second light projecting section that sequentially irradiates the light toward the side surface; a first photoelectric conversion section that outputs an electrical signal at a level corresponding to the amount of received light received by the reflected light irradiated on the surface of the object to be measured; , receives at least the beam light that has passed through the surface side of the object to be measured out of the beam light irradiated to the side surface of the object to be measured, and outputs two systems of electrical signals with different levels depending on the position of the received beam light. A second photoelectric conversion section, a calculation section that calculates the ratio of the level of the electrical signal of each system of the output of the second photoelectric conversion section and outputs a signal according to the calculated ratio, and a plurality of reference levels are set. A determination unit that compares each output signal of the calculation unit and the first photoelectric conversion unit with the reference level, determines a measurement result for the object to be measured based on the comparison results, and outputs the determination result. , the determination unit calculates that the level of the output signal of the first photoelectric conversion unit is different from a first reference level when the object to be measured is a non-defective item in correspondence with the output signal of the first photoelectric conversion unit. determining that an object has adhered to the surface of the object to be measured when the level of the output signal of the section is different from a second reference level, which is associated with the output signal of the calculation section and is used when the object to be measured is a non-defective item; When the level of the output signal of the first photoelectric conversion section is different from the first reference level and the level of the output signal of the calculation section matches the second reference level, a defect such as a scratch occurs on the surface of the object to be measured. When it is determined that the output signal level of the first photoelectric conversion section matches the first reference level and the level of the output signal of the calculation section matches the second reference level, the object to be measured is a good product. A surface defect measuring device characterized by determining that.
JP22393383A 1983-11-28 1983-11-28 Surface defect measuring apparatus Granted JPS60114749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22393383A JPS60114749A (en) 1983-11-28 1983-11-28 Surface defect measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22393383A JPS60114749A (en) 1983-11-28 1983-11-28 Surface defect measuring apparatus

Publications (2)

Publication Number Publication Date
JPS60114749A JPS60114749A (en) 1985-06-21
JPH0527059B2 true JPH0527059B2 (en) 1993-04-20

Family

ID=16805979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22393383A Granted JPS60114749A (en) 1983-11-28 1983-11-28 Surface defect measuring apparatus

Country Status (1)

Country Link
JP (1) JPS60114749A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713340A (en) * 1980-06-27 1982-01-23 Hitachi Ltd Inspection apparatus for surface defect
JPS5862543A (en) * 1981-10-09 1983-04-14 Nippon Kogaku Kk <Nikon> Device for checking foreign matter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713340A (en) * 1980-06-27 1982-01-23 Hitachi Ltd Inspection apparatus for surface defect
JPS5862543A (en) * 1981-10-09 1983-04-14 Nippon Kogaku Kk <Nikon> Device for checking foreign matter

Also Published As

Publication number Publication date
JPS60114749A (en) 1985-06-21

Similar Documents

Publication Publication Date Title
JPS5849819B2 (en) Sousashiki Kensa Souchi
JPH0220930B2 (en)
FR2529342A1 (en) METHOD AND DEVICE FOR SONIC CONTROL OF PARTS
JPH0527059B2 (en)
JPH0527060B2 (en)
JP2564310B2 (en) Appearance inspection device
JPH071233B2 (en) Surface defect measuring device
JP3168480B2 (en) Foreign matter inspection method and foreign matter inspection device
JP3249925B2 (en) Striated surface defect inspection device
JP2000111484A (en) Inspection apparatus for defect of wafer
JP2003097924A (en) Shape measuring system and method using the same
JPS5944578B2 (en) Defect detection method for transparent inspected objects
RU2035721C1 (en) Method of checking transparency of flat light-translucent materials
JPS62235511A (en) Surface condition inspecting apparatus
KR20060009674A (en) Apparatus and method for inspecting a surface of a semiconductor wafer
JPH08271213A (en) Edge detector
JPH06213821A (en) Foreign-matter inspecting apparatus for semiconductor wafer
JPS6028240A (en) Measuring device for electrical characteristic of semiconductor
JP3277400B2 (en) Optical disk defect inspection device
JPH0314123B2 (en)
JPH0326447Y2 (en)
JPH0587677A (en) Automatic inspecting system of beam splitter
JP2682808B2 (en) Scanning laser light power measuring device
JPS6353453A (en) Defect inspecting device for disc
JPS6021792Y2 (en) Defect detection device