JPH05269918A - Continuous production of fluoroplastic resin copper clad laminated sheet - Google Patents
Continuous production of fluoroplastic resin copper clad laminated sheetInfo
- Publication number
- JPH05269918A JPH05269918A JP4100346A JP10034692A JPH05269918A JP H05269918 A JPH05269918 A JP H05269918A JP 4100346 A JP4100346 A JP 4100346A JP 10034692 A JP10034692 A JP 10034692A JP H05269918 A JPH05269918 A JP H05269918A
- Authority
- JP
- Japan
- Prior art keywords
- glass cloth
- copper clad
- clad laminate
- laminated sheet
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacturing Of Printed Wiring (AREA)
- Laminated Bodies (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は,フツ素樹脂銅張積層板
の連続製造法に関し,詳しくは宇宙衛星放送受信アンテ
ナ,受信コンバーター用回路板,マイクロストリツプ超
高周波回路板,移動無線用回路板,ポケツトベル,その
他の高周波応用機器用回路板等に好適に用いられるフツ
素樹脂銅張積層板の連続製造法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous manufacturing method of a fluorine resin copper clad laminate, and more specifically, a space satellite broadcasting receiving antenna, a receiving converter circuit board, a microstrip ultra high frequency circuit board, and a mobile radio. The present invention relates to a continuous production method of a fluorine resin copper clad laminate suitably used for a circuit board, a pocket bell, a circuit board for other high frequency application equipment and the like.
【0002】[0002]
【従来の技術】従来,フツ素樹脂銅張積層板は,その優
れた高周波特性ゆえに,衛星放送や移動無線分野等,G
Hz(ギガヘルツ)帯を必要とする通信分野で使用され
ている。通常のテトラフルオロエチレン樹脂を用いたフ
ツ素樹脂銅張積層板は,そのプレプリーグを作るに際し
て,含浸・焼成装置を用いてガラスクロスに水性のフツ
素樹脂デイスパージヨンを含浸させ,余分なデイスパー
ジョンをかき落として均一にした後,高温で焼成するこ
とにより製造されている。2. Description of the Related Art Conventionally, fluorine resin copper clad laminates have been used in satellite broadcasting, mobile radio fields, etc. due to their excellent high frequency characteristics.
It is used in the communication field that requires the Hz (Gigahertz) band. When making a prepreg of a fluorocarbon resin copper-clad laminate using ordinary tetrafluoroethylene resin, the glass cloth is impregnated with an aqueous fluorocarbon resin dispenser using an impregnation / firing device to remove excess dispersion. It is manufactured by scraping John to make it uniform and then firing it at high temperature.
【0003】しかしながら,この製造方法は,350〜
400℃という高温で焼成させる必要があるので,特殊
な高温焼成装置を必要とし,また,ガラスクロスに対す
る樹脂付着量のバラツキが大きく,積層板の板厚精度が
劣るという問題があった。さらに,銅張積層板を製造す
るに際し,上記プレプリーグを所定の厚みにするために
複数枚合わせ,これに銅箔及び離型フイルムを重ねてス
テンレス鏡板,クツシヨン材を組合せ,プレスの熱板間
に4〜12枚積み重ね,一定時間加熱加圧する方法が一
般に採用されているが,工程数が多く,人手を多く要す
るという問題があった。However, this manufacturing method is
Since it has to be fired at a high temperature of 400 ° C., a special high-temperature firing apparatus is required, and there is a problem that the amount of resin adhered to the glass cloth varies greatly and the plate thickness accuracy of the laminated plate is poor. Further, when manufacturing a copper-clad laminate, a plurality of the pre-pregs are aligned to have a predetermined thickness, a copper foil and a release film are stacked on top of this, and a stainless steel end plate and a cushion material are combined, between the hot plates of the press. A method of stacking 4 to 12 sheets and heating and pressurizing for a certain time is generally adopted, but there is a problem that the number of steps is large and manpower is required.
【0004】このような問題を解決するために,近年,
複数枚のプレプリーグをエンドレスベルト間に挟んで連
続的に加熱加圧する生産性のよい積層板の製造法が種々
検討されているが,通常のプレプリーグを用いる方法で
は成形に要する含浸樹脂の反応に要する時間が長く,加
熱加圧容器,エンドレスベルト等の設備費及びランニン
グコストの制約によって生産性には自ら限界がある。例
えば,通常用いられるテトラフルオロエチレン樹脂(以
下,PTFE樹脂と称す)を粉末状に含浸させてプレプ
リーグを成形する場合には,PTFEの融点が327℃
と高いことから,400℃,50kg/cm2 ,60分間程
度の圧縮成形条件が必要であり,これを連続成形機を用
いて成形すると,極めて低速にするか,もしくは加熱加
圧容器を長くして速度を上げるかのいずれかであり,こ
のいずれかの場合にも生産性という点では問題が残って
いる。In order to solve such a problem, in recent years,
Various methods for manufacturing highly productive laminates, in which multiple prepregs are sandwiched between endless belts and continuously heated and pressed, have been investigated, but the method using ordinary prepregs requires the reaction of the impregnating resin required for molding. It takes a long time, and the productivity itself is limited due to restrictions on equipment costs such as heating and pressurizing containers, endless belts, and running costs. For example, when a prepreg is formed by impregnating a commonly used tetrafluoroethylene resin (hereinafter referred to as PTFE resin) into a powder form, the melting point of PTFE is 327 ° C.
Therefore, compression molding conditions of 400 ° C, 50 kg / cm 2 and 60 minutes are required. If this is molded using a continuous molding machine, the speed will be extremely low or the heating / pressurizing container will be long. One of these is to increase the speed, and in either case, there remains a problem in terms of productivity.
【0005】これに対して,特開平1−317727号
公報には,所定枚数のフツ素樹脂フイルムのフイルム間
にガラスクロスをそれぞれ介在させた積層板に金属箔を
配設して加熱加圧成形するフツ素樹脂積層板の製造法が
記載されているが,この方法はバツチ法であるため,生
産性が十分でなく,さらに,この方法によって得られる
積層板は,シランカツプリング剤で処理していないガラ
スクロスを用いているため,フツ素樹脂フイルムとガラ
スクロスとの接着性が不十分であって,ハンダ耐熱性,
耐薬品性に欠けるという問題があった。On the other hand, in Japanese Patent Application Laid-Open No. 1-317727, a metal foil is arranged on a laminated plate in which a glass cloth is interposed between films of a predetermined number of fluorine resin films, and heating and pressure molding is performed. However, since this method is a batch method, the productivity is not sufficient. Furthermore, the laminate obtained by this method is treated with a silane coupling agent. Since the glass cloth which is not used is used, the adhesiveness between the fluorine resin film and the glass cloth is insufficient, and the solder heat resistance,
There was a problem of lack of chemical resistance.
【0006】本発明者らは,フツ素樹脂とガラスクロス
との接着性の問題を解決するために,ガラスクロスとし
てアミノ基を少なくとも1つ有するシランカツプリング
剤で表面処理したガラスクロスを用いると,フツ素樹脂
との接着性が著しく高まることを見出し,先に特許出願
した(特願平3−29422号)。In order to solve the problem of the adhesiveness between the fluorine resin and the glass cloth, the inventors of the present invention use a glass cloth surface-treated with a silane coupling agent having at least one amino group as the glass cloth. , And found that the adhesiveness with fluororesin is remarkably enhanced, and filed a patent application earlier (Japanese Patent Application No. 3-29422).
【0007】[0007]
【発明が解決しようとする課題】かかる技術的背景のも
とに,本発明は,高温で焼成することなく,生産性よく
フツ素樹脂銅張積層板を製造することができ,しかも,
ハンダ耐熱性,耐薬品性に優れたフツ素樹脂銅張積層板
を製造することができる製造法を提供することを目的と
するものである。Based on such a technical background, the present invention can produce a fluorine resin copper clad laminate with high productivity without firing at a high temperature, and further,
It is an object of the present invention to provide a manufacturing method capable of manufacturing a fluorine resin copper clad laminate excellent in solder heat resistance and chemical resistance.
【0008】[0008]
【課題を解決するための手段】すなわち,本発明は,上
下に対をなすエンドレスの金属ベルトと加熱加圧容器を
有するダブルベルト連続成形装置を用いて銅張積層板を
製造するに際し,長尺のフツ素樹脂フイルムの間にアミ
ノ基を少なくとも1つ有するシランカツプリング剤で表
面処理したガラスクロスを介在させて,フツ素樹脂フイ
ルムとガラスクロスとを積層し,次いで少なくともその
片面に銅箔を配設させることを特徴とするフツ素樹脂銅
張積層板の連続製造法を要旨とするものである。That is, according to the present invention, when a copper clad laminate is manufactured by using a double belt continuous molding apparatus having a pair of upper and lower endless metal belts and a heating / pressurizing container, The fluororesin film and the glass cloth are laminated by interposing a glass cloth surface-treated with a silane coupling agent having at least one amino group between the fluororesin films, and the copper foil is then coated on at least one side thereof. The gist is a continuous manufacturing method of a fluorine resin copper-clad laminate characterized by being arranged.
【0009】以下,本発明を詳細に説明する。The present invention will be described in detail below.
【0010】本発明においてフツ素樹脂フイルムとして
は,四フツ化エチレン樹脂,四フツ化エチレン・パーフ
ルオロアルキルビニルエーテル共重合体樹脂,四フツ化
エチレン・六フツ化プロピレン共重合体樹脂,四フツ化
エチレン・エチレン共重合体樹脂,三フツ化塩化エチレ
ン樹脂等のフツ素樹脂全般を用いることができ,特に,
四フツ化エチレン・パーフルオロアルキルビニルエーテ
ル共重合体樹脂及び四フツ化エチレン・六フツ化プロピ
レン共重合体樹脂からなるフイルムが好ましい。In the present invention, the fluorine resin film includes tetrafluoroethylene resin, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer resin, tetrafluoroethylene / hexafluoropropylene copolymer resin, tetrafluoride. All fluorine resins such as ethylene-ethylene copolymer resin and trifluoroethylene chloride resin can be used.
A film composed of a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer resin and a tetrafluoroethylene / hexafluoropropylene copolymer resin is preferable.
【0011】フツ素樹脂フイルムの厚みは特に制限はな
いが,0.01〜1mmの厚みのものが好ましく,0.05〜
0.3mmの厚みのものが特に好ましい。また,フイルムは
1枚ずつでもよいが,複数枚を1組として用いることも
できる。The thickness of the fluorine resin film is not particularly limited, but a thickness of 0.01 to 1 mm is preferable, and a thickness of 0.05 to 5 mm is preferable.
A thickness of 0.3 mm is particularly preferable. Also, the number of films may be one, but a plurality of films may be used as one set.
【0012】本発明において用いるシランカツプリング
剤は,その構造中にアミノ基を少なくとも1つ有するシ
ランカツプリング剤であって,例えば,脂肪族系アミノ
シランとして3−アミノプロピルトリエトキシシラン,
N−(2−アミノエチル)−3−アミノプロピルトリメ
トキシシラン等,ウレア系アミノシランとしてγ−ウレ
イドプロピルトリエトキシシラン等,芳香族系アミノシ
ランとしてγ−フエニルアミノプロピルトリメトキシシ
ラン,N−β−(N−ビニルベンジルアミノエチル)−
γ−アミノプロピルトリメトキシシラン,N−β−(N
−ベンジルアミノエチル)−γ−アミノプロピルトリメ
トキシシラン等,カチオン系アミノシランとしてN−β
−(N−ベンジルアミノエチル)−γ−アミノプロピル
トリメトキシシラン・塩酸塩,N−β−(N−ビニルベ
ンジルアミノエチル)−γ−アミノプロピルトリメトキ
シシラン・塩酸塩等が挙げられる。The silane coupling agent used in the present invention is a silane coupling agent having at least one amino group in its structure. For example, 3-aminopropyltriethoxysilane as an aliphatic aminosilane,
N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, etc., urea-based aminosilane, γ-ureidopropyltriethoxysilane, etc., aromatic aminosilane, γ-phenylaminopropyltrimethoxysilane, N-β- (N-vinylbenzylaminoethyl)-
γ-aminopropyltrimethoxysilane, N-β- (N
-Benzylaminoethyl) -γ-aminopropyltrimethoxysilane and the like, N-β as a cationic aminosilane
Examples thereof include-(N-benzylaminoethyl) -γ-aminopropyltrimethoxysilane-hydrochloride and N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane-hydrochloride.
【0013】ガラスクロスとしては,Eガラス(電気用
無アルカリガラス)クロス,Sガラス(高強度ガラス)
クロス,Dガラスクロス,石英ガラスクロス,シリカガ
ラス(低誘電ガラス)クロス,Cガラス(化学用含アル
カリガラス)クロス等が挙げられるが,Eガラスクロス
が特に好ましい。As the glass cloth, E glass (non-alkali glass for electric use) cloth, S glass (high strength glass)
Examples thereof include cloth, D glass cloth, quartz glass cloth, silica glass (low dielectric glass) cloth, C glass (chemically containing alkali glass) cloth, and E glass cloth is particularly preferable.
【0014】さらに,本発明で用いられるガラスクロス
を構成するガラス繊維の単糸径は,3〜15μmである
ものが好ましく,ガラスクロスの厚みは,20〜250
μmのものが好ましい。単糸径が3μmより細くなる
と,折れやすく,取扱いが難しくなる傾向があり,一
方,単糸径が15μmを超えると,積層板の表面平滑性
が低下し易くなることがある。また,ガラスクロスの厚
みが20μmより薄くなると,ガラスクロスの強度が弱
くなり,表面処理,成形加工プロセスでの取扱いが難し
くなり易く,一方,ガラスクロスの厚みが250μmを
超えると,厚みを確保するために太い繊維径のガラス繊
維を用いる必要があり,積層板の表面平滑性が悪くなり
易く,また,シランカツプリング剤がガラスクロス中に
含浸し難い傾向がある。Further, it is preferable that the single fiber diameter of the glass fiber constituting the glass cloth used in the present invention is 3 to 15 μm, and the thickness of the glass cloth is 20 to 250.
It is preferably μm. If the single yarn diameter is smaller than 3 μm, it tends to be broken and difficult to handle. On the other hand, if the single yarn diameter exceeds 15 μm, the surface smoothness of the laminated plate may be easily deteriorated. Further, when the thickness of the glass cloth is less than 20 μm, the strength of the glass cloth becomes weak, and it becomes difficult to handle it in the surface treatment and molding process. On the other hand, when the thickness of the glass cloth exceeds 250 μm, the thickness is secured. Therefore, it is necessary to use a glass fiber having a large fiber diameter, the surface smoothness of the laminated plate is likely to deteriorate, and the silane coupling agent tends to be difficult to impregnate into the glass cloth.
【0015】前記シランカツプリング剤のガラスクロス
に対する付着量は,ガラスクロスに対して0.05〜0.6
重量%,特に0.08〜0.3重量%にするのが好ましい。
ガラスクロスに対する付着量が0.05重量%より少ない
と,耐吸湿性の向上が少なくなるおそれがあり,0.6重
量%を超えると,フツ素樹脂フイルムとガラスクロスと
の接着性が低下し易くなる。The amount of the silane coupling agent attached to the glass cloth is 0.05 to 0.6 with respect to the glass cloth.
It is preferably in the range of 0.08 to 0.3% by weight, especially 0.08 to 0.3% by weight.
If the amount adhering to the glass cloth is less than 0.05% by weight, the moisture absorption resistance may not be improved, and if it exceeds 0.6% by weight, the adhesion between the fluororesin film and the glass cloth may deteriorate. It will be easier.
【0016】ガラスクロスの表面処理方法は特に限定さ
れないが,例えば,前記シランカツプリング剤を水に溶
解して処理液とし,この処理液にガラスクロスを浸漬す
るか,処理液をガラスクロスに吹付けた後,パツダーロ
ール等で絞り,熱処理する。熱処理条件は,80〜17
0℃で2〜15分間加熱するのが,乾燥及びシランカツ
プリング剤の架橋硬化反応の点で好ましい。処理液濃度
は,0.1〜5.0重量%のものが作業性等の点から好まし
い。The surface treatment method of the glass cloth is not particularly limited. For example, the silane coupling agent is dissolved in water to form a treatment solution, and the glass cloth is immersed in the treatment solution or the treatment solution is sprayed on the glass cloth. After applying, squeeze with a padder roll and heat-treat. The heat treatment conditions are 80 to 17
Heating at 0 ° C. for 2 to 15 minutes is preferable from the viewpoint of drying and crosslinking curing reaction of the silane coupling agent. From the viewpoint of workability, the treatment liquid concentration is preferably 0.1 to 5.0% by weight.
【0017】次に,本発明を図1に基づいて説明する。Next, the present invention will be described with reference to FIG.
【0018】まず,4枚の長尺のフツ素樹脂フイルム1
〜4の各フイルム間に,アミノ基を少なくとも1つ有す
るシランカツプリング剤で表面処理したガラスクロス5
〜7をガイドロール10〜16を通して合わせ,次いで
合わせロール17,18で銅箔8,9を張合わせる。次
いで,上下に対をなすエンドレスの金属ベルト19,2
0間に挟込み,加熱加圧容器21を通る間に加熱加圧さ
れて連続成形されて,長尺の積層体が形成される。さら
に,搬送されて切断機22にて所定寸法に切断されて銅
張積層板が形成される。First, four long fluororesin films 1
5 to 4, a glass cloth surface-treated with a silane coupling agent having at least one amino group between the films.
7 to 7 are passed through the guide rolls 10 to 16 and then the copper foils 8 and 9 are attached to each other with the use of the rolls 17 and 18. Next, the endless metal belts 19 and 2 paired up and down
It is sandwiched between 0 and is heated and pressed while passing through the heating and pressing container 21 to be continuously molded to form a long laminated body. Further, the copper clad laminate is conveyed and cut into a predetermined size by a cutting machine 22 to form a copper clad laminate.
【0019】図1は,4枚のフツ素樹脂フイルムと3枚
のガラスクロスを用いた両面銅張積層板の製造例である
が,図1において長尺のフイルムと長尺のガラスクロス
用のロールの数を調整すれば,所望数のフイルムとガラ
スクロスからなる積層板を製造することができ,また,
銅箔用の合わせロールを上下のいずれかにすれば,片面
銅張積層板を得ることもできる。FIG. 1 shows an example of manufacturing a double-sided copper-clad laminate using four fluororesin films and three glass cloths. In FIG. 1, a long film and a long glass cloth are used. By adjusting the number of rolls, it is possible to produce a laminated plate composed of a desired number of films and glass cloth.
It is also possible to obtain a single-sided copper-clad laminate by setting either the upper or lower laminated roll for copper foil.
【0020】[0020]
【実施例】以下,本発明を実施例によって具体的に説明
する。EXAMPLES The present invention will be specifically described below with reference to examples.
【0021】参考例1 紡糸糊剤と経糸糊剤を熱処理して除去したいわゆるヒー
トクリーニング処理Eガラスクロス116T(単糸径:
7μm,織密度:経糸60本/25mm,緯糸58本/2
5mm,厚さ:100μm,ユニチカ社製)を,シランカ
ツプリング剤としてN−β−(N−ビニルベンジルアミ
ノエチル)−γ−アミノプロピルトリメトキシシラン
(SZ6032,東レシリコーン社製)を有効成分4g
/リツトル,pH5.0の水溶液に調整した処理液に浸漬
し,パツダーロールで絞った後,130℃で5分間熱処
理して表面処理ガラスクロスを得た。Reference Example 1 So-called heat cleaning treatment E glass cloth 116T (single yarn diameter:
7 μm, weaving density: 60 warps / 25 mm, 58 wefts / 2
5 mm, thickness: 100 μm, manufactured by Unitika Ltd., and silane coupling agent, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane (SZ6032, manufactured by Toray Silicone Co., Ltd.) as an active ingredient 4 g.
/ Little, immersed in a treatment solution adjusted to pH 5.0, squeezed with a padder roll, and heat treated at 130 ° C for 5 minutes to obtain a surface-treated glass cloth.
【0022】参考例2 シランカツプリング剤としてγ−フエニルアミノプロピ
ルトリメトキシシラン(SZ6083,東レシリコーン
社製)を用い,有効成分4g/リツトル,pH3.0の水
溶液に調整した処理液を用いるほかは,参考例1と同様
にして表面処理ガラスクロスを得た。Reference Example 2 γ-Phenylaminopropyltrimethoxysilane (SZ6083, manufactured by Toray Silicone Co., Ltd.) was used as a silane coupling agent, and a treatment liquid adjusted to an active ingredient of 4 g / liter and pH of 3.0 was used. In the same manner as in Reference Example 1, a surface-treated glass cloth was obtained.
【0023】参考例3 シランカツプリング剤としてメチルトリメトキシシラン
(KBM13,信越化学工業社製)を用い,有効成分5
g/リツトル,pH4.5の水溶液に調整した処理液を用
いるほかは,参考例1と同様にして表面処理ガラスクロ
スを得た。Reference Example 3 Methyltrimethoxysilane (KBM13, manufactured by Shin-Etsu Chemical Co., Ltd.) was used as a silane coupling agent, and the active ingredient 5 was used.
A surface-treated glass cloth was obtained in the same manner as in Reference Example 1 except that the treatment liquid adjusted to an aqueous solution of g / liter, pH 4.5 was used.
【0024】参考例4 シランカツプリング剤としてトリデカフルオロオクチル
トリメトキシシラン(TSL8257,東芝シリコーン
社製)を水70重量%とイソプロピルアルコール30重
量%の混合液に溶解し,有効成分4g/リツトルの処理
液としてこれを用いるほかは,参考例1と同様にして表
面処理ガラスクロスを得た。Reference Example 4 Tridecafluorooctyltrimethoxysilane (TSL8257, manufactured by Toshiba Silicone Co., Ltd.) as a silane coupling agent was dissolved in a mixed solution of 70% by weight of water and 30% by weight of isopropyl alcohol to obtain 4 g of active ingredient / liter. A surface-treated glass cloth was obtained in the same manner as in Reference Example 1 except that this was used as the treatment liquid.
【0025】実施例1 フツ素樹脂フイルムとして厚さ250μmの四フツ化エ
チレン・パーフルオロアルキルビニルエーテル共重合体
樹脂フイルム(ネオフロンPFA,ダイキン工業社製)
を4枚用い,図1に示すように,各フイルム間に参考例
1で得た表面処理ガラスクロス3枚をそれぞれガイドロ
ールを通して合わせ,次いで18μmの銅箔(3EC,
三井金属鉱業社製)を上下に供給し,合わせロールで合
わせてエンドレスの金属ベルトに送り,加熱加圧容器で
390℃,40kg/cm2 ,10分間加熱加圧して連続成
形し,厚さ1.13mmの両面銅張積層板を得た。Example 1 As a fluorine resin film, a tetrafluorinated ethylene / perfluoroalkyl vinyl ether copolymer resin film having a thickness of 250 μm (Neoflon PFA, manufactured by Daikin Industries, Ltd.)
As shown in FIG. 1, three sheets of the surface-treated glass cloth obtained in Reference Example 1 were passed through respective guide rolls as shown in FIG. 1, and then 18 μm copper foil (3EC,
Mitsui Mining & Smelting Co., Ltd.) is supplied up and down, combined with a matching roll and sent to an endless metal belt, and continuously molded by heating and pressing for 10 minutes at 390 ° C., 40 kg / cm 2 in a heating and pressing container, thickness 1 A .13 mm double-sided copper clad laminate was obtained.
【0026】実施例2 表面処理ガラスクロスとして参考例2で得た表面処理ガ
ラスクロスを用いるほかは,実施例1と同様にして厚さ
1.13mmの両面銅張積層板を得た。Example 2 The thickness was the same as in Example 1 except that the surface-treated glass cloth obtained in Reference Example 2 was used as the surface-treated glass cloth.
A 1.13 mm double-sided copper clad laminate was obtained.
【0027】実施例3 フツ素樹脂フイルムとして厚さ250μmの四フツ化エ
チレン・六フツ化プロピレン共重合体樹脂フイルム(ネ
オフロンFEP,ダイキン工業社製)を用いるほかは,
実施例1と同様にして厚さ1.13mmの両面銅張積層板を
得た。Example 3 As a fluorine resin film, a tetrafluoroethylene / hexafluoropropylene copolymer resin film (Neotron FEP, manufactured by Daikin Industries, Ltd.) having a thickness of 250 μm was used.
A double-sided copper-clad laminate having a thickness of 1.13 mm was obtained in the same manner as in Example 1.
【0028】実施例4 フツ素樹脂フイルムとして厚さ250μmの四フツ化エ
チレン・六フツ化プロピレン共重合体樹脂フイルム(ネ
オフロンFEP,ダイキン工業社製),表面処理ガラス
クロスとして参考例2で得た表面処理ガラスクロスを用
いるほかは,実施例1と同様にして厚さ1.13mmの両面
銅張積層板を得た。Example 4 As a fluorine resin film, a 250 μm thick tetrafluoroethylene / hexafluoropropylene copolymer resin film (Neoflon FEP, manufactured by Daikin Industries, Ltd.) was obtained as a surface-treated glass cloth in Reference Example 2. A double-sided copper-clad laminate having a thickness of 1.13 mm was obtained in the same manner as in Example 1 except that the surface-treated glass cloth was used.
【0029】実施例5 フツ素樹脂フイルムとして厚さ250μmの四フツ化エ
チレン・パーフルオロアルキルビニルエーテル共重合体
樹脂フイルム(ネオフロンPFA,ダイキン工業社製)
を3枚用い,図1に示す装置を用いて,各フイルム間に
参考例1で得た表面処理ガラスクロス2枚をそれぞれガ
イドロールを通して合わせ,同時に18μmの銅箔(J
TC,日本鉱業社製)を上下に供給し,合わせロールで
合わせてエンドレスの金属ベルトに送り,加熱加圧容器
で380℃,35kg/cm2 ,8分間加熱加圧して連続成
形し,厚さ0.81mmの両面銅張積層板を得た。Example 5 As a fluorine resin film, a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer resin film having a thickness of 250 μm (Neoflon PFA, manufactured by Daikin Industries, Ltd.)
2 sheets of the surface-treated glass cloth obtained in Reference Example 1 were passed through the respective guide rolls between the films by using the apparatus shown in FIG. 1, and at the same time, 18 μm copper foil (J
(TC, manufactured by Nippon Mining Co., Ltd.) is fed up and down, combined with a matching roll and sent to an endless metal belt, and continuously molded by heating and pressing at 380 ° C., 35 kg / cm 2 for 8 minutes in a heating and pressing container, and thickness. A 0.81 mm double-sided copper clad laminate was obtained.
【0030】実施例6 表面処理ガラスクロスとして参考例2で得た表面処理ガ
ラスクロスを用いるほかは,実施例5と同様にして厚さ
0.81mmの両面銅張積層板を得た。Example 6 The thickness was the same as in Example 5 except that the surface-treated glass cloth obtained in Reference Example 2 was used as the surface-treated glass cloth.
A 0.81 mm double-sided copper clad laminate was obtained.
【0031】比較例1 表面処理ガラスクロスとして参考例3で得た表面処理ガ
ラスクロスを用いるほかは,実施例1と同様にして厚さ
1.13mmの両面銅張積層板を得た。Comparative Example 1 The thickness was the same as in Example 1 except that the surface-treated glass cloth obtained in Reference Example 3 was used as the surface-treated glass cloth.
A 1.13 mm double-sided copper clad laminate was obtained.
【0032】比較例2 表面処理ガラスクロスとして参考例4で得た表面処理ガ
ラスクロスを用いるほかは,実施例1と同様にして厚さ
1.13mmの両面銅張積層板を得た。Comparative Example 2 The thickness was the same as in Example 1 except that the surface-treated glass cloth obtained in Reference Example 4 was used as the surface-treated glass cloth.
A 1.13 mm double-sided copper clad laminate was obtained.
【0033】比較例3 表面処理ガラスクロスの代わりに表面処理していないガ
ラスクロスを用いるほかは,実施例1と同様にして厚さ
1.13mmの両面銅張積層板を得た。Comparative Example 3 The thickness was the same as in Example 1 except that a glass cloth not surface-treated was used in place of the surface-treated glass cloth.
A 1.13 mm double-sided copper clad laminate was obtained.
【0034】得られた銅張積層板につき,下記の方法に
より積層板としての評価を行い,その結果を表1に示し
た。表1から明らかなように,本発明によると,諸特性
に優れた積層板が得られることが分かる。The obtained copper clad laminate was evaluated as a laminate by the following method, and the results are shown in Table 1. As is clear from Table 1, according to the present invention, it is possible to obtain a laminated plate having excellent characteristics.
【0035】 板厚精度 JISC−6481に従って200×200mmサイズの
試料を作製し,板厚計ミクロフアイン−Σ(ユニオンツ
ール社製)を用いて板厚を測定した。 体積抵抗率および表面抵抗 JISC−6481に従って所定サイズの試料を作製
し,バイブレイテイングリードエレクトロメーターTR
−84M(タケダ理研社製)を用いて測定した。Plate Thickness Accuracy A sample having a size of 200 × 200 mm was prepared according to JISC-6481, and the plate thickness was measured using a plate thickness meter Microfine-Σ (manufactured by Union Tool Co., Ltd.). Volume resistivity and surface resistance A sample of a predetermined size was prepared according to JISC-6481, and a vibrating lead electrometer TR was prepared.
It was measured using -84M (manufactured by Takeda Riken).
【0036】 誘電率および誘電正接 JISC−6481に従ってLPインピーダンスアナラ
イザー4194A(横河ヒユーレツトパツカード社製)
を用いて1MHzにおける値を測定した。 ハンダ耐熱性 積層板をプレツシヤー処理(121℃,2atm 下で1時
間)した後,260℃のハンダ浴槽に30秒間浸漬し,
外観性状を目視観察することにより評価した。 ○──異常なし △──一部ふくれ発生 ×──全
体にふくれ発生Dielectric constant and dielectric loss tangent LP Impedance Analyzer 4194A (manufactured by Yokogawa Hiyuretsu Pats Card) according to JIS C-6481
Was used to measure the value at 1 MHz. Solder heat resistance After laminating the laminate with a pretreatment (121 ° C, 2atm for 1 hour), soak it in a solder bath at 260 ° C for 30 seconds,
The appearance was evaluated by visual observation. ○ ── No abnormality △ ── Partially blistered × ── Blistered entirely
【0037】 ピール強度 JISC−6481に従って所定サイズの試料を作製
し,精密万能試験機2020型(インテスコ社製)を用
いて測定した。 熱膨張係数 6×6mmの試料を用いてTMA−50(島津製作所社
製)により2℃/分で昇温し,50〜250℃の範囲の
熱膨張曲線よりZ軸方向の熱膨張係数の値を求めた。Peel Strength A sample of a predetermined size was prepared according to JIS C-6481 and measured using a precision universal tester 2020 (manufactured by Intesco). Thermal expansion coefficient Using a sample of 6 × 6 mm, TMA-50 (manufactured by Shimadzu Corporation) was used to raise the temperature at 2 ° C./minute, and the thermal expansion coefficient in the Z-axis direction was obtained from the thermal expansion curve in the range of 50 to 250 ° C. I asked.
【0038】 吸水率 JISC−6481に従って吸湿処理前と吸湿処理後
(E−24/50+D−24/23)の重量差から求め
た。 表面硬度(バーコル硬度) JISK−7060に従い70×70mmサイズの試料を
作製し,バーコル硬度計GYZJ934−1(バーバー
・コルマン社製)を用いて測定した。Water absorption rate According to JIS C-6481, it was determined from the weight difference before and after the moisture absorption treatment (E-24 / 50 + D-24 / 23). Surface Hardness (Barcol Hardness) A 70 × 70 mm size sample was prepared in accordance with JISK-7060 and measured using a Barcol hardness meter GYZJ934-1 (manufactured by Barber Kolman).
【0039】[0039]
【表1】 [Table 1]
【0040】[0040]
【発明の効果】以上の説明から明らかなように,本発明
によると,高温で焼成することなく,高い生産性をもっ
てフツ素樹脂銅張積層板を製造することができ,さら
に,優れた低誘電特性,ハンダ耐熱性,耐薬品性を有
し,しかも,板厚精度を高いフツ素樹脂銅張積層板を製
造することができる。As is apparent from the above description, according to the present invention, it is possible to produce a fluorine resin copper clad laminate with high productivity without firing at a high temperature, and to obtain an excellent low dielectric constant. It is possible to manufacture a fluororesin copper-clad laminate having characteristics, solder heat resistance, chemical resistance, and high plate thickness accuracy.
【図1】本発明の連続成形装置の概略説明図である。FIG. 1 is a schematic explanatory view of a continuous molding apparatus of the present invention.
1〜 4 フツ素樹脂フイルム 5〜 7 ガラスクロス 8, 9 銅箔 10〜16 ガイドロール 17,18 合わせロール 19,20 エンドレスベルト 21 加熱加圧容器 22 切断機 1 to 4 Fluorocarbon resin film 5 to 7 Glass cloth 8, 9 Copper foil 10 to 16 Guide roll 17, 18 Laminating roll 19, 20 Endless belt 21 Heating / pressurizing container 22 Cutting machine
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // B29K 105:06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display area // B29K 105: 06
Claims (1)
と加熱加圧容器を有するダブルベルト連続成形装置を用
いて銅張積層板を製造するに際し,長尺のフツ素樹脂フ
イルムの間にアミノ基を少なくとも1つ有するシランカ
ツプリング剤で表面処理したガラスクロスを介在させ
て,フツ素樹脂フイルムとガラスクロスとを積層し,次
いで少なくともその片面に銅箔を配設させることを特徴
とするフツ素樹脂銅張積層板の連続製造法。1. When a copper clad laminate is manufactured using a double belt continuous forming apparatus having a pair of upper and lower endless metal belts and a heating and pressing container, an amino group is provided between long fluororesin films. A fluororesin film and a glass cloth are laminated with a glass cloth surface-treated with a silane coupling agent having at least one of the above is interposed, and then a copper foil is disposed on at least one side thereof. Continuous production method for resin copper clad laminates.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4100346A JPH05269918A (en) | 1992-03-25 | 1992-03-25 | Continuous production of fluoroplastic resin copper clad laminated sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4100346A JPH05269918A (en) | 1992-03-25 | 1992-03-25 | Continuous production of fluoroplastic resin copper clad laminated sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05269918A true JPH05269918A (en) | 1993-10-19 |
Family
ID=14271554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4100346A Pending JPH05269918A (en) | 1992-03-25 | 1992-03-25 | Continuous production of fluoroplastic resin copper clad laminated sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05269918A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100616105B1 (en) * | 2005-03-04 | 2006-08-25 | (주)인터플렉스 | A roll to roll manufacturing system and flexible printed circuit |
EP1117281A4 (en) * | 1999-07-05 | 2006-12-13 | Nippon Pillar Packing | Printed wiring board and prepreg for printed wiring board |
KR100902915B1 (en) * | 2006-07-31 | 2009-06-15 | 인더스트리얼 테크놀로지 리서치 인스티튜트 | Apparatus and system for roll-to-roll processing |
JP2015008286A (en) * | 2013-05-31 | 2015-01-15 | 住友電気工業株式会社 | Printed wiring board for high frequency use |
CN105393647A (en) * | 2013-05-31 | 2016-03-09 | 住友电气工业株式会社 | High-frequency printed circuit board and wiring material |
CN112004610A (en) * | 2018-04-26 | 2020-11-27 | Agc株式会社 | Method for producing laminate, and laminate |
-
1992
- 1992-03-25 JP JP4100346A patent/JPH05269918A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1117281A4 (en) * | 1999-07-05 | 2006-12-13 | Nippon Pillar Packing | Printed wiring board and prepreg for printed wiring board |
KR100616105B1 (en) * | 2005-03-04 | 2006-08-25 | (주)인터플렉스 | A roll to roll manufacturing system and flexible printed circuit |
KR100902915B1 (en) * | 2006-07-31 | 2009-06-15 | 인더스트리얼 테크놀로지 리서치 인스티튜트 | Apparatus and system for roll-to-roll processing |
JP2015008286A (en) * | 2013-05-31 | 2015-01-15 | 住友電気工業株式会社 | Printed wiring board for high frequency use |
CN105393647A (en) * | 2013-05-31 | 2016-03-09 | 住友电气工业株式会社 | High-frequency printed circuit board and wiring material |
US10383215B2 (en) | 2013-05-31 | 2019-08-13 | Sumitomo Electric Industries, Ltd. | Radio-frequency printed circuit board and wiring material |
CN112004610A (en) * | 2018-04-26 | 2020-11-27 | Agc株式会社 | Method for producing laminate, and laminate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113580690B (en) | Metal-clad laminate | |
US4824511A (en) | Multilayer circuit board with fluoropolymer interlayers | |
JPS6290808A (en) | Dielectric material and manufacture of the same | |
JPH05269918A (en) | Continuous production of fluoroplastic resin copper clad laminated sheet | |
JP4917745B2 (en) | High frequency substrate and manufacturing method thereof | |
JPS63267524A (en) | Method and apparatus for manufacturing metal clad laminated sheet | |
JPH05243697A (en) | Dielectric substrate | |
US20210276279A1 (en) | Peelable shim having increased strength | |
JP2001260241A (en) | Method for manufacturing laminate sheet | |
JPH0352934A (en) | Glass fiber base material for laminated board of glass fiber-reinforced polyimide resin | |
JP2001334541A (en) | Method for manufacturing laminated sheet | |
JPH0160404B2 (en) | ||
JPH06248572A (en) | Glass cloth for fiber-reinforced composite material | |
JPS6189032A (en) | Manufacture of laminate | |
JPH01139629A (en) | Production of thermosetting resin laminated board having low dielectric constant | |
JP2001334542A (en) | Method for manufacturing laminated sheet | |
CN211222348U (en) | High-frequency low-loss glue-free flexible copper-clad plate | |
JPH08150683A (en) | Semi-cured metallic foil-clad laminated plate, and manufacture thereof | |
JPH11112117A (en) | Substrate material for printed wiring, substrate and manufacture thereof | |
JP2001150623A (en) | Method of manufacturing laminated sheet | |
JP2001179877A (en) | Method for manufacturing laminated sheet | |
JP2001170953A (en) | Method for manufacturing laminated sheet | |
JPH1158610A (en) | Manufacture of metal foil clad laminated sheet | |
JPS6418611A (en) | Manufacture of laminated sheet coated with metal | |
JP3358306B2 (en) | Laminated board |