JPH0526902Y2 - - Google Patents

Info

Publication number
JPH0526902Y2
JPH0526902Y2 JP1986068249U JP6824986U JPH0526902Y2 JP H0526902 Y2 JPH0526902 Y2 JP H0526902Y2 JP 1986068249 U JP1986068249 U JP 1986068249U JP 6824986 U JP6824986 U JP 6824986U JP H0526902 Y2 JPH0526902 Y2 JP H0526902Y2
Authority
JP
Japan
Prior art keywords
circuit breaker
saturable reactor
contact
voltage
secondary winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986068249U
Other languages
Japanese (ja)
Other versions
JPS62182023U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986068249U priority Critical patent/JPH0526902Y2/ja
Publication of JPS62182023U publication Critical patent/JPS62182023U/ja
Application granted granted Critical
Publication of JPH0526902Y2 publication Critical patent/JPH0526902Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transformers For Measuring Instruments (AREA)

Description

【考案の詳細な説明】 [考案の目的] (産業上の利用分野) 本考案はガス絶縁開閉装置(以下GISと称す)
に装着される接地形計器用変圧器(以下PTと称
す)に関する。
[Detailed explanation of the invention] [Purpose of the invention] (Field of industrial application) This invention is a gas insulated switchgear (hereinafter referred to as GIS).
This invention relates to grounded instrument transformers (hereinafter referred to as PT) installed in

(従来の技術) 従来のPTがGISに装着された状態の等価回路
を示す第2図において、1は電源、2は遮断器、
C1は遮断器2の極間静電容量(以下C1と称す)、
C2はGIS母線の対地静電容量(以下C2と称す)、
5はPT、6はPT5の鉄心、7はPT5の一次巻
線、8はPT5の二次巻線、9はPT5の負担を示
している。
(Prior art) In Figure 2, which shows an equivalent circuit of a conventional PT installed in a GIS, 1 is a power supply, 2 is a circuit breaker,
C 1 is the interelectrode capacitance of circuit breaker 2 (hereinafter referred to as C 1 ),
C 2 is the ground capacitance of the GIS bus (hereinafter referred to as C 2 ),
5 indicates the PT, 6 indicates the iron core of the PT5, 7 indicates the primary winding of the PT5, 8 indicates the secondary winding of the PT5, and 9 indicates the load on the PT5.

今第2図において遮断器2を開とした時、遮断
器2のC1とGIS母線のC2およびPT5の抵抗分お
よびインダクタンスとで構成される回路におい
て、遮断時の電圧波高値、遮断位相等の条件が整
えば、PT5の二次端子電圧として、周波数は、
定格周波数より低く電圧波高値はC1,C2の分圧
比より高くかつ減衰せずに持続する波形が現れる
ことがある。この現象はGISに装置されたPTの
鉄共振現象としてよく知られている。
Now, when the circuit breaker 2 is opened in Fig. 2, in the circuit composed of C 1 of the circuit breaker 2, C 2 of the GIS bus bar, and the resistance and inductance of PT5, the voltage peak value at the time of interruption, the interruption phase If the following conditions are met, the frequency will be as the secondary terminal voltage of PT5.
A waveform may appear that is lower than the rated frequency, has a voltage peak value higher than the voltage division ratio of C 1 and C 2 , and continues without attenuation. This phenomenon is well known as the fero-resonance phenomenon of PT installed in GIS.

この鉄共振を抑制する方式として第3図に示す
ようにPTの二次巻線8に、負担9と並列に可飽
和リアクトル10を接続することが知られてい
る。ここで可飽和リアクトル10はPTの二次端
子に常時接続されていることから、PTの通常使
用状態すなわち定格周波数かつ最高使用電圧にお
いて磁気飽和に至らないことが条件となる。
As a method for suppressing this iron resonance, it is known to connect a saturable reactor 10 to the secondary winding 8 of the PT in parallel with the load 9, as shown in FIG. Here, since the saturable reactor 10 is always connected to the secondary terminal of the PT, it is a condition that magnetic saturation is not reached in the normal use state of the PT, that is, at the rated frequency and the maximum working voltage.

第3図に示した可飽和リアクトル10は前述の
ごとく通常使用状態においては磁気飽和に至らず
従つて高インピーダンスとなつており電流はほと
んど流れ込まない。一方鉄共振が発生すると可飽
和リアクトル10の端子間には低周波の電圧が印
加されることになるので磁気飽和に至り、低イン
ピーダンスとなり、通常使用状態に比べ充分大き
な電流が可飽和リアクトル10に流れ込む。従つ
て可飽和リアクトル10の抵抗損によるダンピン
グ効果で鉄共振は抑制される。
As described above, the saturable reactor 10 shown in FIG. 3 does not reach magnetic saturation in normal use, and therefore has a high impedance, so that almost no current flows into it. On the other hand, when ferroresonance occurs, a low-frequency voltage is applied between the terminals of the saturable reactor 10, resulting in magnetic saturation, resulting in low impedance, and a sufficiently large current flows into the saturable reactor 10 compared to the normal operating state. Flow into. Therefore, the ferroresonance is suppressed by the damping effect due to the resistance loss of the saturable reactor 10.

しかしながら本方式であると遮断器2を開放し
たときの残留電圧E0(V)は(1)式となる。
However, with this method, the residual voltage E 0 (V) when the circuit breaker 2 is opened is expressed by equation (1).

E0=C1/C1+C2E1(V) ……(1) ただしE1は電源電圧値 この残留電圧E0が大きい場合、C1を介して電
源1より付勢されるエネルギーに対し、可飽和リ
アクトル10で消費されるエネルギーが小さくな
ることがあり、従つて鉄共振を抑制できないこと
があつた。
E 0 = C 1 / C 1 + C 2 E 1 (V) ...(1) However, E 1 is the power supply voltage value. If this residual voltage E 0 is large, the energy energized by power supply 1 via C 1 On the other hand, the energy consumed by the saturable reactor 10 may become small, and therefore, it may not be possible to suppress ferroresonance.

このため鉄共振をより確実に抑制する他の方式
として例えば実開昭60−99837号公報の提案があ
る。これを第4図により説明する。鉄共振が発生
すると、PTの鉄心6は磁気飽和、非飽和を周期
的に繰り返すことになる。PTの鉄心6が磁気飽
和すると励磁インピーダンスは小さくなり、従つ
て大きな励磁電流が流れることになる。この大き
な励磁電流は一次巻線7の接地側に接続した電流
継電器11で検出される。すると、電流継電器1
1の接点11aが閉じ抵抗器12が二次巻線8の
端子間に投入されることになる。この抵抗器12
を負担9のインピーダンスに比べ充分小さいもの
としておくと二次電流の大部分は抵抗器12に流
れ込み、抵抗損によるダンピング効果で鉄共振は
抑制される。
For this reason, as another method for suppressing the iron resonance more reliably, there has been proposed, for example, Japanese Utility Model Application No. 60-99837. This will be explained with reference to FIG. When iron resonance occurs, the PT iron core 6 periodically repeats magnetic saturation and non-saturation. When the iron core 6 of the PT is magnetically saturated, the excitation impedance becomes small, and therefore a large excitation current flows. This large excitation current is detected by a current relay 11 connected to the ground side of the primary winding 7. Then, current relay 1
The first contact 11a is closed and the resistor 12 is inserted between the terminals of the secondary winding 8. This resistor 12
If it is made sufficiently smaller than the impedance of the load 9, most of the secondary current will flow into the resistor 12, and fero-resonance will be suppressed by the damping effect due to resistance loss.

(考案が解決しようとする問題点) 従来技術で述べた抵抗投入方式では次の問題点
があつた。すなわち鉄共振が抑制されたのち、投
入した抵抗器12を引きはずす際、抵抗器12に
流れている大きな電流を切るため、過渡現象が生
じ、過電圧の発生あるいは再び鉄共振状態に戻る
ことがあつた。
(Problems to be solved by the invention) The resistor input method described in the prior art has the following problems. In other words, when the inserted resistor 12 is tripped after the ferroresonance has been suppressed, a transient phenomenon occurs to cut off the large current flowing through the resistor 12, which may cause an overvoltage or return to the ferroresonant state again. Ta.

また電流継電器11は鉄共振発生時確実に動作
しなければならない。しかるに鉄共振時の電流は
ひずみ波であり従つて電流継電器11の動作精度
の設定がむずかしかつた。さらに電流継電器11
が電圧投入時のラツシユ電流あるいはサージ電流
などにより誤動作し、鉄共振が発生していないの
に抵抗器12が投入されてしまう恐れもあつた。
Further, the current relay 11 must operate reliably when fero-resonance occurs. However, the current at the time of iron resonance is a distorted wave, and therefore it is difficult to set the operating accuracy of the current relay 11. Furthermore, current relay 11
There was also a risk that the resistor 12 would malfunction due to rush current or surge current when the voltage was turned on, and that the resistor 12 would be turned on even though ferroresonance was not occurring.

本考案の目的は、系統のCBが開となつたのち、
鉄共振の発生を確実に阻止できる計器用変圧器を
提供することにある。
The purpose of this invention is that after the CB of the system is opened,
An object of the present invention is to provide a voltage transformer that can reliably prevent the occurrence of iron resonance.

[考案の構成] (問題点を解決するための手段および作用) 本考案は、遮断器を有する系統に接続され、鉄
心並びにこの鉄心に巻回された一次巻線および二
次巻線からなる接地形の計器用変圧器において、
前記二次巻線の端子間に、前記遮断器の開極とほ
ぼ同時に閉じかつ一定時間経過後に開く接点を介
して遮断器開極後の定格周波数の残留電圧では磁
気飽和しないが遮断器投入時の運転電圧では磁気
飽和してしまう可飽和リアクトルを接続したこと
を特徴とするものである。
[Structure of the device] (Means and effects for solving the problem) The present invention is a connection system that is connected to a system having a circuit breaker and is composed of an iron core and a primary winding and a secondary winding wound around the iron core. In topographic instrument transformers,
Between the terminals of the secondary winding, there is a contact that closes almost simultaneously with the opening of the circuit breaker and opens after a certain period of time, so that magnetic saturation does not occur at the residual voltage at the rated frequency after the circuit breaker is opened, but when the circuit breaker is closed. This system is characterized by the connection of a saturable reactor that magnetically saturates at an operating voltage of .

本考案によれば、系統の遮断器が開極すると、
ほぼ同時に計器用変圧器二次側に接続した接点が
閉じ、抑制インピーダンスが確実にこの二次巻線
の端子間に投入されるので、電流が抑制インピー
ダンスの可飽和リアクトルに流れ込み、抵抗損を
発生してダンピング効果が生じ、鉄共振が有効に
抑制される。また可飽和リアクトルの開放は鉄共
振が抑制されたのち行われるが、この開放時の可
飽和リアクトルは磁気飽和しておらず高インピー
ダンスとなつているため、微小な励磁電流しか流
れず、このような微小電流を遮断しても過電圧の
発生あるいは鉄共振再発はない。
According to the present invention, when the system breaker opens,
Almost at the same time, the contacts connected to the secondary side of the potential transformer close, ensuring that the suppressing impedance is injected between the terminals of this secondary winding, so that current flows into the saturable reactor of the suppressing impedance, causing resistance loss. As a result, a damping effect is produced, and the ferro-resonance is effectively suppressed. In addition, the saturable reactor is opened after the ferroresonance has been suppressed, but since the saturable reactor is not magnetically saturated and has high impedance when opened, only a small excitation current flows, and this Even if a very small current is cut off, there is no occurrence of overvoltage or recurrence of ferroresonance.

(実施例) 本考案の一実施例を第1図により説明する。第
1図において6は本考案によるPT5の鉄心、7
はPT5の一次巻線、8はPT5の二次巻線、13
は抑制インピーダンスである。14は操作回路1
8の制御線P,Nに接続した接触器、14aは接
触器14のa接点、15は補助継電器、15aは
補助継電器のa接点、16はタイマー、16aは
タイマーの接点、17は遮断器の開閉動作に連動
する接点である。
(Example) An example of the present invention will be described with reference to FIG. In Fig. 1, 6 is the iron core of PT5 according to the present invention, 7
is the primary winding of PT5, 8 is the secondary winding of PT5, 13
is the suppression impedance. 14 is the operation circuit 1
8, the contactor connected to the control lines P and N, 14a is the a contact of the contactor 14, 15 is the auxiliary relay, 15a is the a contact of the auxiliary relay, 16 is the timer, 16a is the contact of the timer, 17 is the contact of the circuit breaker It is a contact that is linked to opening and closing operations.

次に本考案の計器用変圧器の作動について説明
する。いま第1図において遮断器が開くと接点1
7は閉じ、補助継電器15がタイマ16が不動作
でその接点16aが閉じていることから励磁され
てその接点15aは閉じる。従つて接触器の接点
14aが閉じ抑制インピーダンス13がPT5の
二次巻線8の端子間に投入されることになる。次
にタイマー16で設定した時間(鉄共振抑制に要
する時間より充分長い)だけ経過するとタイマー
16の接点16aが開き、補助継電器15の励磁
が解かれ接点15aが開く。従つて接触器14の
接点14aが開き抑制インピーダンス13がPT
5の二次巻線8の端子間より引きはずされる。
Next, the operation of the voltage transformer of the present invention will be explained. Now in Figure 1, when the circuit breaker opens, contact 1
7 is closed, and since the timer 16 is inactive and its contact 16a is closed, the auxiliary relay 15 is energized and its contact 15a is closed. Therefore, the contact 14a of the contactor is closed and the suppressing impedance 13 is applied between the terminals of the secondary winding 8 of the PT5. Next, when the time set by the timer 16 (sufficiently longer than the time required for suppressing ferro-resonance) has elapsed, the contact 16a of the timer 16 opens, the auxiliary relay 15 is deenergized, and the contact 15a opens. Therefore, the contact 14a of the contactor 14 opens and the suppressing impedance 13 becomes PT.
5 is removed from between the terminals of the secondary winding 8.

本考案においては、従来の如き鉄共振現象を検
出する電流継電器等を使用せずに、簡単な方式で
確実に抑制インピーダンス13をPT5の二次巻
線8の端子間に投入できることになる。
In the present invention, the suppressing impedance 13 can be reliably introduced between the terminals of the secondary winding 8 of the PT 5 in a simple manner without using a conventional current relay or the like for detecting the ferro-resonance phenomenon.

さらに抑制インピーダンス13として可飽和リ
アクトルを用い、この可飽和リアクトルはその端
子電圧が少なくとも定格周波数において(2)式で示
す電圧値E(V)では磁気飽和せずかつ定格周波
数、定格電圧では磁気飽和するものとすると以下
の利点が生じる。
Furthermore, a saturable reactor is used as the suppressing impedance 13, and this saturable reactor has a terminal voltage that is not magnetically saturated at least at the voltage value E (V) shown in equation (2) at the rated frequency, and is magnetically saturated at the rated frequency and rated voltage. If this is done, the following advantages will arise.

E=C1/C1+C2Emax(V) ……(2) ただしEmax:二次換算最高使用電圧 すなわちCB開極とほぼ同時に可飽和リアクト
ルがPT5の二次巻線8の端子間に投入され、こ
の時鉄共振が発生していたとすると、可飽和リア
クトルの端子間には低周波の電圧が印加され、磁
気飽和に至る。
E=C 1 /C 1 +C 2 Emax (V) ...(2) However, Emax: Secondary conversion maximum working voltage In other words, the saturable reactor is applied between the terminals of the secondary winding 8 of PT5 almost at the same time as CB is opened. If ferro-resonance occurs at this time, a low-frequency voltage is applied between the terminals of the saturable reactor, leading to magnetic saturation.

さらに本考案においては、可飽和リアクトルが
磁気飽和に至る電圧値は第3図で示した常時接続
形可飽和リアクトルに比べ小さい。従つて常時接
続形可飽和リアクトルを接続した場合に比べ長い
時間磁気飽和しており、大きな励磁電流が流れる
ことになる。
Furthermore, in the present invention, the voltage value at which the saturable reactor reaches magnetic saturation is smaller than that of the constantly connected saturable reactor shown in FIG. Therefore, compared to the case where a constantly connected saturable reactor is connected, magnetic saturation occurs for a longer time, and a large excitation current flows.

よつて本考案の可飽和リアクトルの抵抗損は従
来の常時接続形可飽和リアクトルの抵抗損に比べ
大きくなり、従つて大きな鉄共振抑制効果を得る
ことができる。また可飽和リアクトルの開放は鉄
共振が抑制されたのち行われる。開放時可飽和リ
アクトルは磁気飽和しておらず高インピーダンス
となつており、微小な励磁電流しか流れていない
ため、この電流を遮断しても従来例第4図で説明
した如き過電圧の発生あるいは鉄共振再発はな
い。従つて非常に信頼性が高い鉄共振抑制方式と
いえる。
Therefore, the resistance loss of the saturable reactor of the present invention is larger than that of the conventional always-connected saturable reactor, and therefore a large fero-resonance suppressing effect can be obtained. Further, the saturable reactor is opened after the fero-resonance is suppressed. When open, the saturable reactor is not magnetically saturated and has a high impedance, and only a small excitation current flows. Therefore, even if this current is cut off, an overvoltage as explained in Fig. 4 of the conventional example or iron There is no resonance recurrence. Therefore, it can be said that this is an extremely reliable ferroresonance suppression method.

[考案の効果] 以上説明したように、本考案によれば、系統の
遮断器が開極すると、ほぼ同時に抑制インピーダ
ンスが確実に計器用変圧器二次側に投入されるの
で、電流が抑制インピーダンスの可飽和リアクト
ルに流れ込み、鉄共振を有効に抑制することがで
きる。また可飽和リアクトルの開放は鉄共振が抑
制されたのち行われるが、高インピーダンスとな
つているため微小な励磁電流しか流れず、過電圧
の発生あるいは鉄共振再発はない。
[Effects of the invention] As explained above, according to the invention, when the system breaker opens, the suppression impedance is reliably injected into the secondary side of the potential transformer almost at the same time, so that the current flows through the suppression impedance. flows into the saturable reactor, and can effectively suppress ferroresonance. Furthermore, the saturable reactor is opened after ferroresonance has been suppressed, but since it has a high impedance, only a small excitation current flows, and there is no occurrence of overvoltage or recurrence of ferroresonance.

従つて、鉄共振抑制効果の大きい計器用変圧器
を得ることができる。
Therefore, it is possible to obtain a voltage transformer with a large effect of suppressing fero-resonance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の計器用変圧器の一実施例を示
す回路図、第2図は鉄共振現象の発生原理を示す
等価回路図、第3図および第4図は従来の鉄共振
抑制装置を示す回路図である。 5……計器用変圧器、6……PTの鉄心、7…
…PTの一次巻線、8……PTの二次巻線、9……
負担、10……可飽和リアクトル、13……抑制
インピーダンス、14……接触器、14a……接
触器の接点、15……補助継電器、15a……補
助継電器の接点、16……タイマー、16a……
タイマーの接点、17……遮断器開閉により動作
する接点。
Fig. 1 is a circuit diagram showing an embodiment of the instrument transformer of the present invention, Fig. 2 is an equivalent circuit diagram showing the principle of occurrence of ferroresonance phenomenon, and Figs. 3 and 4 are conventional ferroresonance suppressing devices. FIG. 5...Instrument transformer, 6...PT iron core, 7...
...PT primary winding, 8...PT secondary winding, 9...
Load, 10... Saturable reactor, 13... Suppression impedance, 14... Contactor, 14a... Contact of contactor, 15... Auxiliary relay, 15a... Contact of auxiliary relay, 16... Timer, 16a... …
Timer contact, 17...A contact that operates when the circuit breaker opens and closes.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 遮断器を有する系統に接続され、鉄心並びにこ
の鉄心に巻回された一次巻線および二次巻線から
なる接地形の計器用変圧器において、前記二次巻
線の端子間に、前記遮断器の開極とほぼ同時に閉
じかつ一定時間経過後に開く接点を介して遮断器
開極後の定格周波数の残留電圧では磁気飽和しな
いが遮断器投入時の運転電圧では磁気飽和してし
まう可飽和リアクトルを接続したことを特徴とす
る計器用変圧器。
In a grounded instrument transformer connected to a system having a circuit breaker and consisting of an iron core and a primary winding and a secondary winding wound around the iron core, the circuit breaker is connected between the terminals of the secondary winding. A saturable reactor that is not magnetically saturated at the residual voltage of the rated frequency after the circuit breaker is opened, but is magnetically saturated at the operating voltage when the circuit breaker is closed, is created through a contact that closes almost simultaneously with the opening of the circuit breaker and opens after a certain period of time. An instrument transformer characterized in that it is connected.
JP1986068249U 1986-05-08 1986-05-08 Expired - Lifetime JPH0526902Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986068249U JPH0526902Y2 (en) 1986-05-08 1986-05-08

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986068249U JPH0526902Y2 (en) 1986-05-08 1986-05-08

Publications (2)

Publication Number Publication Date
JPS62182023U JPS62182023U (en) 1987-11-18
JPH0526902Y2 true JPH0526902Y2 (en) 1993-07-08

Family

ID=30907894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986068249U Expired - Lifetime JPH0526902Y2 (en) 1986-05-08 1986-05-08

Country Status (1)

Country Link
JP (1) JPH0526902Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5228793B2 (en) * 2008-10-27 2013-07-03 三菱電機株式会社 Elevator control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127529A (en) * 1983-01-10 1984-07-23 日新電機株式会社 Transforming device for instrument
JPS59162714A (en) * 1983-03-04 1984-09-13 日新電機株式会社 Transforming device for instrument

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127529A (en) * 1983-01-10 1984-07-23 日新電機株式会社 Transforming device for instrument
JPS59162714A (en) * 1983-03-04 1984-09-13 日新電機株式会社 Transforming device for instrument

Also Published As

Publication number Publication date
JPS62182023U (en) 1987-11-18

Similar Documents

Publication Publication Date Title
JPH0526902Y2 (en)
JP2001135204A (en) Transient current preventing unit in incoming substation facility
JPH10243549A (en) Ferro-resonance monitoring and protecting device
JP2000164441A (en) Potential transformer device
JPH028516Y2 (en)
JPS6010609A (en) Potential transformer
JPS5957524A (en) Ac current limiting type semiconductor circuit breaker
JPS6338688Y2 (en)
SU864423A1 (en) Device for limiting short-circuiting currents and overvoltages at high-voltage substation
JP2000050432A (en) Instrument transformer
JPS5832457Y2 (en) Protective device for capacitor equipment
JPS6233484Y2 (en)
JPH04372519A (en) Breaker
JPH08212880A (en) Control circuit for circuit breaker
JPH025615Y2 (en)
SU678580A2 (en) Device for relay protection with deshunting of shut-off electromagnet
JPH025627Y2 (en)
JPH0147094B2 (en)
SU1679577A1 (en) Three-phase circuit section
JPS6070919A (en) Overcurrent relay
JPH03265424A (en) Overvoltage suppressor
JP2002051468A (en) Controller/protector for power apparatus
JPH04197023A (en) Malfunction preventive circuit by excited rush current of ratio differential relay
JP2001185008A (en) Direct current breaker
JPH0315406B2 (en)