JPH0315406B2 - - Google Patents

Info

Publication number
JPH0315406B2
JPH0315406B2 JP57119840A JP11984082A JPH0315406B2 JP H0315406 B2 JPH0315406 B2 JP H0315406B2 JP 57119840 A JP57119840 A JP 57119840A JP 11984082 A JP11984082 A JP 11984082A JP H0315406 B2 JPH0315406 B2 JP H0315406B2
Authority
JP
Japan
Prior art keywords
transformer
circuit
current
main
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57119840A
Other languages
Japanese (ja)
Other versions
JPS5911730A (en
Inventor
Tadayoshi Kajiwara
Yoshinori Kitagawa
Akira Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP57119840A priority Critical patent/JPS5911730A/en
Publication of JPS5911730A publication Critical patent/JPS5911730A/en
Publication of JPH0315406B2 publication Critical patent/JPH0315406B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Regulation Of General Use Transformers (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、変圧器の励磁投入電流抑制装置に関
し、特に製鋼用電気炉等の頻繁な投入・開放を要
求される負荷を持つ変圧器の電源投入時に生じる
励磁突入電流を低減ないし防止するための補助装
置に関する。 一般の電力用変圧器は、電源系統に常時接続さ
れているのが普通であつて、その投入・開放の機
会は少なく、保守等のために3〜5年に1度程度
であるから、とりたて励磁突入電流対策は問題と
ならない。しかしながら製鋼用電気炉等の工業用
電気炉を負荷する変圧器では、例えば1日に30回
以上の投入・開放を行なう必要があり、従つて投
入時の励磁突入電流の抑制対策が重要な問題とな
る。この励磁突入電流の大きさは、変圧器容量な
どによつて異なるが、40〔MVA〕級の変圧器で
1次定格電流の4〜6倍と云われ、この大電流が
変圧器巻線や遮断器等の導電部に電磁機械力とし
て働き、これらの寿命短縮や思わぬ事故発生の原
因となり、また保護継電器の誤動作を招いて投入
不能の事態に落入ることにもなる。 すなわち、変圧器を回路に投入すると、励磁電
流は直ちに定常状態にならずに過度現象を生じ、
その波高値は定格負荷電流の5倍を超えることも
ある。この電流は、励磁突入電流と呼ばれ、変圧
器を保護する差動継電器に対して、変圧器内部故
障時の電流と類似の作用をするので、電流値が過
大となると継電器の誤動作をまねき、変圧器を回
路に投入できないというような事態を生ずること
がある。 この突入電流の大きさは、回路電圧位相のどの
点で変圧器が投入されるか、また鉄心の残留磁束
がどのような状態にあつたかなどによつても変化
する。 最も大きな突入電流が生じるのは第1図のP
点、すなわち電圧零の瞬間に投入された場合であ
る。この場合には、定常状態の磁束最大値をφn
とすると、投入後1/2サイクルの間に磁束は2φn
の変化をする。しかるに磁束の出発点では、変圧
器投入前の鉄心中の残留磁速がφrであるので、投
入後1/2サイクルでは、磁束は2φn+φrとなり、
φrが磁束変化方向と同方向にある場合は、鉄心の
飽和磁束をはるかに超え、その結果大きな励磁突
入電流が生じることになる。 第1図はこの関係を示すもので、過度磁束が鉄
心飽和磁束を超えるあたりから突入電流波高値が
増大する状態を示している。 第2図は磁束および突入電流の時間的変化を示
すもので、磁束の中に含まれる直流分が時間とと
もに減衰し、それに伴つて突入電流波高値も減少
する。突入電流の継続時間は、回路抵抗とインダ
クタンスによつて決まり、大容量ほど長くなる
が、実測の結果では、小容量器で10サイクル以
上、大容量器になると5〜10秒、あるいはそれ以
上に及ぶことがある。方向性ケイ素鋼帯を使用し
た変圧器は、無方向性のものに比べ、飽和磁束と
定常磁束の比が小さく、残留磁束も大きい傾向に
あるので、一般に励磁突入電流は大きくなる。 第3図は、変圧器の容量と、起り得る最大突入
電流計算値を示したものである。実際には、次の
ような理由でこのような大きな突入電流を生じる
可能性は少ない。 (1) しや断器が電圧0の点で投入される可能性は
少ない。 (2) 突入電流が流れると、外部回路の電圧自体が
低下する。 (3) 残留磁束も電圧変化方向と同一とは限らず、
また外部回路の状態によつては、減少すること
がある。 ところで三相バンクでは、三相のいずれかに必
ず過度現象が生ずるので、いかなる瞬間に投入し
ても突入電流を避けることはできない。 また一般に内鉄形変圧器では、内側巻線の方が
空心リアクタンスが小さいので、内側巻線から励
磁した方が突入電流が大きくなる。 この突入電流が大きいと、前述のように、差動
継電器が誤動作したりすることがあり、これを防
止するために、変圧器投入後一定の時間継電器を
ロツする方法や、突入電流と事故電流の波形を弁
別する高調波抑制形差動継電器を用いる方法がと
られている。 しかしながら頻繁に投入・開放を行なう電気炉
用変圧器に対する励磁突入電流対策としてはこの
ような継電器の誤動作対策だけでは不充分で、こ
のため従来より炉用変圧器による電圧変動の影響
を防止する目的で電源系統の分離を行なつたり、
特殊な4巻線変圧器を用いたりすることが行なわ
れていたが、電源系統の分離は設備費が高くなる
し、4巻線変圧器を用いるにしてもこの変圧器自
体特殊なものであり、従つて通常の2巻線変圧器
による簡単な方式の励磁突入電流抑制対策が要望
されている状況にある。 本発明は前記の状況に鑑みてなされたもので、
特殊変圧器によらずとも頻繁な投入・開放を行な
う用途の変圧器の励磁突入電流を低減ないし防止
することのできる補助装置を提供することを目的
とするものである。 この目的を達成するために本発明の励磁突入電
流抑制装置では、電気炉等の負荷に接続された主
変圧器を電源主回路に投入する前に、前記負荷に
結線された主変圧器2次巻線に対し直接又は主変
圧器1次巻線を介して高インピーダンスの投入補
助回路により前記主回路と同位相の補助励磁を行
ない、しかる後、前記変圧器を主回路に投入する
ようにしてある。 前記投入補助回路は、主回路投入・開放用遮断
器の操作と関連して負荷と結線された2次巻線に
制限された同相の励磁電流を例えば5秒程度流
し、これによつて主変圧器鉄心の残留磁束と電源
電圧との同期化を達成せしめて鉄心の磁束飽和を
生じないようにし、前記、遮断器閉成による主回
路投入時に突入電流が生じるのを防止するもの
で、主変圧器の無負荷励磁電流を供給するだけの
容量をもつものである。 ひとつの態様において、前記投入補助回路は、
主変圧器の2次巻線に接続されたコンタクタと、
該コンタクタにより前記2次巻線に接続されたと
き、該2次巻線に主回路と同位相の制限された電
流を流す高インピーダンスの補助変圧器とからな
り、前記補助変圧器を低圧電源に接続して主回路
位相と同期した電流により2次巻線を補助励磁し
たのちに主回路遮断器で主変圧器を投入するよう
にしてある。この場合、高インピーダンスの補助
変圧器として通常の変圧器とリアクトルとの組合
せを用いてもよい。 このように、主変圧器の2次巻線は主回路への
投入に先立つて同位相の制限された電流により高
インピーダンス回路を介して励磁される。また好
ましくは前記コンタクタ投入時或いは前記補助遮
断器開成状態での主回路投入・開放用遮断器投入
時における直後の過度電流を監視しながらこの電
流値が或る値以上のときはこれらの投入操作を再
度やり直して投入タイミングを調整することによ
り、一層小さな突入電流値での主回路投入が果し
得るものである。 本発明を実施例図面と共に説明すれば、第4図
は本発明の第1実施例を示す回路図で、1は負荷
としての電気炉電極、2は主変圧器、3は電源主
回路、4は主回路投入・開放用遮断器、5は断路
器である。 通常の電気炉運転時において主回路3からの電
源電流は閉成状態の遮断器4と断路器5を介して
主変圧器2の1次巻線に流れ、例えば22〔KV〕
の1次電圧を460〔V〕の2次電圧に降圧して電極
1に大電流を供給するようにしてある。 ここにおいて主変圧器2の2次巻線には本発明
の要部をなす投入補助回路6が接続され、低圧電
源回路7から主変圧器2の2次巻線を個別に励磁
できるようにしてある。投入補助回路6は、低圧
電源回路7に接続された位相調整用の高インピー
ダンス補助変圧器8と、該補助変圧器8の2次側
を負荷電極1に選択的に接続するコンタクタ9と
を備えている。一例として、主回路3の電圧が22
〔KV〕低圧電源回路7の電圧が440〔V〕、主変圧
器2が容量40〔MKV〕(1次定格電流1050A)で
次の第1表の如き無負荷励磁電流特性と第5図の
如き電圧電力特性および第6図の如きタツプ電力
特性をもつ場合について投入補助回路6の具体例
を以下に述べる。
The present invention relates to an excitation current suppression device for a transformer, and in particular to a device for reducing or preventing excitation inrush current that occurs when power is turned on in a transformer that has a load that requires frequent turning on and off, such as an electric furnace for steel manufacturing. Regarding auxiliary equipment. General power transformers are normally connected to the power supply system at all times, and there are few opportunities to turn them on or off, and only once every three to five years for maintenance, etc., so they are particularly important. Countermeasures against magnetizing inrush current are not a problem. However, transformers that load industrial electric furnaces such as steelmaking electric furnaces need to be turned on and off more than 30 times a day, and therefore, measures to suppress the magnetizing inrush current at the time of turning on are an important issue. becomes. The magnitude of this magnetizing inrush current varies depending on the transformer capacity, etc., but it is said to be 4 to 6 times the primary rated current for a 40 [MVA] class transformer, and this large current is applied to the transformer windings and It acts as an electromagnetic mechanical force on conductive parts such as circuit breakers, shortening their lifespans and causing unexpected accidents, and can also cause malfunctions of protective relays, resulting in a situation in which they cannot be turned on. In other words, when a transformer is put into a circuit, the exciting current does not immediately reach a steady state, but a transient phenomenon occurs;
The peak value may exceed five times the rated load current. This current is called magnetizing inrush current, and it acts on the differential relay that protects the transformer in a similar way to the current that occurs when there is an internal failure in the transformer, so if the current value becomes excessive, it can cause the relay to malfunction. A situation may arise where the transformer cannot be inserted into the circuit. The magnitude of this rush current varies depending on the point in the circuit voltage phase at which the transformer is turned on, the state of the residual magnetic flux in the iron core, and other factors. The largest inrush current occurs at P in Figure 1.
This is the case when the voltage is turned on at the moment when the voltage is zero. In this case, the maximum magnetic flux in the steady state is defined as φ n
Then, during 1/2 cycle after turning on, the magnetic flux is 2φ n
change. However, at the starting point of the magnetic flux, the residual magnetic velocity in the iron core before the transformer is turned on is φ r , so in 1/2 cycle after the transformer is turned on, the magnetic flux becomes 2φ n + φ r ,
If φ r is in the same direction as the magnetic flux change direction, the saturation magnetic flux of the iron core will be far exceeded, resulting in a large excitation inrush current. FIG. 1 shows this relationship, and shows a state in which the inrush current peak value increases from the point where the transient magnetic flux exceeds the core saturation magnetic flux. FIG. 2 shows temporal changes in magnetic flux and inrush current. The DC component included in the magnetic flux attenuates with time, and the peak value of inrush current also decreases accordingly. The duration of the inrush current is determined by the circuit resistance and inductance, and becomes longer as the capacity increases, but actual measurements show that it lasts more than 10 cycles for small capacity capacitors, and 5 to 10 seconds or more for large capacity capacitors. It may extend. Transformers using grain-oriented silicon steel strips tend to have a smaller ratio of saturation magnetic flux to steady-state magnetic flux and larger residual magnetic flux than non-directional ones, so the magnetizing inrush current generally increases. Figure 3 shows the capacity of the transformer and the calculated maximum inrush current that can occur. In reality, such a large inrush current is unlikely to occur for the following reasons. (1) There is little possibility that the circuit breaker will close at a point where the voltage is 0. (2) When inrush current flows, the voltage of the external circuit itself drops. (3) The residual magnetic flux is not necessarily the same as the voltage change direction,
Also, depending on the state of the external circuit, it may decrease. By the way, in a three-phase bank, a transient phenomenon always occurs in one of the three phases, so inrush current cannot be avoided no matter what moment the power is turned on. In general, in a core type transformer, the air core reactance of the inner winding is smaller, so the inrush current will be larger if the inner winding is excited. If this inrush current is large, the differential relay may malfunction as mentioned above, and to prevent this, there are methods of disconnecting the relay for a certain period of time after the transformer is turned on, and methods of inrush current and fault current. A method using a harmonic suppressing differential relay that discriminates between waveforms is used. However, such relay malfunction measures alone are insufficient as a countermeasure against magnetizing inrush current for electric furnace transformers that are frequently turned on and off, and for this reason, conventional measures have been taken to prevent the effects of voltage fluctuations caused by furnace transformers. to separate the power supply system,
A special four-winding transformer was used, but separating the power supply system would increase equipment costs, and even if a four-winding transformer was used, the transformer itself was special. Therefore, there is a need for a simple measure to suppress the excitation inrush current using a normal two-winding transformer. The present invention was made in view of the above situation, and
The object of the present invention is to provide an auxiliary device that can reduce or prevent the magnetizing inrush current of a transformer that is frequently turned on and off without using a special transformer. In order to achieve this object, in the excitation inrush current suppressing device of the present invention, before the main transformer connected to the load such as an electric furnace is connected to the main power supply circuit, the main transformer connected to the load is Auxiliary excitation in the same phase as the main circuit is applied to the winding directly or through the primary winding of the main transformer by a high-impedance input auxiliary circuit, and then the transformer is connected to the main circuit. be. The closing auxiliary circuit flows a limited in-phase excitation current for about 5 seconds to the secondary winding connected to the load in connection with the operation of the main circuit closing/opening circuit breaker, thereby causing the main transformer to This system synchronizes the residual magnetic flux of the transformer core with the power supply voltage to prevent magnetic flux saturation of the core, and prevents inrush current from occurring when the main circuit is turned on by closing the circuit breaker. It has the capacity to supply the no-load excitation current of the device. In one aspect, the input auxiliary circuit includes:
a contactor connected to the secondary winding of the main transformer;
and a high-impedance auxiliary transformer that, when connected to the secondary winding by the contactor, causes a limited current in the same phase as the main circuit to flow through the secondary winding, and connects the auxiliary transformer to a low voltage power source. After the secondary winding is auxiliary excited by a current synchronized with the main circuit phase, the main transformer is turned on by the main circuit breaker. In this case, a combination of a normal transformer and a reactor may be used as the high impedance auxiliary transformer. In this manner, the secondary windings of the main transformer are energized via high impedance circuits with in-phase limited currents prior to input into the main circuit. Preferably, while monitoring the transient current immediately after closing the contactor or closing the main circuit circuit breaker with the auxiliary circuit breaker open, if the current value exceeds a certain value, these closing operations are performed. By repeating the process again and adjusting the timing to turn on the main circuit, it is possible to turn on the main circuit with an even smaller inrush current value. To explain the present invention together with the drawings, FIG. 4 is a circuit diagram showing the first embodiment of the present invention, in which 1 is an electric furnace electrode as a load, 2 is a main transformer, 3 is a power supply main circuit, and 4 is a circuit diagram showing a first embodiment of the present invention. 5 is a circuit breaker for closing and opening the main circuit, and 5 is a disconnector. During normal electric furnace operation, the power supply current from the main circuit 3 flows to the primary winding of the main transformer 2 via the closed circuit breaker 4 and the disconnector 5, for example, 22 [KV].
A large current is supplied to the electrode 1 by stepping down the primary voltage of 460 [V] to a secondary voltage of 460 [V]. Here, the secondary winding of the main transformer 2 is connected to a closing auxiliary circuit 6, which is a main part of the present invention, so that the secondary winding of the main transformer 2 can be individually excited from the low voltage power supply circuit 7. be. The input auxiliary circuit 6 includes a high impedance auxiliary transformer 8 for phase adjustment connected to the low voltage power supply circuit 7, and a contactor 9 that selectively connects the secondary side of the auxiliary transformer 8 to the load electrode 1. ing. As an example, if the voltage of main circuit 3 is 22
[KV] The voltage of the low voltage power supply circuit 7 is 440 [V], the main transformer 2 has a capacity of 40 [MKV] (primary rated current 1050A), and the no-load excitation current characteristics as shown in Table 1 below and as shown in Fig. 5 are obtained. A specific example of the input auxiliary circuit 6 will be described below in the case where it has the voltage power characteristics as shown in FIG. 6 and the tap power characteristics as shown in FIG.

【表】 先ず主変圧器2は電極1の強度等を考慮して始
動時の条件をタツプ6以下とすると、無負荷励磁
容量は第1表に示すように67〔KVA〕であるか
ら、補助変圧器8の容量としては、1次励磁と2
次励磁の空隙差を考えて約120%の80〔KVA〕程
度、時間定格15秒ほどで充分である。また補助変
圧器8のインピーダンスZTは、主変圧器2の励磁
突入電流を低く押えるために高くする必要があ
り、最悪条件として主変圧器2のインピーダンス
を零とみた場合、補助変圧器最大電流を250%に
するようにすればインピーダンスZTは40%とな
る。 従つて補助変圧器8としては、出力2次電圧
460〔V〕、無負荷2次電圧644〔V〕、定格電流100
〔A〕、容量80〔KVA〕、インピーダンスZT40%
(≒1.8Ω)の諸元となる。 第4図において主変圧器2を遮断器4により主
回路3に投入する場合、先ず遮断器4を開成して
おき断路器5の閉成状態にて投入補助回路6のコ
ンタクタ9を閉成する。このときの突入電流は
440〔V〕の低圧回路7からインピーダンスZTの補
助変圧器回路を通じて流れ、インピーダンスZT
より抑制される。この場合、補助変圧器8の2次
側に更にリアクトルを追加挿入して突入電流を一
層低下させるようにしてもよいことは述べるまで
もない。このようにして突入電流のピークが抑え
られ、通常5秒程度経過したのち、ある電流値以
下となつた時点で遮断器4を閉成して円滑な主回
路投入を果すことができる。 この場合さらにコンタクタ9の閉成直後の投入
補助回路6に流れる電流値を測定し、これが或る
値以上のときにはコンタクタ9を開成し再び閉成
する操作を行なえば、投入タイミングを変えるこ
とで投入時の電圧位相により大きくなつたり小さ
くなつたりする突入電流値をさらに小さくするよ
うにもできる。 尚、第4図の実施例では投入補助回路6が低圧
機器だけで構成できる利点もある。 以上に述べたように本発明によれば、主変圧器
に対して主回路の1次側を投入する前に制限され
た電流によつて2次側に初期励磁を与えることに
より、過渡状態に於いても、主変圧器が飽和する
ことなく、過大な励磁突入電流の発生を未然に防
止することができる。又、主変圧器の2次側に初
期励磁する機器を設けたことにより、1次側の高
圧機器と比較して安価になる。従つて頻繁な投
入・開放を行なう製鋼用電気炉等の負荷への給電
用変圧器に適用して電源系統の安定化と変圧器等
電気機器の事故防止および寿命延長、操業の安定
化などを達成することができる。
[Table] First, considering the strength of electrode 1, etc., and setting the starting conditions for main transformer 2 to tap 6 or less, the no-load excitation capacity is 67 [KVA] as shown in Table 1. The capacity of the transformer 8 is for primary excitation and secondary excitation.
Considering the air gap difference for the next excitation, approximately 80 [KVA], which is approximately 120%, and a time rating of approximately 15 seconds are sufficient. In addition, the impedance Z T of the auxiliary transformer 8 needs to be high in order to suppress the excitation inrush current of the main transformer 2, and if the impedance of the main transformer 2 is assumed to be zero as a worst case condition, the maximum current of the auxiliary transformer If it is set to 250%, the impedance Z T becomes 40%. Therefore, as the auxiliary transformer 8, the output secondary voltage
460 [V], no-load secondary voltage 644 [V], rated current 100
[A], Capacity 80 [KVA], Impedance Z T 40%
(≒1.8Ω) specifications. In FIG. 4, when the main transformer 2 is connected to the main circuit 3 by the circuit breaker 4, the circuit breaker 4 is opened first, and the contactor 9 of the connection auxiliary circuit 6 is closed when the disconnector 5 is closed. . The rush current at this time is
It flows from the low voltage circuit 7 of 440 [V] through an auxiliary transformer circuit of impedance Z T and is suppressed by impedance Z T . In this case, it goes without saying that a reactor may be additionally inserted on the secondary side of the auxiliary transformer 8 to further reduce the rush current. In this way, the peak of the rush current is suppressed, and when the current drops below a certain value, usually after about 5 seconds, the circuit breaker 4 can be closed and the main circuit can be turned on smoothly. In this case, the value of the current flowing through the closing auxiliary circuit 6 immediately after the contactor 9 is closed is measured, and if the value exceeds a certain value, the contactor 9 is opened and then closed again. It is also possible to further reduce the inrush current value, which increases or decreases depending on the voltage phase at the time. The embodiment shown in FIG. 4 also has the advantage that the input auxiliary circuit 6 can be constructed only from low-voltage equipment. As described above, according to the present invention, by applying initial excitation to the secondary side with a limited current before turning on the primary side of the main circuit to the main transformer, transient conditions can be prevented. Even in such a case, the main transformer will not be saturated and generation of an excessive excitation inrush current can be prevented. Furthermore, by providing the equipment for initial excitation on the secondary side of the main transformer, the cost becomes cheaper compared to the high voltage equipment on the primary side. Therefore, it can be applied to transformers that supply power to loads such as steelmaking electric furnaces that are frequently turned on and off, to stabilize power supply systems, prevent accidents and extend the life of electrical equipment such as transformers, and stabilize operations. can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は励磁突入電流(突流)の説明のための
過渡状態における変圧器鉄心内磁束と電圧電流の
変化を示す線図、第2図は過渡励磁電流と磁束の
波形線図、第3図は励磁突入電流と変圧器容量と
の関係を示す線図、第4図は本発明の第1実施例
を示す回路図、第5図は一例としての容量
40MVAの主変圧器のタツプ9における電圧電力
特性線図、第6図は同じくタツプ電力特性線図、 1……負荷(電気炉電極)、2……主変圧器、
3……電源主回路、4……主回路投入.開放用遮
断器、5……断路器、6……投入補助回路、7…
…低圧電源回路、8……補助変圧器、9……コン
タクタ、10……リアクトル、11……補助遮断
器。
Fig. 1 is a diagram showing changes in the magnetic flux in the transformer core and voltage and current in a transient state to explain the excitation inrush current (rush current), Fig. 2 is a waveform diagram of the transient excitation current and magnetic flux, and Fig. 3 is a diagram showing the relationship between magnetizing inrush current and transformer capacity, FIG. 4 is a circuit diagram showing the first embodiment of the present invention, and FIG. 5 is a diagram showing the capacity as an example.
Voltage power characteristic diagram at tap 9 of a 40MVA main transformer, Figure 6 is also a tap power characteristic diagram, 1...load (electric furnace electrode), 2...main transformer,
3...Main power circuit, 4...Turn on the main circuit. Opening circuit breaker, 5... Disconnector, 6... Closing auxiliary circuit, 7...
...Low voltage power supply circuit, 8...Auxiliary transformer, 9...Contactor, 10...Reactor, 11...Auxiliary circuit breaker.

Claims (1)

【特許請求の範囲】[Claims] 1 負荷が接続された主変圧器の2次巻線に接続
され、前記主変圧器を主回路に投入する前に投入
するコンタクタと、このコンタクタを介して、そ
の2次巻線と接続され、その2次巻線に主回路と
同位相で制限された電流を流して補助励磁する高
インピーダンスの補助変圧器とからなる投入補助
回路を備えたことを特徴とする変圧器の励磁突入
電流抑制装置。
1. A contactor that is connected to the secondary winding of the main transformer to which the load is connected and is turned on before the main transformer is connected to the main circuit, and connected to the secondary winding through this contactor, A transformer excitation inrush current suppression device characterized by comprising a closing auxiliary circuit consisting of a high impedance auxiliary transformer that performs auxiliary excitation by passing a limited current in the same phase as the main circuit through the secondary winding. .
JP57119840A 1982-07-12 1982-07-12 Exciting rush current suppressing device for transformer Granted JPS5911730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57119840A JPS5911730A (en) 1982-07-12 1982-07-12 Exciting rush current suppressing device for transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57119840A JPS5911730A (en) 1982-07-12 1982-07-12 Exciting rush current suppressing device for transformer

Publications (2)

Publication Number Publication Date
JPS5911730A JPS5911730A (en) 1984-01-21
JPH0315406B2 true JPH0315406B2 (en) 1991-03-01

Family

ID=14771553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57119840A Granted JPS5911730A (en) 1982-07-12 1982-07-12 Exciting rush current suppressing device for transformer

Country Status (1)

Country Link
JP (1) JPS5911730A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130284A (en) * 2006-11-17 2008-06-05 Chugoku Electric Power Co Inc:The Circuit breaker

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5631329A (en) * 1979-08-21 1981-03-30 Mitsubishi Electric Corp Current limiting circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5631329A (en) * 1979-08-21 1981-03-30 Mitsubishi Electric Corp Current limiting circuit

Also Published As

Publication number Publication date
JPS5911730A (en) 1984-01-21

Similar Documents

Publication Publication Date Title
JPWO2011086671A1 (en) Inrush current suppressing device and inrush current suppressing method
JP5118397B2 (en) Current limiting device
KR20150139559A (en) Current-limiting device
JP3022232B2 (en) Phase adjusting transformer and method of protecting the transformer
KR101050354B1 (en) Circuit breaker
Ning et al. Analysis and reduction of magnetizing inrush current for switch-on unloaded transformer
Kotak et al. Prefluxing technique to mitigate inrush current of three-phase power transformer
JPH0315406B2 (en)
US2290101A (en) Protective arrangement
JP2007242484A (en) Transformer circuit, and method for preventing its current zero point transition phenomenon
Hashem et al. Attenuation of Transformer Inrush Current Using Controlled Switching System on Delta-Star Transformer
EP0107359A2 (en) Alternating current limiting type semiconductor current circuit breaker
EP3396687A1 (en) Energizing method of a transformer, and transformer connection assembly
JP2004153932A (en) Exciting rush current reduction circuit for transformer
CN219372010U (en) Device for avoiding closing inrush current of low-voltage isolation transformer and low-voltage power supply system
JP3231374B2 (en) Earth leakage breaker
Bevan The application of high-voltage steel-tank mercury-arc rectifiers to broadcast transmitters
JP3100536B2 (en) High pressure switchgear device
Himata et al. Residual Magnetic Flux in High Resistance Grounding System
JP4706999B2 (en) Excitation current suppression device
Bronzeado et al. The influence of tap position on the magnitude of transformer inrush current
US2158926A (en) Electric circuit
Kumari Study of Methods for Mitigation of Inrush Current in Transformer
SU907681A1 (en) Device for limiting overvoltages and short-circuiting current at high-voltage substation
Aghazadeh et al. Modified Pre-Fluxing Method for Energization of Single-Phase Transformers