JPH0526859B2 - - Google Patents

Info

Publication number
JPH0526859B2
JPH0526859B2 JP24699584A JP24699584A JPH0526859B2 JP H0526859 B2 JPH0526859 B2 JP H0526859B2 JP 24699584 A JP24699584 A JP 24699584A JP 24699584 A JP24699584 A JP 24699584A JP H0526859 B2 JPH0526859 B2 JP H0526859B2
Authority
JP
Japan
Prior art keywords
copper alloy
producing
tensile strength
rare earth
high tensile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24699584A
Other languages
Japanese (ja)
Other versions
JPS61127852A (en
Inventor
Kyoshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP24699584A priority Critical patent/JPS61127852A/en
Publication of JPS61127852A publication Critical patent/JPS61127852A/en
Publication of JPH0526859B2 publication Critical patent/JPH0526859B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、IC及びLSI又はワイヤ電極等に使用
される銅合金、特に高い張力を有する銅合金の製
造方法に関する。 〔従来の技術〕 近年、半導体技術は目覚しい発達をとげ、極近
い将来には256KメモリのVLSIも大量に製造され
るように成りつつある。 IC及びLSI等に使用される合金としては、最初
コバールが使用され、次いで42アロイ、52アロイ
等が使用されるようになつた。そして、LSI等の
超集積回路が開発されるに到つて、特に、電気伝
導度、熱伝導度及び強度等の優れた合金が要求さ
れるように成り、現在では鉄合金及び銅合金が略
同じ比率で使用されている。 この種の合金としての主要要素である電気伝導
度と強度との関係は、一般に電気伝導度を上げれ
ば強度が低下すると云う特性があり、今後、電気
伝導度を上昇させるに伴い低下する強度を如何に
して低く押えるかが研究の課題となつている。 電気伝導度と強度を共に高く保つ方法は種々研
究されているが、そのうちスピノーダル分解及び
その他の機構との複合処理が最も良い方法である
と考えられている。 例えば、従来Cu−Ni合金は全率固溶型合金と
考えられていたが、特殊な元素を添加することに
より、又は処理を施すことによつてスピノーダル
分解を起す。 一般に銅合金では他の元素を添加するとヤング
率が低下する性質があるにも拘わらず、Cu−Ni
スピノーダル合金では上記元素を添加すると共
に、ヤング率が向上し且つ電気伝導度の低下を低
く押えることができる。 而して、Cu−Ni合金にスピノーダル分解処理
と強化機構の複合処理を行なうと、例えば、強度
60Kg/mm2、電気伝導度80%とすることができ、こ
れは原時点に於けるLSI用の合金としては極めて
優秀な値であり、また、VLSI用の合金としても
適合する値である。 更に、この種の合金の必要条件としては熱膨張
係数が小さいことが要求される。一般に鉄系の合
金は熱膨張係数が小さく、銅系の合金は大きい値
を示す。然しながら、銅系の合金は熱伝導度が鉄
系の合金の約10倍と極めて良いためリードフレー
ム用合金に利用される。従つて、銅系の合金は今
後如何にして熱膨張係数を下げるかが最大の課題
となつている。 〔本発明が解決しようとする問題点〕 本発明は叙上の観点にたつてなされたものであ
つて、その目的とするところは、高い張力を有す
ると共に、電気伝導度、熱伝導度及び強度等にも
優れ、LSIは勿論のことVLSI、更にはワイヤ電
極材等としても使用することができる高張力の銅
合金を提供しようとするものである。 〔問題点を解決するための手段〕 而して、上記の目的は、重量百分率(以下同
じ)で0.3〜8%のCrと、0.05〜1%の希土類元
素と、残部が不可避の不純物とCuとから成る銅
合金を、磁界内で溶体化処理することによつて達
成される。 〔作用〕 上記の如くして銅合金を製造すれば、従来の銅
合金に比べ極めて高い張力が得られると共に、電
気伝導度及び熱伝導度も高く保つことができるの
で、LSIは勿論のことVLSI用の銅合金としても
使用することができ、更にはワイヤ電極材として
も最適であり、広い分野で利用できることができ
るものである。 本発明にかかる高張力銅合金の製造方法として
は、重量百分率(以下同じ)で0.3〜8%のCrと、
0.05〜1%のY、Sm、Pr、ミツシユメモル等の
内から選んだ少なくとも一種類以上の希土類元素
と、残部をCuとし、上記原料を大気中で高周波
溶解後金型に鋳造してインゴツトとする。このイ
ンゴツトを約450℃〜650℃の炉中で35時間〜45時
間溶体化処理する際に、上記溶体化処理中に6時
間〜8時間炉中の温度を500℃〜600℃に保つと共
に、1000Oe〜3000Oeの磁束を6時間〜8時間か
てけ処理し、熱間又は冷間で圧延する。 〔実施例〕 (1) 磁界を加えずに圧延処理を施したリードフレ
ーム合金 Cr:0.1〜1% Y:0.05〜0.3% 残:Cu 上記原料を大気中で高周波溶解後金型に鋳造
したインゴツトとし、上記インゴツトを550℃
の炉中で35時間溶体化処理を施した。 (2) 本発明に係るリードフレーム合金 Cr:0.1〜1% Y:0.05〜0.3% 残:Cu 上記原料を大気中で高周波溶解後金型に鋳造
してインゴツトとし、上記インゴツトを550℃
の炉中で35時間の溶体化処理を施す際に、上記
溶体化処理中6時間、炉中心に1500Oeの磁界
を加えると共に、溶体化処理温度を500℃に保
持した。
[Industrial Application Field] The present invention relates to a copper alloy used for ICs, LSIs, wire electrodes, etc., and particularly to a method for producing a copper alloy having high tensile strength. [Prior Art] In recent years, semiconductor technology has made remarkable progress, and in the very near future, 256K memory VLSIs will be manufactured in large quantities. Kovar was first used as an alloy for ICs, LSIs, etc., followed by 42 alloy, 52 alloy, etc. With the development of ultra-integrated circuits such as LSIs, alloys with particularly excellent electrical conductivity, thermal conductivity, and strength were required, and today iron alloys and copper alloys are almost the same. used in proportions. The relationship between electrical conductivity, which is the main element of this type of alloy, and strength is such that, in general, increasing electrical conductivity causes a decrease in strength. The subject of research is how to keep it low. Various methods have been studied to maintain high electrical conductivity and strength, among which a combination treatment with spinodal decomposition and other mechanisms is considered to be the best method. For example, Cu-Ni alloys were conventionally considered to be completely solid solution alloys, but spinodal decomposition occurs when special elements are added or when treatments are performed. In general, copper alloys have the property that the Young's modulus decreases when other elements are added, but Cu-Ni
In a spinodal alloy, by adding the above elements, the Young's modulus can be improved and the decrease in electrical conductivity can be suppressed to a low level. Therefore, when a Cu-Ni alloy is subjected to a combination of spinodal decomposition treatment and strengthening mechanism, for example, the strength
60Kg/mm 2 and electrical conductivity of 80%, which is an extremely excellent value for an alloy for LSI at the time of its inception, and is also a value suitable for an alloy for VLSI. Furthermore, a requirement for this type of alloy is that it has a low coefficient of thermal expansion. In general, iron-based alloys have a small coefficient of thermal expansion, while copper-based alloys have a large coefficient of expansion. However, copper-based alloys are used as lead frame alloys because their thermal conductivity is approximately 10 times higher than that of iron-based alloys. Therefore, the biggest challenge in the future is how to lower the coefficient of thermal expansion of copper-based alloys. [Problems to be solved by the present invention] The present invention has been made based on the above-mentioned viewpoints, and its purpose is to have high tensile strength, as well as high electrical conductivity, thermal conductivity, and strength. The purpose of the present invention is to provide a high-strength copper alloy that can be used not only for LSI but also for VLSI and wire electrode materials. [Means for solving the problem] Therefore, the above purpose is to contain 0.3 to 8% Cr, 0.05 to 1% rare earth elements, and the balance unavoidable impurities and Cu. This is achieved by solution-treating a copper alloy consisting of in a magnetic field. [Function] If the copper alloy is manufactured in the manner described above, extremely high tensile strength can be obtained compared to conventional copper alloys, and the electrical conductivity and thermal conductivity can also be maintained high, so it can be used not only for LSI but also for VLSI. It can be used as a copper alloy for industrial use, and is also optimal as a wire electrode material, and can be used in a wide range of fields. The method for producing the high tensile strength copper alloy according to the present invention includes 0.3 to 8% Cr by weight percentage (the same applies hereinafter),
0.05 to 1% of at least one rare earth element selected from Y, Sm, Pr, Mitsushimemol, etc., and the balance being Cu, the above raw materials are melted at high frequency in the atmosphere and then cast into a mold to form an ingot. . When this ingot is solution-treated in a furnace at about 450°C to 650°C for 35 to 45 hours, the temperature in the furnace is maintained at 500°C to 600°C for 6 to 8 hours during the solution treatment, and A magnetic flux of 1000 Oe to 3000 Oe is applied for 6 to 8 hours, followed by hot or cold rolling. [Example] (1) Lead frame alloy rolled without applying a magnetic field Cr: 0.1 to 1% Y: 0.05 to 0.3% Remaining: Cu Ingots made by casting the above raw materials into a mold after high frequency melting in the atmosphere The above ingot was heated to 550℃.
Solution treatment was carried out in a furnace for 35 hours. (2) Lead frame alloy according to the present invention Cr: 0.1-1% Y: 0.05-0.3% Balance: Cu The above raw materials are melted at high frequency in the atmosphere and then cast into a mold to form an ingot.
When performing solution treatment for 35 hours in a furnace, a magnetic field of 1500 Oe was applied to the center of the furnace for 6 hours during the solution treatment, and the solution treatment temperature was maintained at 500°C.

〔発明の効果〕〔Effect of the invention〕

本発明の叙上の如く構成されるので、本発明に
よるときには、電気伝導度、熱伝導度及び強度等
を共に高く保つことができるので、LSIは勿論の
ことVLSIのリードフレーム用合金としても使用
でき、更にはワイヤ電極としても極めて優れた効
果を発揮することができるものである。
Since the present invention is constructed as described above, the present invention can maintain high electrical conductivity, thermal conductivity, strength, etc., and therefore can be used as an alloy for lead frames of not only LSI but also VLSI. Moreover, it can also exhibit extremely excellent effects as a wire electrode.

Claims (1)

【特許請求の範囲】 1 重量百分率(以下同じ)で0.3〜8%のCrと、
0.05〜1%の希土類元素と、残部が不可避の不純
物とCuとから成る銅合金を、磁界内で溶体化処
理することを特徴とする高張力銅合金の製造方
法。 2 上記溶体化処理中にかける磁界が1000Oe〜
3000Oeであるある特許請求の範囲第1項記載の
高張力銅合金の製造方法。 3 上記希土類元素がYである特許請求の範囲第
1項又は第2項記載の高張力銅合金の製造方法。 4 上記希土類元素がSmである特許請求の範囲
第1項又は第2項記載の高張力銅合金の製造方
法。 5 上記希土類元素がPrである特許請求の範囲
第1項又は第2項記載の高張力銅合金の製造方
法。 6 上記希土類元素がミツシユメタルである特許
請求の範囲第1項又は第2項記載の高張力銅合金
の製造方法。
[Claims] 1. Cr of 0.3 to 8% by weight percentage (the same applies hereinafter);
1. A method for producing a high-strength copper alloy, which comprises solution-treating a copper alloy consisting of 0.05 to 1% rare earth elements and the remainder being unavoidable impurities and Cu in a magnetic field. 2 The magnetic field applied during the above solution treatment is 1000 Oe ~
3000 Oe. A method for producing a high tensile strength copper alloy according to claim 1. 3. The method for producing a high tensile strength copper alloy according to claim 1 or 2, wherein the rare earth element is Y. 4. The method for producing a high tensile strength copper alloy according to claim 1 or 2, wherein the rare earth element is Sm. 5. The method for producing a high tensile strength copper alloy according to claim 1 or 2, wherein the rare earth element is Pr. 6. The method for producing a high tensile strength copper alloy according to claim 1 or 2, wherein the rare earth element is Mitsushi metal.
JP24699584A 1984-11-24 1984-11-24 Manufacture of high tensile copper alloy Granted JPS61127852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24699584A JPS61127852A (en) 1984-11-24 1984-11-24 Manufacture of high tensile copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24699584A JPS61127852A (en) 1984-11-24 1984-11-24 Manufacture of high tensile copper alloy

Publications (2)

Publication Number Publication Date
JPS61127852A JPS61127852A (en) 1986-06-16
JPH0526859B2 true JPH0526859B2 (en) 1993-04-19

Family

ID=17156805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24699584A Granted JPS61127852A (en) 1984-11-24 1984-11-24 Manufacture of high tensile copper alloy

Country Status (1)

Country Link
JP (1) JPS61127852A (en)

Also Published As

Publication number Publication date
JPS61127852A (en) 1986-06-16

Similar Documents

Publication Publication Date Title
US4466939A (en) Process of producing copper-alloy and copper alloy plate used for making electrical or electronic parts
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JPS6160846A (en) Lead material of copper alloy for semiconductor device
JPS5893860A (en) Manufacture of high strength copper alloy with high electric conductivity
JPH1180862A (en) Copper-iron alloy material for lead frame, excellent in heat resistance
JPH0718355A (en) Copper alloy for electronic appliance and its production
JPH0526859B2 (en)
JPH0526860B2 (en)
JPS63149356A (en) Soft magnetic alloy for reed chip, manufacture thereof and reed switch
JPS6142772B2 (en)
JPH09176808A (en) Production of precipitation hardening copper alloy
JPH03140444A (en) Manufacture of beryllium copper alloy member
JPS62250136A (en) Copper alloy terminal and connector
JP3407527B2 (en) Copper alloy materials for electronic equipment
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JPS5939492B2 (en) High strength copper alloy for conductive use with softening resistance
JP2673967B2 (en) Cu alloy lead frame material for high strength semiconductor devices
JPS63312936A (en) Copper alloy material for semiconductor lead frame and its production
JPS63161134A (en) Copper alloy for electrical parts
JPS6315337B2 (en)
US3107998A (en) Copper-zirconium-arsenic alloys
JPS5839901B2 (en) Copper alloy for lead frame
JPS58147140A (en) Lead wire of semiconductor device
KR920006826B1 (en) Cupper alloy & its making process
GB2158095A (en) Copper alloys for integrated circuit leads