JPH0526853A - Method for measuring main constituent concentration of neutral salt electrolytic bath for descaling stainless steel band - Google Patents

Method for measuring main constituent concentration of neutral salt electrolytic bath for descaling stainless steel band

Info

Publication number
JPH0526853A
JPH0526853A JP3201155A JP20115591A JPH0526853A JP H0526853 A JPH0526853 A JP H0526853A JP 3201155 A JP3201155 A JP 3201155A JP 20115591 A JP20115591 A JP 20115591A JP H0526853 A JPH0526853 A JP H0526853A
Authority
JP
Japan
Prior art keywords
concentration
neutral salt
electrolytic bath
bath
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3201155A
Other languages
Japanese (ja)
Other versions
JP2977646B2 (en
Inventor
Kazuo Sakurai
一生 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP3201155A priority Critical patent/JP2977646B2/en
Publication of JPH0526853A publication Critical patent/JPH0526853A/en
Application granted granted Critical
Publication of JP2977646B2 publication Critical patent/JP2977646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To enable sulfuric acid soda concentration and hexavalent chrome concentration which are especially important in management of composition of a neutral salt (sulfuric acid soda) electrolytic bath for descaling stainless steel to be measured readily, easily, frequently, and continuously. CONSTITUTION:An ultrasonic propagation speed and a liquid-solution conductivity are measured for a sample bath for measurement which is filtered through a neutral salt electrolytic bath and this relationship is subjected to temperature compensation for obtaining each constituent concentration by a set of measurement values consisting of a measurement value of the ultrasonic propagation speed and the liquid-solution conductivity which are created for each of a plurality of temperatures around a temperature at the time of measurement of a liquid solution of sulfuric acid soda and a hexavalent chrome where various kinds of concentration curve indicating a relationship between the calibration curve indicating a relationship between the sulfuric acid soda concentration and a the liquid-solution composition indicated by a hexavalent chrome concentration, thus enabling a work load required for controlling concentration of the electrolytic bath, bath conditions to be adjusted easily and descaling capacity to be stable, and quality to be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として硫酸ソーダ水
溶液から成る中性塩電解浴がステンレス鋼帯の脱スケー
ルに使用されるに従って変量,生成する硫酸ソーダ及び
6価クロムの各成分濃度の測定を容易且つ迅速に実施出
来るステンレス鋼帯の脱スケール用中性塩電解浴の主要
成分濃度測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is to measure the concentration of each component of sodium sulfate and hexavalent chromium, which are varied and formed as a neutral salt electrolytic bath consisting mainly of an aqueous solution of sodium sulfate is used for descaling of stainless steel strip. The present invention relates to a method for measuring the concentration of main components in a neutral salt electrolytic bath for descaling a stainless steel strip, which can be easily and quickly carried out.

【0002】[0002]

【従来の技術】ステンレス鋼帯はその製造過程における
焼鈍処理などによりその表面にスケール(金属酸化物)
を生成し、このスケールが残存したままの状態では種々
不都合があるため、脱スケール処理がなされる。この脱
スケール処理方法として、硫酸ソーダ水溶液中での電解
処理(以下、単に中性塩電解処理と言うことがある)、
或は苛性ソーダと硝酸ソーダとの混合溶融塩中での浸漬
処理等の前処理を行った後に硝弗酸に浸漬したり硝酸水
溶液中で電解処理を行ったり、更にこれらを組み合わせ
ることが広く行われている。中でも、中性塩電解処理は
特公昭38−12162号公報に開示されて以来、近年
広く採用されるに至った処理方法である。この中性塩電
解処理は、前述の如く電解浴として硫酸ソーダ水溶液が
広く使用されており、その浴管理は一般的にはpH,液
温度,液量の他に、電解中に変化する硫酸ソーダの濃
度,ステンレス鋼から溶解して生成する6価クロム(ク
ロム酸イオンで言うこともある)の濃度,スラッジの濃
度等の浴組成についての組成管理が行われている。
2. Description of the Related Art A stainless steel strip has a scale (metal oxide) on its surface due to annealing treatment in its manufacturing process.
Is generated, and there are various inconveniences in the state where the scale remains, so the descaling process is performed. As this descaling treatment method, electrolytic treatment in an aqueous solution of sodium sulfate (hereinafter sometimes simply referred to as neutral salt electrolytic treatment),
Alternatively, pretreatment such as immersion treatment in a mixed molten salt of caustic soda and sodium nitrate, followed by immersion in nitric hydrofluoric acid or electrolytic treatment in nitric acid aqueous solution, and further combining these are widely performed. ing. Among them, the neutral salt electrolysis treatment is a treatment method which has been widely adopted in recent years since it was disclosed in Japanese Patent Publication No. 38-12162. As described above, in this neutral salt electrolysis treatment, an aqueous solution of sodium sulfate is widely used as an electrolytic bath, and the bath is generally controlled in addition to pH, liquid temperature, and liquid volume, as well as sodium sulfate that changes during electrolysis. Composition control of the bath composition such as the concentration of Cr, the concentration of hexavalent chromium (also sometimes referred to as chromate ion) produced by dissolution from stainless steel, and the concentration of sludge.

【0003】このうち、pHについては水素イオン電極
を用いる方法により、液温度については熱電対を用いる
方法により、液量については超音波液面高さ計等を用い
て得られる浴面高さに浴槽の横断面積を乗じる方法によ
り、それぞれ連続的ないし自動的な機器分析が可能であ
り、一般的に実施されている。しかしながら、硫酸ソー
ダの濃度,クロム酸イオンの濃度及びスラッジの濃度に
ついては、代表的に示す次のような方法が一般に用いら
れてきた。すなわち、硫酸ソーダの濃度についてはJI
SK0102,41.2項に記載の硫酸根を硫酸バリウムと
して沈殿させてその質量を計る方法、クロム酸イオンの
濃度についてはJISK0102,65.2項に示されてい
るジフェニルカルバジド吸光光度法又は原子吸光法、或
は一般的に酸化性物質を含む水溶液中の酸化性物質濃度
の測定に適用される還元剤(硫酸第一鉄アンモニウム,
チオ硫酸ソーダ等)と適当な指示薬とを使用した還元滴
定方法、スラッジ濃度についてはJISK0102,1
4.1項に示されている懸濁物質の濾過・乾燥法である。
これらの分析作業は、いずれも人手と熟練を要し、連続
的或は自動的な機器分析が殆ど不可能であることは勿
論、頻度を高めて測定することも困難であった。
Of these, the pH is determined by a method using a hydrogen ion electrode, the liquid temperature is determined by a thermocouple method, and the liquid amount is determined by a bath surface height obtained by using an ultrasonic liquid level gauge or the like. By the method of multiplying the cross-sectional area of the bath, continuous or automatic instrumental analysis is possible, respectively, and is generally performed. However, for the concentration of sodium sulfate, the concentration of chromate ions, and the concentration of sludge, the following representative methods have been generally used. That is, regarding the concentration of sodium sulfate, JI
SK0102, a method of precipitating sulfate as barium sulfate as described in 41.2 and measuring the mass thereof, and regarding the concentration of chromate ion, diphenylcarbazide absorptiometry or atomic absorption method described in JISK0102, 65.2, or Is a reducing agent (ferrous ammonium sulfate, which is commonly applied to measure the concentration of oxidizing substances in aqueous solutions containing oxidizing substances,
For reduction titration method and sludge concentration using sodium thiosulfate etc.) and an appropriate indicator, see JISK0102, 1
This is the filtration and drying method for suspended substances shown in Section 4.1.
All of these analysis operations require manpower and skill, and continuous or automatic instrumental analysis is almost impossible, and it is also difficult to measure them frequently.

【0004】一方、中性塩電解浴の能力維持のために
は、硫酸ソーダ濃度の管理のみでは不充分であり、同時
に老化物として蓄積していく6価クロム濃度の管理が必
要なことは広く知られている。このような背景から、信
頼性が高くしかも硫酸ソーダ濃度と6価クロム濃度との
容易且つ迅速な同時的測定が可能で、加えて予測出来な
い浴の異常を管理するためにも多頻度ないし連続実施の
可能な測定方法が強く望まれていた。
On the other hand, in order to maintain the capacity of the neutral salt electrolytic bath, it is not sufficient to control the concentration of sodium sulfate alone, and at the same time, it is widely necessary to control the concentration of hexavalent chromium that accumulates as an aging product. Are known. From this background, it is possible to measure the concentration of sodium sulfate and hexavalent chromium easily and quickly at the same time with high reliability. In addition, it is frequently or continuously used to manage unexpected bath abnormalities. There has been a strong demand for a measurement method that can be carried out.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前記従来技
術の欠点を解消し、ステンレス鋼の脱スケール用の中性
塩電解浴の組成管理において、中性塩電解処理能力に特
に影響を与える主要成分である中性塩濃度及びクロム酸
イオン濃度の同時的な測定を容易且つ迅速に行うことが
出来て、多頻度な測定、更には自動的な機器分析による
連続的な測定をも可能とさせることを課題とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned drawbacks of the prior art and particularly affects the neutral salt electrolytic treatment capacity in the composition control of the neutral salt electrolytic bath for descaling of stainless steel. Simultaneous and quick simultaneous measurement of neutral salt concentration and chromate ion concentration, which are main components, enables frequent measurement and continuous measurement by automatic instrumental analysis. The task is to let them do it.

【0006】[0006]

【課題を解決するための手段】本発明者は種々検討した
結果、超音波伝搬速度計測と溶液導電率計測とを組み合
わせることによって前記課題を解決出来ることを究明し
て本発明を完成した。その経過を以下に説明する。一般
に、超音波伝搬速度計測によって溶質濃度を測定する超
音波濃度計は、アルカリ,水分,塩,糖,酸,樹脂,有
機溶媒,アルコール等を対象に広く使用されている。超
音波伝搬速度計測による濃度測定の原理は、超音波の液
体中での伝搬速度が速くしかもこの伝搬速度(以下、単
に音速と言うことがある)が液体の種類(溶媒及び溶質
の種類),溶質濃度及び液温度によって大きく変化する
性質を利用したものである。すなわち液体の溶質濃度,
液温度及び音速の関係は一般的には複雑な場合が多く、
液体の種類によって種々変化するが、液体の種類が一定
の場合これらの間には一定の関係が成立するため、対象
液体の温度及び音速を計測することにより前記一定の関
係から溶質濃度を知ることが出来るのである。
As a result of various investigations, the present inventor has completed the present invention by discovering that the above problems can be solved by combining ultrasonic wave propagation velocity measurement and solution conductivity measurement. The process will be described below. Generally, an ultrasonic densitometer for measuring solute concentration by ultrasonic wave propagation velocity measurement is widely used for alkali, water, salt, sugar, acid, resin, organic solvent, alcohol and the like. The principle of concentration measurement by ultrasonic wave propagation velocity measurement is that the propagation velocity of ultrasonic waves in a liquid is high, and this propagation velocity (hereinafter sometimes simply referred to as the speed of sound) is the type of liquid (type of solvent and solute), This is a property that changes greatly depending on the solute concentration and the liquid temperature. Ie the solute concentration of the liquid,
The relationship between the liquid temperature and the speed of sound is often complicated,
Although it changes variously depending on the type of liquid, if the type of liquid is constant, a constant relationship is established between them, so it is possible to know the solute concentration from the constant relationship by measuring the temperature and sound velocity of the target liquid. Can be done.

【0007】従って、溶質が例えば硫酸ソーダだけの水
溶液の濃度測定が超音波濃度計によって可能であること
は公知である。しかし、ステンレス鋼の脱スケール用の
中性塩電解浴の場合は、硫酸ソーダ,クロム酸イオン及
びスラッジが多量に含まれているため、これらが互いに
妨害し合って信頼の出来る濃度の測定は困難であるとさ
れてきた。そこで硫酸ソーダと6価クロムとが共に溶存
した水溶液について超音波伝搬速度と溶液導電率とを共
に計測した処、水溶液の組成(硫酸ソーダ濃度及び6価
クロム濃度)が一定な水溶液についてはその液温度が一
定であれば常にほぼ一定な各値が得られ、そして水溶液
の組成が異なればそれに応じて異なる計測値の得られる
ことが判った。これは水溶液中における硫酸ソーダと6
価クロムとは互いに共存相手の超音波伝搬速度及び溶液
導電率の各計測を妨害するとしても、両物質の混溶した
水溶液を一つの系と見たときの超音波伝搬速度と溶液導
電率は常に一定のそれぞれ一つの計測値を持つことを示
している。そして又、硫酸ソーダ濃度及び6価クロム濃
度で示される水溶液組成と超音波伝搬速度及び溶液導電
率から成る計測値組との対応について、水溶液組成及び
計測値組がそれぞれにおいて2つの異なる事項から成る
ことから、それぞれが一つの事項から成る場合に比べて
二次元的に位置が定められることによって互いに誤差を
補い合い、それによってよりシャープに対応することも
判った。
Therefore, it is known that the concentration of an aqueous solution containing only sodium sulfate as a solute can be measured by an ultrasonic densitometer. However, in the case of a neutral salt electrolytic bath for descaling of stainless steel, it contains a large amount of sodium sulfate, chromate ions and sludge, and these interfere with each other, making reliable measurement of concentration difficult. Has been said to be. Therefore, when ultrasonic wave propagation velocity and solution conductivity were both measured for an aqueous solution in which both sodium sulfate and hexavalent chromium were dissolved, the solution was prepared for the aqueous solution having a constant composition (sodium sulfate concentration and hexavalent chromium concentration). It was found that when the temperature was constant, almost constant values were obtained, and when the composition of the aqueous solution was different, different measurement values were obtained accordingly. This is sodium sulfate 6 in an aqueous solution
Valence chromium interferes with the measurement of ultrasonic wave propagation velocity and solution conductivity of coexisting partners, but the ultrasonic wave propagation velocity and solution conductivity of an aqueous solution containing both substances are considered to be one system. It indicates that each measurement value is always constant. Further, regarding the correspondence between the aqueous solution composition represented by the sodium sulfate concentration and the hexavalent chromium concentration and the measurement value set including the ultrasonic propagation velocity and the solution conductivity, the aqueous solution composition and the measurement value set each include two different items. From this, it was also found that the two-dimensional positioning of each compensates for the errors and the sharper correspondence is achieved as compared with the case where each consists of one item.

【0008】前記のような硫酸ソーダ及び6価クロムの
水溶液と実ラインの中性塩電解浴とは、スラッジの含有
の有無の点で相違する。この相違が、両者を前記と同様
に超音波伝搬速度及び溶液導電率を同時的に計測して両
者の計測値組が同じ場合に、前記水溶液においてその計
測値組に対応する水溶液組成と中性塩電解浴の実際の組
成との比較にどのような影響をもたらすかを調べた処、
中性塩電解浴の含有スラッジ濃度が1グラム/リットル
以上になると実際の浴組成よりも水溶液において計測値
組に対応する水溶液組成の方が低くなるが、電解浴を濾
過してスラッジを除去した試料を用いれば両者は同じに
なることが判った。従って、予め硫酸ソーダ及び6価ク
ロムの各種濃度既知の水溶液について超音波伝搬速度及
び溶液導電率を複数の温度下で計測して水溶液組成と計
測値組との関係を示す基準データとして前記各計測値を
温度と共に記録しておくことにより、濃度測定対象浴の
濾過液についてその超音波伝搬速度及び溶液導電率を計
測して前記基準データから硫酸ソーダ及び6価クロムの
各濃度を知ることが出来るのである。
The above-mentioned aqueous solutions of sodium sulfate and hexavalent chromium are different from the neutral salt electrolytic bath of the actual line in the presence or absence of sludge. This difference is that the ultrasonic wave propagation velocity and the solution conductivity are simultaneously measured in the same manner as described above, and when the measurement value sets of both are the same, the aqueous solution composition and neutrality corresponding to the measurement value set in the aqueous solution are the same. After examining how it affects the comparison with the actual composition of the salt electrolysis bath,
When the concentration of sludge contained in the neutral salt electrolytic bath is 1 g / l or more, the aqueous solution composition corresponding to the set of measured values in the aqueous solution is lower than the actual bath composition, but the electrolytic bath was filtered to remove the sludge. It was found that both were the same if a sample was used. Therefore, the ultrasonic propagation velocity and the solution conductivity of an aqueous solution of sodium sulphate and hexavalent chromium of known various concentrations are measured at a plurality of temperatures in advance, and each of the above-mentioned measurements is used as reference data indicating the relationship between the aqueous solution composition and the set of measured values. By recording the value together with the temperature, it is possible to measure the ultrasonic propagation velocity and the solution conductivity of the filtrate of the bath whose concentration is to be measured, and to know the respective concentrations of sodium sulfate and hexavalent chromium from the reference data. Of.

【0009】本発明はこのような知見に基づいて完成さ
れたのである。すなわち本発明は、主として硫酸ソーダ
水溶液から成る中性塩電解浴をステンレス鋼帯の脱スケ
ールに使用するに従って変量,生成する硫酸ソーダ及び
6価クロムの各成分濃度を測定するに際して、前記中性
塩電解浴を濾過した測定用試料浴について超音波伝搬速
度と溶液導電率とを計測し、予め硫酸ソーダと6価クロ
ムとの各種濃度既知の水溶液について前記計測時の温度
周辺の複数温度毎に作成された超音波伝搬速度及び溶液
導電率の測定値から成る計測値組と硫酸ソーダ濃度及び
6価クロム濃度で示される水溶液組成との関係を示す二
次元検量線により、前記関係を温度補正して各成分濃度
を知ることを特徴とする中性塩電解浴の主要成分濃度測
定方法に関するものである。
The present invention has been completed based on these findings. That is, according to the present invention, when a neutral salt electrolytic bath mainly composed of an aqueous solution of sodium sulfate is used for descaling of a stainless steel strip, the amount of the sodium sulfate and hexavalent chromium, which are produced in variable amounts, are measured. The ultrasonic wave propagation velocity and the solution conductivity are measured for a measurement sample bath obtained by filtering the electrolytic bath, and an aqueous solution of sodium sulfate and hexavalent chromium having various known concentrations is prepared in advance for each of a plurality of temperatures around the temperature at the time of the measurement. The two-dimensional calibration curve showing the relationship between the measured value set consisting of the measured ultrasonic wave propagation velocity and the measured value of the solution conductivity and the aqueous solution composition represented by the sodium sulfate concentration and the hexavalent chromium concentration is used to correct the above temperature by the temperature correction. The present invention relates to a method for measuring the concentration of main components in a neutral salt electrolytic bath, which is characterized by knowing the concentration of each component.

【0010】以下、本発明に係るステンレス鋼帯の脱ス
ケール用中性塩電解浴の主要成分濃度測定方法を図面に
よって詳細に説明する。図1及び図2は硫酸ソーダ濃度
及び6価クロム濃度で示される水溶液組成と超音波伝搬
速度及び溶液導電率から成る計測値組との関係を温度の
異なる2つの場合について示す図、図3及び図4は本発
明方法によって得られる硫酸ソーダ濃度及び6価クロム
濃度それぞれの温度補正による誤差程度を示す図、図5
は本発明方法の実施の1態様をそれに適する装置例と共
に示す図である。
The method for measuring the concentration of main components of the neutral salt electrolytic bath for descaling stainless steel strip according to the present invention will be described in detail below with reference to the drawings. 1 and 2 are diagrams showing the relationship between the aqueous solution composition represented by the sodium sulfate concentration and the hexavalent chromium concentration and the measurement value set consisting of the ultrasonic wave propagation velocity and the solution conductivity for two different temperatures, FIG. FIG. 4 is a diagram showing the degree of error due to temperature correction of each of the sodium sulfate concentration and the hexavalent chromium concentration obtained by the method of the present invention, and FIG.
FIG. 1 is a diagram showing an embodiment of the method of the present invention together with an apparatus suitable for the embodiment.

【0011】本発明において使用する二次元検量線を作
成するための基準データは次のように実験して得る。先
ず、硫酸ソーダ及び6価クロムの各種濃度の水溶液を調
製する。本発明が測定対象とする液は、実ラインにおけ
る中性塩電解浴である。従って硫酸ソーダ及び6価クロ
ムの各濃度も実ラインでの濃度変動範囲を考慮して、通
常、硫酸ソーダについては0〜200グラム/リット
ル、6価クロムについては0〜50グラム/リットルと
なるように各水溶液を調製するのが好ましい。これは中
性塩電解浴の濃度管理範囲としては、硫酸ソーダの濃度
が50〜200グラム/リットルで且つ6価クロム濃度
が50グラム/リットル以下が好ましいからである。そ
の理由は、硫酸ソーダについてはその水への溶解度が低
いために、200グラム/リットルを超える濃度に浴を
調製をしようとした場合に未溶解の硫酸ソーダが浴内に
残留して種々の弊害を生じること、そして50グラム/
リットル未満では電解処理効果が期待出来ないためであ
る。また6価クロムについてはその濃度が50グラム/
リットルを超えると、電解処理効果が期待出来ないため
と、硫酸ソーダの溶解度が更に低下するためとである。
The reference data for preparing the two-dimensional calibration curve used in the present invention is obtained by the following experiment. First, aqueous solutions having various concentrations of sodium sulfate and hexavalent chromium are prepared. The liquid to be measured by the present invention is a neutral salt electrolytic bath in a real line. Therefore, the respective concentrations of sodium sulfate and hexavalent chromium are usually 0 to 200 g / liter for sodium sulfate and 0 to 50 g / liter for hexavalent chromium in consideration of the concentration variation range on the actual line. It is preferable to prepare each aqueous solution. This is because the concentration control range of the neutral salt electrolytic bath is preferably such that the concentration of sodium sulfate is 50 to 200 g / liter and the hexavalent chromium concentration is 50 g / liter or less. The reason for this is that sodium sulfate has a low solubility in water, and when a bath is prepared to a concentration of more than 200 g / liter, undissolved sodium sulfate remains in the bath and various adverse effects are caused. Producing 50 g /
This is because if it is less than 1 liter, the electrolytic treatment effect cannot be expected. The concentration of hexavalent chromium is 50 grams /
This is because if the amount exceeds liters, the electrolytic treatment effect cannot be expected and the solubility of sodium sulfate further decreases.

【0012】次に計測温度を定める。超音波伝搬速度及
び導電率は、共に液温度の影響を大きく受ける。そのた
め、前記水溶液の計測温度を濃度測定対象浴の計測温度
と同じに定めるのが好ましい。しかしながら、実ライン
における濃度測定対象浴の計測温度は、測定場所が電解
槽に近いか,電解槽からいくつかの流路を経て導かれる
離れた所にあるかによってその間に受ける温度変化に違
いがある上、浴温度自体が一定範囲内で変動又は計画的
に変えているため、必ずしも一定していない。そこで予
測される計測温度範囲(多くの場合電解槽中の温度範囲
に近い)内のどの温度での計測であっても内挿法又は外
挿法によって温度補正が出来るように、前記予測される
計測温度範囲の少なくとも両端部を含む複数の温度(こ
れらの温度は計測温度から言ってその周辺温度となる)
を基準データ作成のための水溶液の計測温度と定める。
例えば、中性塩電解浴の液温管理値を80±10℃とし
ている実ラインに適用する基準データの作成のための水
溶液計測温度として70℃と90℃とを定める。
Next, the measured temperature is determined. Both the ultrasonic wave propagation velocity and the conductivity are greatly affected by the liquid temperature. Therefore, it is preferable to set the measurement temperature of the aqueous solution to be the same as the measurement temperature of the concentration measurement target bath. However, the measured temperature of the concentration measurement target bath in the actual line is different depending on whether the measurement location is close to the electrolytic cell or at a remote location where it is guided from the electrolytic cell through some flow paths. In addition, the bath temperature itself is not always constant because it fluctuates within a certain range or changes intentionally. The temperature is predicted within the predicted temperature range (often close to the temperature range in the electrolytic cell) so that the temperature can be corrected by interpolation or extrapolation. A plurality of temperatures including at least both ends of the measured temperature range (these temperatures are the ambient temperature in terms of the measured temperature)
Is defined as the measured temperature of the aqueous solution for creating the reference data.
For example, 70 [deg.] C. and 90 [deg.] C. are set as the aqueous solution measurement temperatures for creating the reference data applied to the actual line where the liquid temperature control value of the neutral salt electrolytic bath is 80 ± 10 [deg.].

【0013】次に、前記調製した各種水溶液についてそ
の超音波伝搬速度と溶液導電率とを前記で定めた水溶液
の計測温度例えば70℃と90℃とで計測する。計測に
当っては、超音波伝搬速度,溶液導電率及び液温度それ
ぞれの計測用センサを備えた測定機器を使用するのが便
利である。このようにして得られた水溶液組成(硫酸ソ
ーダ濃度及び6価クロム濃度)とこれに対応する計測値
組(超音波伝搬速度及び溶液導電率)との基準データの
1例(水溶液組成範囲及び計測温度は何れも例示したも
の)を二次元検量線としてグラフに示したのが図1(計
測温度が70℃の場合)及び図2(同じく90℃の場
合)である。これらの図は、超音波伝搬速度を横軸、溶
液導電率を縦軸とする直角座標の中の或る計測値組を示
す位置に、それに対応する水溶液組成が判るように座標
内に目盛を付したものである。このような二次元検量線
における計測値組と水溶液組成との関係は、後に説明す
る多成分用濃度計の記憶演算装置に記憶させておくこと
が出来る。
Next, the ultrasonic wave propagation velocity and the solution conductivity of each of the prepared various aqueous solutions are measured at the measurement temperature of the aqueous solution defined above, for example, 70 ° C. and 90 ° C. For measurement, it is convenient to use a measuring instrument equipped with sensors for measuring ultrasonic wave propagation velocity, solution conductivity and solution temperature. One example of the reference data of the aqueous solution composition (sodium sulfate concentration and hexavalent chromium concentration) thus obtained and the corresponding measurement value set (ultrasonic wave propagation velocity and solution conductivity) (aqueous solution composition range and measurement) Two-dimensional calibration curves are shown in the graphs with the temperatures as examples) in FIG. 1 (when the measured temperature is 70 ° C.) and FIG. 2 (when the temperature is also 90 ° C.). These figures show scales in the coordinates so that the corresponding aqueous solution composition can be understood at the position indicating a certain set of measured values in the Cartesian coordinate system with the ultrasonic propagation velocity as the horizontal axis and the solution conductivity as the vertical axis. It is attached. The relationship between the set of measured values and the composition of the aqueous solution in such a two-dimensional calibration curve can be stored in the storage operation device of the multi-component concentration meter described later.

【0014】このようにして計測値組と水溶液組成との
関係が得られたら、次に濃度測定対象浴すなわち実ライ
ンの中性塩電解浴について超音波伝搬速度と溶液導電率
とを計測温度と共に計測する。この3項目についての計
測は、浴が急変しない限り必ずしも同時的に行う必要は
ないが、なるべく時間を空けないでほぼ同時的に計測す
るのが好ましい。前記したようにこれらの計測は浴を一
旦濾過してスラッジを除去した瀘液について行う。この
スラッジの除去は、測定機器或は多成分用濃度計のセン
サがスラッジによって汚染されないようにするためにも
必要であって、本発明方法でない方法でセンサを使用す
る場合にも行われていたことである。本発明方法におけ
る濾過の程度は、粒径1μm以上のスラッジを90%以
上除去することで充分であり、そのような性能の濾過装
置を使用するのが好ましい。
After the relationship between the set of measured values and the composition of the aqueous solution is obtained in this way, next, the ultrasonic wave propagation velocity and the solution conductivity are measured together with the measured temperature for the concentration measurement target bath, that is, the actual line neutral salt electrolytic bath. measure. The measurement of these three items does not necessarily have to be performed at the same time unless the bath suddenly changes, but it is preferable to perform the measurement at almost the same time with as little time as possible. As mentioned above, these measurements are performed on the filtrate from which the sludge has been removed by once filtering the bath. This removal of sludge is necessary to prevent the measuring device or the sensor of the multi-component densitometer from being contaminated by the sludge, and was also performed when the sensor was used in a method other than the method of the present invention. That is. As for the degree of filtration in the method of the present invention, it is sufficient to remove 90% or more of sludge having a particle size of 1 μm or more, and it is preferable to use a filtration device having such performance.

【0015】前記のような濾液について超音波伝搬速度
と溶液導電率とを計測したら、予め作成しておいた前記
基準データによる計測値組と水溶液組成との関係から濃
度測定対象浴の硫酸ソーダ濃度と6価クロム濃度とを知
る。その手法を具体的に説明する。二次元検量線を用い
る場合について図1及び図2を例にして説明すると、実
際の計測温度が丁度二次元検量線の温度例えば70℃に
一致するときは図1を用い、得られた計測値組の位置を
その横軸,縦軸の目盛によって座標上に見出し、その位
置が硫酸ソーダ濃度及び6価クロム濃度を示す目盛の如
何なる数値に当るかによってそれぞれの成分濃度を読み
取るのである。若し実際の計測温度と二次元検量線の温
度とが一致しないときは、2つの二次元検量線から一先
ず実際の計測値組と同じ計測値組に対応する各成分濃度
を読み取り、この読み取った2つの濃度と2つの二次元
検量線の温度及び実際の計測温度とから内挿法又は外挿
法によって実際の計測濃度に対応する各成分濃度を計算
する。このようにして得られた各成分濃度すなわち水溶
液組成と計測によって得られた計測値組とは、先に基準
データから得ておいた計測値組と水溶液組成との関係を
実際の計測温度における関係に温度補正した場合におけ
るものである。このようにして得られた各成分濃度がす
なわち測定目的とする成分濃度である。又、超音波伝搬
速度,溶液導電率及び液温度それぞれの計測用のセンサ
と、記憶演算装置とを備えた多成分用濃度計を使用する
ときは、これに前記二次元検量線の関係を記憶させてお
き、計測値をマニュアルで入力するか自動的に入力する
ようにして前記グラフの場合と同様な温度補正によって
各成分濃度を知るようにすることも出来る。
When the ultrasonic wave propagation velocity and the solution conductivity of the filtrate as described above are measured, the concentration of sodium sulfate in the concentration measurement target bath is determined from the relationship between the set of measurement values based on the reference data prepared in advance and the aqueous solution composition. And know the hexavalent chromium concentration. The method will be specifically described. The case of using the two-dimensional calibration curve will be described with reference to FIG. 1 and FIG. 2, for example. When the actual measured temperature is exactly the temperature of the two-dimensional calibration curve, for example, 70 ° C., the measured value obtained using FIG. 1 is used. The position of the set is found on the coordinates by the scales of the horizontal axis and the vertical axis, and the concentration of each component is read according to what numerical value the scale corresponds to the scale indicating the concentration of sodium sulfate and the concentration of hexavalent chromium. If the actual measured temperature and the temperature of the two-dimensional calibration curve do not match, each component concentration corresponding to the same measurement value set as the actual measurement value set is read from the two two-dimensional calibration curves and read. Each component concentration corresponding to the actual measured concentration is calculated by interpolation or extrapolation from the two concentrations, the temperatures of the two two-dimensional calibration curves, and the actual measured temperature. The concentration of each component obtained in this way, that is, the composition of the aqueous solution and the measurement value set obtained by measurement, is the relationship between the measurement value set previously obtained from the reference data and the solution composition at the actual measurement temperature. This is the case when the temperature is corrected to. The concentration of each component thus obtained is the concentration of the component to be measured. When using a multi-component densitometer equipped with a sensor for measuring ultrasonic wave propagation velocity, solution conductivity and solution temperature, and a memory operation unit, store the relationship of the two-dimensional calibration curve. It is also possible to know the concentration of each component by the same temperature correction as in the case of the graph by inputting the measured value manually or automatically.

【0016】次に、前記のように温度補正をした場合の
誤差程度を実証的に説明する。図1及び図2の二次元検
量線の基準データを得たときに使用した硫酸ソーダ及び
6価クロムを混溶した各種組成の水溶液のうち、硫酸ソ
ーダ濃度が0グラム/リットル,100グラム/リット
ル,150グラム/リットル,200グラム/リットル
の4つの場合と、6価クロム濃度が0グラム/リット
ル,20グラム/リットル,50グラム/リットルの3
つの場合とを組み合わせた計12種の各水溶液につい
て、75℃,80℃,85℃の各計測温度における超音
波伝搬速度及び溶液導電率を計測して各水溶液1種につ
き3組の実際の計測値組を得た。そしてこれら12種の
水溶液の組成が未知であると仮定して本発明方法を適用
し、前記した手法と同様にして合計36組の濃度測定値
組を得た。これらの濃度測定値組を硫酸ソーダ濃度及び
6価クロム濃度のそれぞれについてその各実濃度に対す
る測定濃度の分布範囲つまり本発明方法における温度補
正による誤差程度を調べたのが図3(硫酸ソーダ濃度の
場合)及び図4(6価クロム濃度の場合)である。図3
及び図4から判るように、本発明方法は温度補正による
誤差が5%程度であり、充分信頼出来るものである。
Next, the degree of error when the temperature is corrected as described above will be empirically described. Among the aqueous solutions of various compositions in which sodium sulfate and hexavalent chromium were mixed and mixed, which were used when the reference data of the two-dimensional calibration curves of FIGS. 1 and 2 were obtained, the sodium sulfate concentration was 0 g / l, 100 g / l , 150 g / l, 200 g / l, and 3 cases of hexavalent chromium concentration of 0 g / l, 20 g / l, 50 g / l
For each of the 12 aqueous solutions in total, the ultrasonic propagation velocity and the solution conductivity at 75 ° C, 80 ° C, and 85 ° C were measured, and three sets of actual measurements were made for each aqueous solution. Got a price set. Then, the method of the present invention was applied on the assumption that the compositions of these 12 kinds of aqueous solutions were unknown, and a total of 36 sets of concentration measurement values were obtained in the same manner as the above-mentioned method. The concentration range of these concentrations was measured for each of the sodium sulfate concentration and the hexavalent chromium concentration, that is, the distribution range of the measured concentration with respect to each actual concentration, that is, the error degree due to the temperature correction in the method of the present invention was examined. 4) (in the case of hexavalent chromium concentration). Figure 3
As can be seen from FIG. 4 and FIG. 4, the error of the method of the present invention due to the temperature correction is about 5%, which is sufficiently reliable.

【0017】本発明方法は、実ラインにおける中性塩電
解浴の硫酸ソーダ濃度及び6価クロム濃度の測定を容易
且つ迅速に、そして多頻度に更には機器分析を利用して
連続的ないし自動的に実施することを可能とさせる。こ
のような実施態様をそれに適する装置例と共に図5によ
り説明する。この実施態様は、超音波伝搬速度,溶液導
電率及び液温度の計測を、中性塩電解浴の一部が電解槽
から取り出されて送液され再び元の電解槽に戻る循環経
路の途中から更に分岐した流路により濾過装置を経て導
かれる計測槽内で、電解槽に発生する超音波の影響を避
けた状態で行うものである。実施態様においては濃度計
として超音波伝搬速度、溶液導電率及び液温度それぞれ
の計測用のセンサと、記憶演算装置と、表示装置とを備
えた多成分用濃度計が使用されている。
The method of the present invention can easily and rapidly measure the sodium sulfate concentration and the hexavalent chromium concentration of the neutral salt electrolytic bath in a real line, and frequently or continuously using instrumental analysis. Can be carried out. Such an embodiment will be described with reference to FIG. 5 together with an example of a device suitable for it. In this embodiment, ultrasonic wave propagation velocity, solution conductivity and solution temperature are measured from the middle of the circulation path in which a part of the neutral salt electrolytic bath is taken out from the electrolytic cell and sent to the original electrolytic cell. Further, the measurement is carried out in the measuring tank guided by the branched flow path through the filtering device while avoiding the influence of ultrasonic waves generated in the electrolytic tank. In the embodiment, a multi-component densitometer equipped with a sensor for measuring ultrasonic wave propagation velocity, solution conductivity and solution temperature, a memory operation device, and a display device is used as the densitometer.

【0018】ステンレス鋼帯Sは入側送板ロール1a及
び入側浸漬ロール1cを経て電解浴1bの貯液された電
解槽1に連続的に送板され、ステンレス鋼帯Sと対向す
るように電解槽1a内に配置された電解用電極1dの作
用により電解処理を受けた後に出側浸漬ロール1c及び
出側送板ロール1aを経て連続的に送板される。一方、
電解液1bは電解槽1と循環槽1eとの間で配管1gと
循環ポンプ1fとを経て強制循環されているが、この強
制循環経路の途中で電解液1bはこの循環経路から分岐
された配管2d,濾過装置2e,定量ポンプ2fを経て
サンプル採取槽2に送液されると共に、配管2gにて循
環槽1eに戻されている。ここでサンプル採取槽2を設
ける理由は、濃度計が超音波伝搬速度を測定するもので
ある関係から、電解槽1内で生じる水素ガス或は酸素ガ
ス等の気泡が破壊する時に生じる超音波による外乱を避
けるためである。このサンプル採取槽2内にサンプリン
グされた電解液1b内に、濃度計の温度センサ2a,超
音波伝搬速度センサ2b及び導電率センサ2c部を浸漬
する。これらのセンサ2a,2b及び2cの各出力は二
次元検量線の関係を予め記憶させた記憶演算装置2hに
て処理され、電解液1bの液温,硫酸ソーダ濃度及び6
価クロム濃度が連続的に表示装置2iに表示される。
The stainless steel strip S is continuously fed to the electrolytic bath 1 in which the electrolytic bath 1b is stored by way of the inlet side feed roll 1a and the inlet side dipping roll 1c so as to face the stainless steel strip S. After being electrolyzed by the action of the electrode 1d for electrolysis arranged in the electrolysis tank 1a, it is continuously fed through the exit-side dipping roll 1c and the exit-side feed roll 1a. on the other hand,
The electrolytic solution 1b is forcibly circulated between the electrolytic cell 1 and the circulation tank 1e through the pipe 1g and the circulation pump 1f, and the electrolytic solution 1b is branched from the circulation path in the middle of the forced circulation path. The liquid is sent to the sample collecting tank 2 through 2d, the filtering device 2e, and the metering pump 2f, and is returned to the circulation tank 1e through the pipe 2g. The reason why the sample collecting tank 2 is provided here is that ultrasonic waves generated when bubbles of hydrogen gas or oxygen gas generated in the electrolytic tank 1 are destroyed because the concentration meter measures ultrasonic wave propagation speed. This is to avoid disturbance. The temperature sensor 2a, the ultrasonic wave propagation velocity sensor 2b, and the conductivity sensor 2c of the densitometer are immersed in the electrolytic solution 1b sampled in the sample collecting tank 2. The outputs of these sensors 2a, 2b, and 2c are processed by a memory computing unit 2h that stores the relationship of the two-dimensional calibration curve in advance, and the temperature of the electrolyte 1b, the concentration of sodium sulfate, and 6
The valent chromium concentration is continuously displayed on the display device 2i.

【0019】サンプル採取槽2に供給される電解液1b
は、1μm以上の粒径を有するスラッジを90%以上除
去する能力を有した濾過装置2eにより、含有されるス
ラッジが除去される。このような装置を使用して本発明
方法を実施すれば、中性塩電解液の硫酸ソーダ濃度及び
6価クロム濃度の同時的な且つ迅速な測定を頻度多く更
には自動的ないし連続的に実施することは極めて容易で
ある。
The electrolytic solution 1b supplied to the sample collecting tank 2
The contained sludge is removed by the filtration device 2e having the ability to remove 90% or more of sludge having a particle size of 1 μm or more. When the method of the present invention is carried out using such an apparatus, simultaneous and rapid measurement of the sodium sulfate concentration and the hexavalent chromium concentration of the neutral salt electrolyte is frequently and automatically or continuously carried out. It is extremely easy to do.

【0020】[0020]

【実施例】【Example】

実施例1 建浴直後の及び建浴後実ラインで使用しながら6ヶ月経
過後の同一中性塩電解浴を対象に、本発明方法と従来方
法(比較例)とによって得られた硫酸ソーダ濃度及び6
価クロム濃度とを表1に示す。なお、測定値は10回の
繰返し測定の平均値であり、標準偏差を括弧内に示す。
Example 1 Sodium sulfate concentrations obtained by the method of the present invention and the conventional method (comparative example) were measured for the same neutral salt electrolytic bath immediately after the bath was built and after 6 months had elapsed while being used in the actual line after bath building, and 6
Table 1 shows the valent chromium concentration. The measured value is the average value of 10 repeated measurements, and the standard deviation is shown in parentheses.

【0021】 使用した多成分用濃度計は多成分超音波濃度計MOD
EL−50(スズキ株式会社製)を改造したものであっ
た。表1から、本発明方法により得られた硫酸ソーダ濃
度及び6価クロム濃度は従来方法のものと殆んど一致し
ており、バラツキも同じである。しかも、測定は極めて
迅速且つ容易に行うことが出来るのである。
[0021] The multi-component densitometer used is a multi-component ultrasonic densitometer MOD.
It was a modification of EL-50 (manufactured by Suzuki Corporation). From Table 1, the concentration of sodium sulfate and the concentration of hexavalent chromium obtained by the method of the present invention are almost the same as those of the conventional method, and the variations are also the same. Moreover, the measurement can be performed extremely quickly and easily.

【0022】[0022]

【発明の効果】以上に詳述したように本発明に係るステ
ンレス鋼帯の脱スケール用中性塩電解浴の主要成分濃度
測定方法は、以下に列挙するような効果を有しており、
その工業的価値の非常に大きなものである。 中性塩電解浴中の硫酸ソーダ及び6価クロムの濃度
管理を迅速且つ容易に、また多頻度ないし連続的にも実
施出来るようになったため、これらの分析に要する作業
負荷が低減された。 迅速に浴情報が得られるようになったことから浴条
件の調整が容易となり、その結果中性塩電解処理作用が
安定し、ステンレス鋼帯の脱スケールの能力安定化によ
る品質の向上が図れた。 中性塩電解処理作用が安定した結果、後続の硝弗酸
の使用量が低減し、製造コストの低減及び環境汚染物質
の排出量の低減が可能となった。
As described in detail above, the method for measuring the concentration of main components of the neutral salt electrolytic bath for descaling a stainless steel strip according to the present invention has the effects listed below.
Its industrial value is enormous. Since the concentration control of sodium sulfate and hexavalent chromium in the neutral salt electrolytic bath can be performed quickly and easily and frequently or continuously, the workload required for these analyzes is reduced. Since bath information can be quickly obtained, bath conditions can be adjusted easily, and as a result, the neutral salt electrolytic treatment action is stabilized and the quality is improved by stabilizing the descaling ability of the stainless steel strip. . As a result of stabilizing the neutral salt electrolysis treatment, the amount of subsequent use of nitric hydrofluoric acid was reduced, and it became possible to reduce the manufacturing cost and the emission of environmental pollutants.

【図面の簡単な説明】[Brief description of drawings]

【図1及び図2】硫酸ソーダ濃度及び6価クロム濃度で
示される水溶液組成と超音波伝搬速度及び溶液導電率か
ら成る計測値組との関係を温度の異なる2つの場合につ
いて示す図である。
FIG. 1 and FIG. 2 are diagrams showing a relationship between an aqueous solution composition represented by a sodium sulfate concentration and a hexavalent chromium concentration and a set of measurement values composed of an ultrasonic wave propagation velocity and a solution conductivity for two different temperatures.

【図3及び図4】本発明方法によって得られる硫酸ソー
ダ濃度及び6価クロム濃度それぞれの温度補正による誤
差程度を示す図である。
FIG. 3 and FIG. 4 are diagrams showing the error levels due to temperature correction of the sodium sulfate concentration and the hexavalent chromium concentration obtained by the method of the present invention.

【図5】本発明方法の実施の1態様をそれに適する装置
例と共に示す図である。
FIG. 5 is a diagram showing an embodiment of the method of the present invention together with an apparatus suitable for the embodiment.

【符号の説明】[Explanation of symbols]

1 電解槽 1a 送板ロール 1b 電解浴 1c 浸漬ロール 1d 電解用電極 1e 循環槽 1f 循環ポンプ 1g 配管 2 サンプル採取槽 2a 温度センサ 2b 超音波伝搬速度センサ 2c 溶液導電率センサ 2d 試料採取用配管 2e 濾過装置 2f 試料採取用ポンプ 2g 配管 2h 記憶演算装置 2i 表示装置 S ステンレス鋼帯 1 electrolysis tank 1a Sending plate roll 1b Electrolysis bath 1c dipping roll 1d Electrode for electrolysis 1e Circulation tank 1f circulation pump 1g piping 2 sample collection tank 2a Temperature sensor 2b Ultrasonic wave velocity sensor 2c Solution conductivity sensor 2d sampling pipe 2e Filtration device 2f Sampling pump 2g piping 2h Memory operation device 2i display device S stainless steel strip

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 主として硫酸ソーダ水溶液から成る中性
塩電解浴をステンレス鋼帯の脱スケールに使用するに従
って変量,生成する硫酸ソーダ及び6価クロムの各成分
濃度を測定するに際して、前記中性塩電解浴を濾過した
測定用試料浴について超音波伝搬速度と溶液導電率とを
計測し、予め硫酸ソーダと6価クロムとの各種濃度既知
の水溶液について前記計測時の温度周辺の複数温度毎に
作成された超音波伝搬速度及び溶液導電率の測定値から
成る計測値組と硫酸ソーダ濃度及び6価クロム濃度で示
される水溶液組成との関係を示す二次元検量線により、
前記関係を温度補正して各成分濃度を知ることを特徴と
するステンレス鋼帯の脱スケール用中性塩電解浴の主要
成分濃度測定方法。
1. A neutral salt electrolytic bath mainly consisting of an aqueous solution of sodium sulfate is used for descaling of a stainless steel strip, and when the concentration of each component of sodium sulfate and hexavalent chromium produced is varied, the neutral salt is used. The ultrasonic wave propagation velocity and the solution conductivity are measured for a measurement sample bath obtained by filtering the electrolytic bath, and an aqueous solution of sodium sulfate and hexavalent chromium having various known concentrations is prepared in advance for each of a plurality of temperatures around the temperature at the time of the measurement. By the two-dimensional calibration curve showing the relationship between the measured value set consisting of the measured ultrasonic wave propagation velocity and the measured value of the solution conductivity and the aqueous solution composition represented by the sodium sulfate concentration and the hexavalent chromium concentration,
A method for measuring the concentration of main components of a neutral salt electrolytic bath for descaling a stainless steel strip, which comprises temperature-correcting the above relationship to know the concentration of each component.
【請求項2】 超音波伝搬速度,溶液導電率及び液温度
それぞれの計測用のセンサと、請求項1に記載の二次元
検量線の関係を記憶していて計測値から濃度を算出する
記憶演算装置とを備えた多成分用濃度計を使用する請求
項1に記載のステンレス鋼帯の脱スケール用中性塩電解
浴の主要成分濃度測定方法。
2. A storage operation for storing a relationship between a sensor for measuring an ultrasonic wave propagation velocity, a solution conductivity and a solution temperature and the two-dimensional calibration curve according to claim 1 and calculating a concentration from the measured value. A method for measuring the concentration of main components of a neutral salt electrolytic bath for descaling a stainless steel strip according to claim 1, wherein a multicomponent concentration meter provided with a device is used.
【請求項3】 超音波伝搬速度,溶液導電率及び液温度
の計測を、中性塩電解浴の一部が電解槽から取り出され
て送液され再び元の電解槽に戻る循環経路の途中から更
に分岐した流路により濾過装置を経て導かれる計測槽内
で、電解槽に発生する超音波の影響を避けた状態で行う
請求項1又は2に記載のステンレス鋼帯の脱スケール用
中性塩電解浴の主要成分濃度測定方法。
3. The ultrasonic wave propagation velocity, the solution conductivity and the solution temperature are measured from the middle of the circulation path in which a part of the neutral salt electrolytic bath is taken out of the electrolytic cell and sent to the original electrolytic cell. The neutral salt for descaling of a stainless steel strip according to claim 1 or 2, which is carried out in a measuring tank guided by a branching flow path through a filtration device while avoiding the influence of ultrasonic waves generated in the electrolytic tank. Measuring method of concentration of main components of electrolytic bath.
【請求項4】 粒径1μm以上のスラッジを90%以上
除去する能力を有する濾過装置により中性塩電解浴を濾
過してスラッジをほぼ除去した試料浴を測定対象とする
請求項1から3までのいずれか1項に記載のステンレス
鋼帯の脱スケール用中性塩電解浴の主要成分濃度測定方
法。
4. The sample bath from which the sludge is substantially removed by filtering the neutral salt electrolytic bath with a filter having an ability to remove sludge having a particle size of 1 μm or more by 90% or more is to be measured. 13. A method for measuring the concentration of main components of a neutral salt electrolytic bath for descaling a stainless steel strip according to any one of 1.
JP3201155A 1991-07-17 1991-07-17 Method for measuring the concentration of main components in neutral salt electrolytic bath for descaling stainless steel strip Expired - Fee Related JP2977646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3201155A JP2977646B2 (en) 1991-07-17 1991-07-17 Method for measuring the concentration of main components in neutral salt electrolytic bath for descaling stainless steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3201155A JP2977646B2 (en) 1991-07-17 1991-07-17 Method for measuring the concentration of main components in neutral salt electrolytic bath for descaling stainless steel strip

Publications (2)

Publication Number Publication Date
JPH0526853A true JPH0526853A (en) 1993-02-02
JP2977646B2 JP2977646B2 (en) 1999-11-15

Family

ID=16436297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3201155A Expired - Fee Related JP2977646B2 (en) 1991-07-17 1991-07-17 Method for measuring the concentration of main components in neutral salt electrolytic bath for descaling stainless steel strip

Country Status (1)

Country Link
JP (1) JP2977646B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997035187A1 (en) * 1996-03-19 1997-09-25 Daikin Industries, Ltd. Method of determining component concentrations in three-component mixture and method of continuous production of hydrogen fluoride using the method
JP2002237478A (en) * 2001-02-08 2002-08-23 Hitachi Chem Co Ltd Method of polishing cmp
WO2002057720A3 (en) * 2001-01-19 2002-10-31 Honeywell Int Inc Method for regulating water concentration in a process stream
KR100484543B1 (en) * 2000-12-22 2005-04-20 주식회사 포스코 A method for confirming removal of neutralized salt in chrome oxide preparation
US7183117B2 (en) 2001-12-20 2007-02-27 Fujitsu Limited Apparatus for measuring characteristics of chemical solution, chemical solution supply apparatus, and method for measuring concentration of chemical solution
JP2011095225A (en) * 2009-11-02 2011-05-12 Olympus Corp Apparatus and method for processing image, and microscope system
JP2015152568A (en) * 2014-02-19 2015-08-24 株式会社鷺宮製作所 Liquid medicine density meter
CN112147188A (en) * 2020-09-24 2020-12-29 青岛科技大学 Method for rapidly determining ash content in vulcanization accelerator MBTS
CN114391097A (en) * 2019-08-02 2022-04-22 恩德莱斯和豪斯集团服务股份公司 Mobile system for calibrating, verifying and/or adjusting a sensor and method for calibrating, verifying and/or adjusting a sensor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997035187A1 (en) * 1996-03-19 1997-09-25 Daikin Industries, Ltd. Method of determining component concentrations in three-component mixture and method of continuous production of hydrogen fluoride using the method
EP0990898A1 (en) * 1996-03-19 2000-04-05 Daikin Industries, Limited Method of determining component concentrations in three-component mixture and method of continuous production of hydrogen fluoride using the method
US6350426B1 (en) * 1996-03-19 2002-02-26 Daikin Industries, Ltd. Method of determining component concentrations in three-component mixture and method of continuous production of hydrogen fluoride using the method
EP0990898A4 (en) * 1996-03-19 2002-05-08 Daikin Ind Ltd Method of determining component concentrations in three-component mixture and method of continuous production of hydrogen fluoride using the method
KR100492104B1 (en) * 1996-03-19 2005-06-10 다이낑 고오교 가부시키가이샤 Method of continuous production of hydrogen fluoride
KR100484543B1 (en) * 2000-12-22 2005-04-20 주식회사 포스코 A method for confirming removal of neutralized salt in chrome oxide preparation
US6858198B2 (en) * 2001-01-19 2005-02-22 Honeywell International Method for regulating water concentration in a process stream
WO2002057720A3 (en) * 2001-01-19 2002-10-31 Honeywell Int Inc Method for regulating water concentration in a process stream
JP2002237478A (en) * 2001-02-08 2002-08-23 Hitachi Chem Co Ltd Method of polishing cmp
US7183117B2 (en) 2001-12-20 2007-02-27 Fujitsu Limited Apparatus for measuring characteristics of chemical solution, chemical solution supply apparatus, and method for measuring concentration of chemical solution
JP2011095225A (en) * 2009-11-02 2011-05-12 Olympus Corp Apparatus and method for processing image, and microscope system
JP2015152568A (en) * 2014-02-19 2015-08-24 株式会社鷺宮製作所 Liquid medicine density meter
CN114391097A (en) * 2019-08-02 2022-04-22 恩德莱斯和豪斯集团服务股份公司 Mobile system for calibrating, verifying and/or adjusting a sensor and method for calibrating, verifying and/or adjusting a sensor
CN114391097B (en) * 2019-08-02 2024-06-11 恩德莱斯和豪斯集团服务股份公司 Mobile system for calibrating, verifying and/or adjusting a sensor and method for calibrating, verifying and/or adjusting a sensor
CN112147188A (en) * 2020-09-24 2020-12-29 青岛科技大学 Method for rapidly determining ash content in vulcanization accelerator MBTS

Also Published As

Publication number Publication date
JP2977646B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
US6537822B1 (en) Method for analyzing free fluorine in solutions containing hydrofluoric acid solution, and apparatus for practicing the method
JP2977646B2 (en) Method for measuring the concentration of main components in neutral salt electrolytic bath for descaling stainless steel strip
US5175502A (en) Method and apparatus for determining acid concentration
US3681207A (en) Metal coating process
US5286358A (en) Method of analyzing the complexing power of a pickling liquor
JP2002531700A (en) Apparatus and method for controlling the pickling process of steel
Pecsok et al. Determination of Molybdenum by Ion Exchange and Polarography
CN107091840A (en) The analysis method of sodium gluconate in a kind of titanium alloy activating solution
JPH05263279A (en) Controlling method for bath of nitric acid and hydrofluoric acid for descaling stainless steel strip and continuously descaling equipment
JP3401387B2 (en) Solution composition measurement system
US5065417A (en) Method and apparatus for monitoring the partial density of metal and acid in pickling baths
KR100549865B1 (en) A Method of Measuring Acid Concentration in Acid Pickling Process
DE102004023734B3 (en) Method for determining the concentration of a metal salt and an acid of a pickling acid containing the metal salt used for quality control of pickling baths comprises measuring the sound velocity, electrical conductivity and temperature
McKaveney Spectrophotometric method for hydrofluoric acid in stainless steel pickling baths
JPH05195248A (en) Method for acid chemical conversion of metal material
US4504367A (en) Monitoring of chemical species in solution and apparatus therefor
Pitschner A Proposed Method for Accurately Evaluating Results of Corrosion Tests of Ferrous Metals
Ye et al. Kinetic potentiometry simultaneous determination of iron (III) and zirconium (IV) by using the Kalman filter
JPS6310233B2 (en)
Christian et al. Electrogeneration of gold (III) in halide media
Hahn et al. Potentiometric titration of milligram quantities of uranium in the presence of iron
JPS6339853B2 (en)
JPH0518926A (en) Method for measuring concentration of component of iron chloride bath for acid cleaning of alloy steel strip
CN117871624A (en) Nonlinear model detection method of electrochemical sensor, computer system and computer storage medium
JPS6235059B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees