JP2002237478A - Method of polishing cmp - Google Patents

Method of polishing cmp

Info

Publication number
JP2002237478A
JP2002237478A JP2001031674A JP2001031674A JP2002237478A JP 2002237478 A JP2002237478 A JP 2002237478A JP 2001031674 A JP2001031674 A JP 2001031674A JP 2001031674 A JP2001031674 A JP 2001031674A JP 2002237478 A JP2002237478 A JP 2002237478A
Authority
JP
Japan
Prior art keywords
polishing
concentration
liquid
cmp
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001031674A
Other languages
Japanese (ja)
Inventor
Keizo Hirai
圭三 平井
Koji Haga
浩二 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2001031674A priority Critical patent/JP2002237478A/en
Publication of JP2002237478A publication Critical patent/JP2002237478A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of polishing a CMP which controls the quantity of the components of abrasive liquid for the CMP rapidly and accurately and prevents the generation of a defect in the CMP to raise the yield of the manufacture of the CMP. SOLUTION: In a method of polishing the CMP, the concentration of each component of the abrasive liquid for the CMP is found by measuring the conductivity, ultrasonic propagation speed and temperature of the abrasive liquid containing at least two components in addition to water, and the relative ratio of the quantity or concentration of each component to the quantities or concentrations of the other components is controlled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子製造工
程のうち、層間絶縁膜、シャロー・トレンチ分離用絶縁
膜、導電性金属膜等の平坦化などに好適なCMP(Chem
ical MechanicalPolishing)研磨方法に関する。
The present invention relates to a CMP (Chemical Chemistry) suitable for flattening an interlayer insulating film, an insulating film for isolating a shallow trench, a conductive metal film and the like in a semiconductor device manufacturing process.
ical Mechanical Polishing).

【0002】[0002]

【従来の技術】超大規模集積回路の分野において実装密
度を高めるために種々の微細加工技術が研究、開発され
ており、既に、デザインルールは、サブハーフミクロン
のオーダーになっている。 このような厳しい微細化要
求を満足するための技術の一つにCMP研磨技術があ
る。この技術は、半導体装置の製造工程において、露光
を施す層を完全に平坦化することによって微細化を可能
とし、歩留まりを向上させることができるため、例え
ば、層間絶縁膜、シャロー・トレンチ分離用絶縁膜、導
電性金属プラグ及び導電性金属配線等を平坦化する際に
必須となる技術である。
2. Description of the Related Art In the field of ultra-large-scale integrated circuits, various microfabrication techniques have been studied and developed in order to increase the packaging density, and the design rules have already been on the order of sub-half micron. One of the techniques for satisfying such strict requirements for miniaturization is a CMP polishing technique. This technology enables miniaturization by completely flattening a layer to be exposed in a semiconductor device manufacturing process, thereby improving the yield. For example, an interlayer insulating film, an insulating film for shallow trench isolation, This technology is essential when planarizing a film, a conductive metal plug, a conductive metal wiring, and the like.

【0003】現在のところ、半導体装置の絶縁膜には、
プラズマ−CVD(Chemical VaporDeposition、化学的
蒸着法)、低圧−CVD及びオゾンプラズマーCVD等
の方法で形成される酸化珪素膜が多用されている。これ
ら絶縁膜を平坦化するための研磨粒子としては、シリカ
やセリアが用いられており、研磨粒子を水に分散させた
スラリーに、粘度、PH又は研磨速度を調整する各種薬
剤を混合した一液タイプのもの、あるいは、研磨粒子分
散スラリーと薬剤水溶液から成る二液タイプのものが、
上記絶縁膜の研磨液として用いられている。
At present, insulating films of semiconductor devices include:
Silicon oxide films formed by a method such as plasma-CVD (Chemical Vapor Deposition), low-pressure-CVD, and ozone plasma-CVD are frequently used. Silica or ceria is used as abrasive particles for flattening these insulating films, and a slurry in which abrasive particles are dispersed in water is mixed with various agents for adjusting viscosity, PH or polishing rate. Type, or a two-part type consisting of an abrasive particle dispersion slurry and a drug aqueous solution,
It is used as a polishing liquid for the insulating film.

【0004】一方、半導体用配線形成法には、アルミニ
ウム又はその合金膜を形成する方法が従来から用いられ
ているが、近年、あらかじめ溝を形成してその上に銅又
はその合金膜等を埋め込み、余分な金属膜をCMPで除
去して平坦化するという方法が採用されつつある。この
ような金属膜の研磨には、研磨粒子は必ずしも必要では
なく、腐食作用により研磨することも可能であるが、P
Hや研磨速度を制御する少なくとも1種類の薬剤を含有
する液に、金属膜を酸化させる酸化剤を混合した液がC
MP研磨液として用いられている。
On the other hand, a method of forming an aluminum or alloy film thereof has conventionally been used as a method of forming a wiring for a semiconductor. However, recently, a groove is formed in advance and a copper or alloy film thereof is buried thereon. A method of removing an excess metal film by CMP and flattening it is being adopted. Polishing particles are not necessarily required for polishing such a metal film, and polishing can be performed by a corrosive action.
H or a solution containing at least one kind of agent for controlling the polishing rate, and a solution obtained by mixing an oxidizing agent for oxidizing the metal film with C
Used as MP polishing liquid.

【0005】絶縁膜又は導電性金属膜いずれのCMP研
磨液においても、研磨液含有成分とその濃度は研磨液メ
ーカから開示されない場合が多いため、特に一液タイプ
の場合、CMP条件以外に研磨特性を制御する手段はな
く、研磨液起因の不良を未然に防止できる有効な手段も
なかった。また、二液タイプの研磨液においても、秤量
精度又は流量制御精度の不具合から生じる二液混合比の
変動によって、研磨特性を十分には制御できなかった。
さらに、特に研磨粒子は沈降し易いため、その濃度は、
研磨液を入れるタンクでの攪拌条件やCMP装置に送液
する条件が変わることによっても容易に変動してしまう
恐れがある。
In many cases, the components and concentrations of the polishing liquid are not disclosed by the polishing liquid maker in the CMP polishing liquid of either the insulating film or the conductive metal film. And there was no effective means for preventing defects caused by the polishing liquid beforehand. Further, even with the two-liquid type polishing liquid, the polishing characteristics could not be sufficiently controlled due to the fluctuation of the two-liquid mixing ratio caused by the problem of the weighing accuracy or the flow rate control accuracy.
Furthermore, since the abrasive particles are particularly likely to settle, the concentration is
There is a possibility that the conditions may be easily changed by changing the stirring conditions in the tank in which the polishing liquid is put or the conditions for sending the polishing liquid to the CMP apparatus.

【0006】上記の問題に対し、従来は、研磨粒子以外
の成分を水も含めて全て加熱除去して重量を測定すると
いう方法により、研磨粒子の濃度を知るという方法しか
なかった。しかし、この方法は測定に時間がかかるた
め、研磨液に起因して実際に現場で起きている問題をそ
の場で解決することは不可能である。しかもこの方法で
は、研磨粒子以外の成分の濃度については正確に求める
ことが困難である。
[0006] In order to solve the above problem, conventionally, there has been only a method of measuring the weight of the abrasive particles by heating and removing all components other than the abrasive particles, including water, to determine the concentration of the abrasive particles. However, this method requires a long time for measurement, and it is impossible to solve a problem actually occurring on the spot due to the polishing liquid on the spot. Moreover, with this method, it is difficult to accurately determine the concentration of components other than the abrasive particles.

【0007】[0007]

【発明が解決しようとする課題】請求項1及び2記載の
発明は、CMP用研磨液の成分濃度をその場ですぐに知
ることができるようにすることによって、成分量を迅速
かつ正確に制御し、不良の発生を未然に防止して歩留ま
りを向上できるCMP研磨方法を提供するものである。
SUMMARY OF THE INVENTION According to the first and second aspects of the present invention, the component concentration of a polishing slurry for CMP can be immediately known on the spot, so that the component amount can be controlled quickly and accurately. It is another object of the present invention to provide a CMP polishing method capable of preventing defects from occurring and improving the yield.

【0008】[0008]

【課題を解決するための手段】本発明は、水以外に少な
くとも2成分を含有するCMP用研磨液の導電率、超音
波伝播速度及び温度を測定することによって各成分濃度
を求め、各成分の量又は濃度相対比を制御することを特
徴とするCMP研磨方法に関する。
According to the present invention, the concentration of each component is determined by measuring the conductivity, ultrasonic wave propagation speed and temperature of a polishing slurry for CMP containing at least two components other than water. The present invention relates to a CMP polishing method characterized by controlling an amount or a concentration relative ratio.

【0009】また、本発明は、あらかじめ校正曲線を得
ることによって、温度、導電率及び超音波伝播速度の測
定値から各成分濃度を表示できるようにした前記のCM
P研磨方法に関する。
The present invention also relates to the above-mentioned CM in which the concentration of each component can be displayed from measured values of temperature, conductivity and ultrasonic wave propagation velocity by obtaining a calibration curve in advance.
It relates to a P polishing method.

【0010】[0010]

【発明の実施の形態】本発明におけるCMP研磨液に
は、溶媒又は分散液が主として水である以外に特に制限
はなく、シリカ、アルミナ、セリア等の研磨粒子、低分
子又は高分子の分散剤、有機又は無機の酸、それらの
塩、酸化剤、防食剤等が必要に応じて2成分以上含まれ
ている。本発明は、これらの成分の種類に関わらず、C
MP研磨液の導電率、超音波伝播速度及び温度を精度良
く測定することにより、CMP研磨液中の水以外の各成
分の濃度を正確に求めることを骨子とするものである。
BEST MODE FOR CARRYING OUT THE INVENTION The CMP polishing liquid of the present invention is not particularly limited, except that the solvent or the dispersion liquid is mainly water. The polishing particles such as silica, alumina, and ceria, and the low-molecular or high-molecular dispersant are used. , An organic or inorganic acid, a salt thereof, an oxidizing agent, an anticorrosive, and the like, if necessary, in two or more components. The present invention relates to the use of C
The main point is to accurately determine the concentration of each component other than water in the CMP polishing liquid by accurately measuring the conductivity, the ultrasonic wave propagation velocity, and the temperature of the MP polishing liquid.

【0011】本発明では、CMP研磨液中の各成分濃度
をIn Lineで即時にフローの乱れを抑えて正確に測定で
きる点から、導電率測定装置、超音波伝播速度測定装置
及び温度測定装置の検出器が比較的小型であることが好
ましく、また、CMP研磨液が流れる配管内に配管の断
面を考えたとき、その中心領域(配管を半径Rmmの円と
した場合、半径2mmの同心円)に検出器が配置されてい
ないことが好ましい。また、導電率測定装置の検出器と
してコイルを用いる場合、コイルを配管外に設置する等
検出器を配管が以外に設置することがより好ましい。な
お、導電率測定装置又は超音波伝播速度測定装置が熱電
対又はサーミスタ等から成る温度測定機能を有していれ
ば、新たに温度測定装置を設置する必要はない。
According to the present invention, the concentration of each component in the CMP polishing solution can be measured accurately and in-line immediately by suppressing the disturbance of the flow. It is preferable that the detector is relatively small. Also, when considering the cross section of the pipe in the pipe through which the CMP polishing liquid flows, the center area thereof (when the pipe is a circle having a radius of R mm, a concentric circle having a radius of 2 mm) Preferably, no detector is located. Further, when a coil is used as a detector of the conductivity measuring device, it is more preferable to install the detector outside the pipe, such as installing the coil outside the pipe. If the conductivity measuring device or the ultrasonic propagation velocity measuring device has a temperature measuring function including a thermocouple, a thermistor, or the like, it is not necessary to newly install a temperature measuring device.

【0012】CMP研磨液の導電率及び超音波伝播速度
は、液の構成成分が同じ場合、成分濃度と温度によって
変わり、一般的には温度が高くなるほど、導電率及び超
音波伝播速度は高く及び速くなる傾向にある。このた
め、濃度を求めるためには、温度測定もあわせて行う必
要がある。なお、これらの装置には、導電率、超音波伝
播速度及び温度測定値を濃度に変換表示できるソフトプ
ログラム機能を付与することが好ましい。
The conductivity and ultrasonic wave propagation speed of the CMP polishing liquid vary depending on the component concentration and the temperature when the constituents of the solution are the same. In general, the higher the temperature, the higher the conductivity and the ultrasonic wave propagation speed. Tends to be faster. For this reason, in order to determine the concentration, it is necessary to also measure the temperature. It is preferable that these devices are provided with a software program function capable of converting and displaying the measured values of the conductivity, the ultrasonic wave propagation velocity and the temperature into the concentration.

【0013】本発明において、導電率測定装置又は超音
波伝播速度測定装置自体に特に制限はなく、市販のもの
でよいが、導電率測定装置は、例えば交流電流による電
磁誘導を応用した方式で、低導電率での測定感度の高い
ものが好ましい。また、超音波伝播速度測定装置は、例
えば超音波素子及び反射板より成る方式で、やはり測定
感度の高いものが好ましい。
In the present invention, the conductivity measuring device or the ultrasonic wave propagation speed measuring device itself is not particularly limited, and may be a commercially available device. The conductivity measuring device is, for example, a system to which electromagnetic induction by alternating current is applied. Those having low conductivity and high measurement sensitivity are preferred. Further, the ultrasonic wave propagation velocity measuring device is preferably a system including, for example, an ultrasonic element and a reflecting plate, which also has high measurement sensitivity.

【0014】CMP研磨液中の成分濃度の変動は、液温
が一定の場合、導電率及び超音波伝播速度値の変動によ
って検知できるが、CMP研磨液の温度及び各成分濃度
を種々変更して異なる研磨液を調整し、それらの導電率
及び超音波伝播速度を測定しておき、あらかじめ校正曲
線(検量線)を得て濃度に速やかに換算できるようにし
ておくことが好ましい。異なる研磨液それぞれについて
のデータをROM等にあらかじめインストールしておく
ことにより、CMP研磨液を変更した場合でも、ROM
等を交換すればよいだけとなり、効率上さらに好まし
い。
The fluctuation of the component concentration in the CMP polishing liquid can be detected by the fluctuation of the conductivity and the ultrasonic wave propagation velocity value when the liquid temperature is constant, but by changing the temperature of the CMP polishing liquid and the concentration of each component variously. It is preferable to prepare different polishing liquids, measure their electric conductivity and ultrasonic wave propagation speed, and obtain a calibration curve (calibration curve) in advance so that the concentration can be quickly converted to a concentration. Even if the CMP polishing liquid is changed by installing the data for each of the different polishing liquids in a ROM or the like in advance, the ROM
Etc. need only be exchanged, which is more preferable in terms of efficiency.

【0015】以下、本発明を図1及び図2を用いて説明
する。図1は、本発明における装置構成の一例であり、
図2は、本発明における装置構成の他の一例である。こ
こで、CMP研磨液が一液又は二液で、研磨部に研磨液
を供給する前にあらかじめ二液を容器内で混合する場合
を図1に、研磨部に研磨液を供給する直前に二液を混合
する場合を図2として示す。
The present invention will be described below with reference to FIGS. FIG. 1 is an example of an apparatus configuration in the present invention,
FIG. 2 shows another example of the device configuration in the present invention. Here, FIG. 1 shows a case where the CMP polishing liquid is one liquid or two liquids, and the two liquids are mixed in a container in advance before supplying the polishing liquid to the polishing section. FIG. 2 shows a case where the liquids are mixed.

【0016】図1では、温度測定機能付き導電率測定装
置101及び超音波伝播速度測定装置102の温度測定
及び導電率測定用検出器103及び超音波伝播速度測定
用検出器104を研磨液の循環配管105に設置してい
るが、研磨液の研磨部への供給配管106に設置しても
よい。また、図2では、導電率測定装置201及び温度
測定機能付き超音波伝播速度測定装置202の導電率測
定用検出器203及び温度測定及び超音波伝播速度測定
用検出器204を研磨液の流れに対して直列に設置して
いるが、バイパスを取り付けて並列に設置してもよい。
さらに、濃度を測定すべき、すなわち研磨特性に影響を
与える主構成成分が二液それぞれで2成分以上ある場合
には、図2で、2液混合前の配管2本すなわち、二液の
うち一液の供給配管205及び二液のうちもう一方の液
の供給配管206それぞれに温度測定機能付き導電率測
定装置及び超音波伝播速度測定装置等を設置することが
好ましい。
In FIG. 1, the detector 103 for measuring the temperature and the conductivity 103 and the detector 104 for measuring the ultrasonic propagation velocity of the conductivity measuring apparatus 101 having a temperature measuring function and the ultrasonic wave propagation velocity measuring apparatus 102 are used to circulate the polishing liquid. Although it is installed in the pipe 105, it may be installed in the supply pipe 106 for supplying the polishing liquid to the polishing section. In FIG. 2, the conductivity measuring detector 201 and the conductivity measuring detector 203 and the temperature measuring and ultrasonic wave propagation velocity measuring detector 204 of the ultrasonic wave velocity measuring apparatus 202 having a temperature measuring function are connected to the flow of the polishing liquid. Although they are installed in series, they may be installed in parallel by attaching a bypass.
Further, when the concentration is to be measured, that is, when two or more main components affect the polishing characteristics in each of the two liquids, two pipes before mixing the two liquids, that is, one of the two liquids are used in FIG. It is preferable to install a conductivity measuring device with a temperature measuring function, an ultrasonic wave propagation speed measuring device, and the like in each of the liquid supply pipe 205 and the other liquid supply pipe 206 of the two liquids.

【0017】なお、CMP研磨液中の主構成成分の濃度
が変化した場合に種々の研磨特性は変化するが、最も端
的には、研磨速度が変化する。よって、正確な主構成成
分の濃度制御がリアルタイムでできない場合、精密な研
磨が困難となる。
Although various polishing characteristics change when the concentration of the main component in the CMP polishing liquid changes, the polishing rate changes most simply. Therefore, when accurate concentration control of the main component cannot be performed in real time, precise polishing becomes difficult.

【0018】[0018]

【実施例】次に、実施例により本発明を説明する。な
お、以下の例では、図1及び図2に示した装置によって
成分濃度をIn Lineで測定しながら、酸化シリコン膜
(p−TEOS膜)で被覆された8インチウエハをCM
P研磨装置EPO−111(荏原製作所(株)製)を用い
て研磨し、ラムダエースVLM8000(大日本スクリ
ーン製造(株)製)を用いて膜厚を測定して研磨速度を求
めた。
Next, the present invention will be described by way of examples. In the following example, an 8-inch wafer covered with a silicon oxide film (p-TEOS film) was used for CM while measuring the component concentration in line with the apparatus shown in FIGS.
Polishing was performed using a P polishing apparatus EPO-111 (manufactured by Ebara Corporation), and film thickness was measured using Lambda Ace VLM8000 (manufactured by Dainippon Screen Mfg. Co., Ltd.) to obtain a polishing rate.

【0019】実施例1 ジエタノールアミンによるカルボン酸の中和率が85
%、重量平均分子量(GPC測定し標準ポリスチレン換
算した値、以下同じ)4,000のポリアクリル酸アミ
ン塩を40重量%含むポリアクリル酸アミン塩水溶液を
合成し、これを十倍に希釈したものを酸化セリウムスラ
リ用添加液A(濃度4重量%)とする。
Example 1 The degree of neutralization of carboxylic acid with diethanolamine was 85.
%, A polyacrylic acid amine salt aqueous solution containing 40% by weight of a polyacrylic acid amine salt having a weight average molecular weight (measured by GPC and converted to standard polystyrene; the same applies hereinafter), which was diluted ten-fold. Is a cerium oxide slurry additive solution A (concentration: 4% by weight).

【0020】次に、炭酸セリウム水和物2kgを白金製容
器に入れ、850℃で2時間空気中で焼成することによ
り酸化セリウム粉末を得た。酸化セリウム粒子が水に対
して4重量%になるように脱イオン水を加え、カルボン
酸のアンモニアによる中和率が45%で重量平均分子量
が10,000のポリアクリル酸アンモニウム塩が酸化
セリウム粒子に対して0.8重量%となるように分散剤
として加え、横型湿式超微粒分散粉砕機を用いて140
0回転/分で120分間粉砕分散処理をした。得られた
液を酸化セリウムスラリB(濃度4重量%)とする。
Next, 2 kg of cerium carbonate hydrate was placed in a container made of platinum and calcined at 850 ° C. for 2 hours in air to obtain cerium oxide powder. Deionized water was added so that the cerium oxide particles became 4% by weight of water, and ammonium polyacrylate having a neutralization rate of carboxylic acid with ammonia of 45% and a weight average molecular weight of 10,000 was converted to cerium oxide particles. 0.8% by weight based on the weight of the mixture, and added to the dispersion using a horizontal wet ultrafine dispersion / pulverizer.
The pulverization and dispersion treatment was performed at 0 revolutions / minute for 120 minutes. The obtained liquid is referred to as cerium oxide slurry B (concentration: 4% by weight).

【0021】液Aと液Bの混合比率及び温度を変えて導
電率及び超音波伝播速度を測定した結果の代表例を図3
に示した。これらの結果に基づいて、液Aと液B混合液
中の酸化セリウム粒子濃度及びポリアクリル酸アミン塩
の濃度(重量%)を表示できるようにした。ここで、超
音波伝播速度測定装置は、富士工業(株)製FUD−1、
導電率計は、電気化学計器(株)製MC−111Tを用い
た。
FIG. 3 shows a representative example of the results of measuring the conductivity and the ultrasonic wave propagation speed while changing the mixing ratio and the temperature of the liquid A and the liquid B.
It was shown to. Based on these results, the concentration of the cerium oxide particles and the concentration (% by weight) of the polyacrylic acid amine salt in the liquid mixture of the liquid A and the liquid B can be displayed. Here, the ultrasonic propagation velocity measuring device is FUD-1 manufactured by Fuji Industry Co., Ltd.
As the conductivity meter, MC-111T manufactured by Electrochemical Meter Co., Ltd. was used.

【0022】液A50kgと液B30kgを混合して得た、
ポリアクリル酸アミン塩濃度2.50重量%、酸化セリ
ウム粒子濃度1.50重量%のCMP研磨液を用いて、
実際に研磨を行った。
A mixture obtained by mixing 50 kg of liquid A and 30 kg of liquid B was obtained.
Using a CMP polishing liquid having a polyacrylic acid amine salt concentration of 2.50% by weight and a cerium oxide particle concentration of 1.50% by weight,
Polishing was actually performed.

【0023】直径40cmの円筒状容器内に上記混合液を
投入し、直径10cmのスクリューを容器底面から1cmの
位置で400回転/分で攪拌し、温度測定機能付き導電
率測定装置及び超音波伝播速度測定装置の検出器を設置
した循環配管中を流量毎分1リットルで循環させた。研
磨する時には図1に示したように3方バルブ及び流量制
御弁で、CMP研磨装置の研磨パッド上に研磨液が毎分
200ミリリットルで供給されるようにして、酸化シリ
コン膜(p―TEOS膜)で被覆された8インチウエハ
を2分間研磨し、ウエハの交換に2分間かけてこの間研
磨液の研磨装置への研磨液供給を停止する作業を10回
繰り返し行った。
The above-mentioned mixed solution was put into a cylindrical container having a diameter of 40 cm, and a screw having a diameter of 10 cm was stirred at a position of 1 cm from the bottom of the container at 400 revolutions / minute. Circulation was performed at a flow rate of 1 liter per minute in a circulation pipe in which a detector of the velocity measuring device was installed. At the time of polishing, a three-way valve and a flow control valve as shown in FIG. 1 are used to supply a polishing liquid at a rate of 200 milliliters per minute onto a polishing pad of a CMP polishing apparatus, thereby forming a silicon oxide film (p-TEOS film). ) Was polished for 2 minutes, and the operation of stopping the supply of the polishing liquid to the polishing apparatus was repeated 10 times over 2 minutes for exchanging the wafer.

【0024】上記研磨後の残液を取り除き、液A60kg
と液B30kgを混合して得た、ポリアクリル酸アミン塩
濃度2.67重量%、酸化セリウム粒子濃度1.33重
量%の新たなCMP研磨液と交換して、上記と同様にし
てさらに10回研磨を行った。以上、20枚研磨した時
の酸化セリウム粒子濃度、ポリアクリル酸アミン塩の濃
度及び研磨速度を図4に示した。
The residual liquid after the polishing was removed, and 60 kg of liquid A was removed.
Was replaced with a new CMP polishing liquid having a polyacrylic acid amine salt concentration of 2.67% by weight and a cerium oxide particle concentration of 1.33% by weight. Polishing was performed. FIG. 4 shows the concentration of cerium oxide particles, the concentration of polyacrylic acid amine salt, and the polishing rate when 20 sheets were polished.

【0025】図4の結果から、研磨速度とCMP研磨液
中の2成分濃度が完全に相関していること、及び2成分
濃度が一定の時、研磨速度も一定になることが明らかで
ある。
From the results shown in FIG. 4, it is apparent that the polishing rate and the two-component concentration in the CMP polishing liquid are completely correlated, and that the polishing rate is constant when the two-component concentration is constant.

【0026】実施例2 実施例1と同様、液A50kgと液B50kgを混合して得
た、ポリアクリル酸アミン塩濃度2.0重量%、酸化セ
リウム粒子濃度2.0重量%のCMP研磨液を用いて研
磨を行った。
Example 2 In the same manner as in Example 1, a CMP polishing liquid having a polyacrylic acid amine salt concentration of 2.0% by weight and a cerium oxide particle concentration of 2.0% by weight obtained by mixing 50 kg of liquid A and 50 kg of liquid B was used. And polishing was performed.

【0027】ただし、本実施例においては、CMP研磨
液を攪拌する直径10cmの研磨液攪拌羽根を容器底面か
ら5cmの位置とし、さらに150回転/分と回転数を低
くした。この時の酸化セリウム粒子濃度、ポリアクリル
酸アミン塩の濃度及び研磨速度を図5に示した。
However, in this embodiment, a polishing liquid stirring blade having a diameter of 10 cm for stirring the CMP polishing liquid was located at a position 5 cm from the bottom of the container, and the rotation speed was further reduced to 150 revolutions / minute. FIG. 5 shows the cerium oxide particle concentration, the polyacrylic acid amine salt concentration and the polishing rate at this time.

【0028】研磨液の攪拌が実施例1と比較して弱い場
合、酸化セリウム粒子が若干沈降し、そのため、経過時
間とともに酸化セリウム粒子濃度が変動し、研磨速度も
酸化セリウム粒子濃度と完全に比例して変動しているこ
とがわかる。
When the agitation of the polishing liquid was weaker than that in Example 1, the cerium oxide particles settled down a little, so that the cerium oxide particle concentration fluctuated with the lapse of time, and the polishing rate was completely proportional to the cerium oxide particle concentration. It can be seen that it fluctuates.

【0029】上記の結果から、例えば攪拌条件に不具合
があって酸化セリウム粒子濃度の変動があった場合、そ
の変化をその場でかつリアルタイムで検知できることが
明らかである。研磨速度は研磨後にはじめてわかるの
で、研磨による不良の発生を未然に防止又は迅速に改善
することが本発明によって可能となる。
From the above results, it is clear that, for example, when there is a change in the cerium oxide particle concentration due to a problem in the stirring conditions, the change can be detected on the spot and in real time. Since the polishing rate can be known only after polishing, the present invention makes it possible to prevent or quickly improve the occurrence of defects due to polishing.

【0030】実施例3 2個の直径40cmの円筒状容器内にそれぞれ液A50kg
と液B50kgを入れ、酸化セリウム粒子を含む液Aにつ
いては、直径10cmのスクリューを容器底面から1cmの
位置で400回転/分で攪拌した。導電率測定装置及び
温度測定機能付き超音波伝播速度測定装置の検出器を、
図2に示したように、2液の混合液をCMP研磨機に供
給する配管に直列に設置し、研磨する時には図2の二つ
のチューブポンプを稼動(2分間)し、研磨しない時
(ウエハの交換時)には研磨液供給を停止する作業を2
0回繰り返し行った。液Aの流量を毎分100ミリリッ
トル、液Bの流量を毎分100ミリリットルとした場合
の酸化セリウム粒子濃度と研磨速度の関係を図6に示
す。事前に設定した通りの流量が実際に安定して流れた
場合、酸化セリウム濃度は2.0重量%、ポリアクリル
酸アミン塩の濃度は2.0重量%となる。
Example 3 50 kg of the liquid A was placed in each of two cylindrical containers having a diameter of 40 cm.
And liquid B containing cerium oxide particles were stirred at 400 rpm with a screw having a diameter of 10 cm at a position 1 cm from the bottom of the container. Detector of conductivity measuring device and ultrasonic propagation velocity measuring device with temperature measuring function,
As shown in FIG. 2, the two liquid mixtures are installed in series in a pipe for supplying to a CMP polishing machine. When polishing, the two tube pumps of FIG. 2 are operated (for 2 minutes), and when not polishing (wafer). Work to stop the supply of polishing liquid
Repeated 0 times. FIG. 6 shows the relationship between the cerium oxide particle concentration and the polishing rate when the flow rate of the liquid A is 100 ml / min and the flow rate of the liquid B is 100 ml / min. When the flow rate as set in advance actually flows stably, the concentration of cerium oxide is 2.0% by weight and the concentration of amine polyacrylate is 2.0% by weight.

【0031】図6の結果から、事前に設定した通りの流
量が実際に安定して流れており、その結果研磨速度も安
定していることが明らかである。
From the results shown in FIG. 6, it is clear that the flow rate set in advance is actually flowing stably, and as a result, the polishing rate is also stable.

【0032】[0032]

【発明の効果】請求項1及び2記載のCMP研磨方法
は、CMP用研磨液の成分濃度をその場ですぐに知るこ
とができるようにすることによって、成分量を迅速かつ
正確に制御し、不良の発生を未然に防止して歩留まりを
向上できるものである。
According to the CMP polishing method of the first and second aspects, the component concentration of the polishing liquid for CMP can be quickly and accurately known on the spot, thereby controlling the component amount quickly and accurately. It is possible to prevent the occurrence of defects and improve the yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における装置構成の一例(研磨部に研磨
液を供給する前にあらかじめ二液を容器内で混合する場
合)を示す模式図。
FIG. 1 is a schematic view showing an example of a device configuration in the present invention (a case where two liquids are mixed in a container in advance before a polishing liquid is supplied to a polishing section).

【図2】本発明における装置構成の他の一例(研磨部に
研磨液を供給する直前に二液を混合する場合)を示す模
式図。
FIG. 2 is a schematic diagram showing another example of the apparatus configuration in the present invention (a case where two liquids are mixed immediately before supplying a polishing liquid to a polishing section).

【図3】実施例1において、液Aと液Bの混合比率及び
温度を変えて導電率及び超音波伝播速度を測定した結果
の代表例を示すグラフ。
FIG. 3 is a graph showing a representative example of the results of measuring the conductivity and the ultrasonic wave propagation speed in Example 1 by changing the mixing ratio of the liquid A and the liquid B and the temperature.

【図4】実施例1において、酸化セリウム粒子濃度、ポ
リアクリル酸アミン塩の濃度(ポリカルボン酸の濃度)
及び研磨速度を示すグラフ。
FIG. 4 shows the concentration of cerium oxide particles and the concentration of polyacrylic acid amine salt (the concentration of polycarboxylic acid) in Example 1.
And a graph showing a polishing rate.

【図5】実施例2において、酸化セリウム粒子濃度、ポ
リアクリル酸アミン塩の濃度(ポリカルボン酸の濃度)
及び研磨速度を示すグラフ。
FIG. 5 shows the concentration of cerium oxide particles and the concentration of polyacrylic acid amine salt (the concentration of polycarboxylic acid) in Example 2.
And a graph showing a polishing rate.

【図6】実施例3において、酸化セリウム粒子濃度及び
研磨速度を示すグラフ。
FIG. 6 is a graph showing a cerium oxide particle concentration and a polishing rate in Example 3.

【符号の説明】[Explanation of symbols]

101:温度測定機能付き導電率測定装置 102:超音波伝播速度測定装置 103:温度測定および導電率測定用検出器 104:超音波伝播速度測定用検出器 105:研磨液の循環配管 106:研磨液の研磨部への供給配管 107:被研磨ウエハ 108:研磨パッド 109:研磨部への研磨液供給用ポンプ 110:研磨液の循環用ポンプ 111:研磨液攪拌用モーター 112:研磨液攪拌羽根 201:導電率測定装置 202:温度測定機能付き超音波伝播速度測定装置 203:導電率測定用検出器 204:温度測定および超音波伝播速度測定用検出器 205:二液のうち一液の供給配管 206:二液のうちもう一方の液の供給配管 207:液供給ポンプ 208:液供給ポンプ 101: Conductivity measuring device with temperature measuring function 102: Ultrasonic propagation velocity measuring device 103: Detector for temperature measurement and conductivity measurement 104: Detector for ultrasonic propagation velocity measuring 105: Circulation piping of polishing liquid 106: Polishing liquid Supply pipe to the polishing section 107: Wafer to be polished 108: Polishing pad 109: Pump for supplying polishing liquid to the polishing section 110: Pump for circulating polishing liquid 111: Motor for polishing liquid stirring 112: Polishing liquid stirring blade 201: Conductivity measuring device 202: Ultrasonic propagation velocity measuring device with temperature measuring function 203: Conductivity measuring detector 204: Temperature measuring and ultrasonic propagation velocity measuring detector 205: Supply pipe for one of two liquids 206: Supply piping for the other of the two liquids 207: Liquid supply pump 208: Liquid supply pump

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水以外に少なくとも2成分を含有するC
MP用研磨液の導電率、超音波伝播速度及び温度を測定
することによって各成分濃度を求め、各成分の量又は濃
度相対比を制御することを特徴とするCMP研磨方法。
1. C containing at least two components other than water
A CMP polishing method characterized by determining the concentration of each component by measuring the conductivity, ultrasonic wave propagation speed and temperature of a polishing liquid for MP, and controlling the amount or concentration relative ratio of each component.
【請求項2】 あらかじめ校正曲線を得ることによっ
て、温度、導電率及び超音波伝播速度の測定値から各成
分濃度を表示できるようにした請求項1記載のCMP研
磨方法。
2. The CMP polishing method according to claim 1, wherein a concentration curve of each component can be displayed from measured values of temperature, conductivity and ultrasonic wave propagation speed by obtaining a calibration curve in advance.
JP2001031674A 2001-02-08 2001-02-08 Method of polishing cmp Pending JP2002237478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001031674A JP2002237478A (en) 2001-02-08 2001-02-08 Method of polishing cmp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001031674A JP2002237478A (en) 2001-02-08 2001-02-08 Method of polishing cmp

Publications (1)

Publication Number Publication Date
JP2002237478A true JP2002237478A (en) 2002-08-23

Family

ID=18895726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001031674A Pending JP2002237478A (en) 2001-02-08 2001-02-08 Method of polishing cmp

Country Status (1)

Country Link
JP (1) JP2002237478A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353175A (en) * 2001-05-25 2002-12-06 Ekc Technology Kk Cerium oxide abrasive and manufacturing method for substrate
JP2004101999A (en) * 2002-09-11 2004-04-02 Mitsubishi Chemical Engineering Corp Apparatus for recycling and supplying developer solution
JP2009302293A (en) * 2008-06-13 2009-12-24 Apprecia Technology Inc Chemical solution supplying method and chemical solution supplying device
CN114161268A (en) * 2021-11-30 2022-03-11 北京卫星制造厂有限公司 Grinding device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311166A (en) * 1987-06-15 1988-12-19 Fuji Kogyo Kk Ultrasonic-wave concentration measuring apparatus
JPH0526853A (en) * 1991-07-17 1993-02-02 Nisshin Steel Co Ltd Method for measuring main constituent concentration of neutral salt electrolytic bath for descaling stainless steel band
WO1997035187A1 (en) * 1996-03-19 1997-09-25 Daikin Industries, Ltd. Method of determining component concentrations in three-component mixture and method of continuous production of hydrogen fluoride using the method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311166A (en) * 1987-06-15 1988-12-19 Fuji Kogyo Kk Ultrasonic-wave concentration measuring apparatus
JPH0526853A (en) * 1991-07-17 1993-02-02 Nisshin Steel Co Ltd Method for measuring main constituent concentration of neutral salt electrolytic bath for descaling stainless steel band
WO1997035187A1 (en) * 1996-03-19 1997-09-25 Daikin Industries, Ltd. Method of determining component concentrations in three-component mixture and method of continuous production of hydrogen fluoride using the method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353175A (en) * 2001-05-25 2002-12-06 Ekc Technology Kk Cerium oxide abrasive and manufacturing method for substrate
JP2004101999A (en) * 2002-09-11 2004-04-02 Mitsubishi Chemical Engineering Corp Apparatus for recycling and supplying developer solution
JP2009302293A (en) * 2008-06-13 2009-12-24 Apprecia Technology Inc Chemical solution supplying method and chemical solution supplying device
CN114161268A (en) * 2021-11-30 2022-03-11 北京卫星制造厂有限公司 Grinding device and method

Similar Documents

Publication Publication Date Title
Pate et al. Chemical metrology methods for CMP quality
Steigerwald et al. Electrochemical Potential Measurements during the Chemical‐Mechanical Polishing of Copper Thin Films
CN1735670B (en) Composition and method used for chemical mechanical planarization of metals
Chien et al. A design for selective wet etching of Si3N4/SiO2 in phosphoric acid using a single wafer processor
CN1688380A (en) Method and apparatus for blending process materials
JP2007258451A (en) Polishing solution for metal
JPH08118232A (en) Device and method for chemical machinery type polishing
WO2019177802A1 (en) Cmp compositions for sti applications
EP3055377A1 (en) Wet-process ceria compositions for selectively polishing substrates, and methods related thereto
Lee et al. Influence of slurry components on uniformity in copper chemical mechanical planarization
JP2002237478A (en) Method of polishing cmp
KR100302482B1 (en) Slurry Supply System of Semiconductor CMP Process
Hong et al. Zeta potential-tunable silica abrasives and fluorinated surfactants in chemical mechanical polishing slurries
US6406555B1 (en) Point of use dilution tool and method
TW201901786A (en) Substrate polishing device and substrate polishing method
WO2013043408A1 (en) Slurry for chemical-mechanical polishing of metals and use thereof
JP4004795B2 (en) Polishing fluid supply device
US5928962A (en) Process for forming a semiconductor device
Luan et al. Effect of complexing agent choices on dishing control level and the shelf life in copper CMP slurry
Han et al. Effect of various slurry injection system configurations on removal rates of silicon dioxide using a ceria-based chemical mechanical planarization slurry
TW202200307A (en) Semiconductor substrate polishing with polishing pad temperature control
JP2001260006A (en) Abrasive adjusting device and abrasive adjusting method
JP2012134357A (en) Cleaning liquid for cmp polishing liquid, cleaning method using the same, and method for manufacturing semiconductor substrate using the same
JP2015174953A (en) Polishing method and cmp polishing liquid
JP5987904B2 (en) Abrasive grain manufacturing method, slurry manufacturing method, and polishing liquid manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101104