JPH0526843A - Hydrogen ion detection element and lead storage battery equipped therewith - Google Patents

Hydrogen ion detection element and lead storage battery equipped therewith

Info

Publication number
JPH0526843A
JPH0526843A JP3204708A JP20470891A JPH0526843A JP H0526843 A JPH0526843 A JP H0526843A JP 3204708 A JP3204708 A JP 3204708A JP 20470891 A JP20470891 A JP 20470891A JP H0526843 A JPH0526843 A JP H0526843A
Authority
JP
Japan
Prior art keywords
electrode
hydrogen ion
storage battery
lead storage
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3204708A
Other languages
Japanese (ja)
Inventor
Satoru Saito
哲 斉藤
Yuko Fujita
雄耕 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP3204708A priority Critical patent/JPH0526843A/en
Priority to US07/835,391 priority patent/US5288563A/en
Publication of JPH0526843A publication Critical patent/JPH0526843A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To always recognize the charge and discharge state of a lead storage battery by combining a hydrogen ion electrode, wherein the surface of the gate insulating film of a field-effect transistor is coated with niobium nitride, with a collation electrode to mount both electrodes on the lead storage battery. CONSTITUTION:A niobium nitride membrane 5 is formed to the insulating film of the gate 3 of a field-effect transistor 11. The niobium nitride membrane is chemically stable and can be used over a long period of time and has high reliability and can be miniaturized. The element wherein the transistor 11 is combined with a silversilver chloride collimation electrode 12 is characterized by that the time to be elapsed before stabilization of potential is short and a response speed is high. This combination element is immersed in the electrolyte 17 of a lead storage battery to measure the voltage generated across the transistor 11 and the electrode 12 corresponding to the charge and discharge of the battery. Since the specific gravity of the electrolyte can be known on the basis of this voltage, the charge and discharge state of the lead storage battery can be always known from the specific gravity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水溶液中の水素イオン
濃度を測定する素子と、この素子をそなえた鉛蓄電池に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an element for measuring hydrogen ion concentration in an aqueous solution and a lead storage battery equipped with this element.

【0002】[0002]

【従来の技術】水溶液中の水素イオン濃度を測定する手
段としては、水素イオン電極を利用す方法があり、ガラ
ス電極を使用したpHメータが広く知られている。また、
モリブドリン酸《古大工,村田,池田,日本分析化学会
第34年会予稿集,2D05,P489(1985) 》やドデシルアミ
ン《 D.Ammann et.al., Anal.Chem.,53,2267(1981)》な
どのイオン感応物質を、例えば高分子で固定化した、い
わゆる固体膜型水素イオン電極も提案されている。さら
には、水素イオン感応物質として、SiO 2 、Al2 O 3
Ta2 O 5 などの酸化物やSi3 N 4 《松尾,江刺,電気化
学,50,64 (1982)》、あるいは窒化チタン(TiN )《脇
田,真壁,望月,山根,東,日本化学会第58回春季年会
予稿集 1,3IG17,P360(1989)》を使用したイオン選択性
電界効果型トランジスタが提案されている。
2. Description of the Related Art As a means for measuring the hydrogen ion concentration in an aqueous solution, there is a method using a hydrogen ion electrode, and a pH meter using a glass electrode is widely known. Also,
Molybdophosphoric acid << Old Carpenter, Murata, Ikeda, Proceedings of 34th Annual Meeting of Japan Society for Analytical Chemistry, 2D05, P489 (1985) >> and dodecylamine << D.Ammann et.al., Anal.Chem., 53,2267 (1981) ) >> and other ion-sensitive substances, for example, so-called polymer-immobilized so-called solid membrane hydrogen ion electrodes have also been proposed. Furthermore, as a hydrogen ion sensitive substance, SiO 2 , Al 2 O 3 ,
Ta 2 O 5 oxide and Si 3 N 4, such as "Matsuo, Esashi, electrochemical, 50, 64 (1982)", or titanium nitride (TiN) "Wakita, Makabe, Mochizuki, Yamane, East, the Chemical Society of Japan An ion selective field effect transistor using the 58th Spring Annual Meeting Proceedings 1,3IG17, P360 (1989) >> has been proposed.

【0003】一方、鉛蓄電池において、電池の充放電反
応は次式に従う。
On the other hand, in a lead storage battery, the charge / discharge reaction of the battery follows the following equation.

【化1】 [Chemical 1]

【0004】すなわち、電池の放電が進むにしたがっ
て、電解液の硫酸( H2 SO4 )が消費され、その濃度が
低下し、逆に充電が進むにしたがって硫酸が生成し、そ
の濃度が増大する。換言すると、これらの硫酸の消費量
あるいは生成量は、それぞれ放電電気量あるいは充電電
気量に比例するので、硫酸の濃度を測定することによっ
て、鉛蓄電池の充放電状態あるいは残存容量を知ること
ができる。
That is, as the battery discharges, sulfuric acid (H 2 SO 4 ) in the electrolytic solution is consumed and its concentration decreases, and conversely, as the charge progresses, sulfuric acid is generated and its concentration increases. . In other words, the consumption amount or production amount of these sulfuric acids is proportional to the discharge electricity amount or the charge electricity amount, respectively, so that the charge / discharge state or the remaining capacity of the lead storage battery can be known by measuring the sulfuric acid concentration. .

【0005】このような原理に基づいて、従来、鉛蓄電
池の充放電状態を知るために、浮子式比重計や光屈折式
比重計が実用に供されている。しかし、これらの比重計
は、一般にその寸法が大きく、鉛蓄電池に一体に装着さ
れて使われるのではなく、電解液の一部を鉛蓄電池の外
にいったん汲み出してから、その比重を測定するという
方法が採用されている。したがって、鉛蓄電池が特に密
閉型である場合には、このような比重計は使用できな
い。
On the basis of such a principle, a float type hydrometer and a photorefractive hydrometer have been put to practical use in order to know the charge / discharge state of a lead storage battery. However, these pycnometers are generally large in size and are not used by being integrally attached to a lead acid battery, but rather a portion of the electrolyte solution is once pumped out of the lead acid battery and then its specific gravity is measured. The method has been adopted. Therefore, such a hydrometer cannot be used especially when the lead acid battery is a sealed type.

【0006】密閉型鉛蓄電池でも、その電解液濃度を測
定し得る方法としては、例えば、西ドイツ特許 2,254,2
07号(1973)に示されているように、硫酸水溶液と気液平
衡状態にある、硫酸水溶液の上部の空間部の水蒸気圧が
硫酸水溶液の濃度に依存することに着目して、湿度セン
サにより湿度を測定することによって、硫酸水溶液の濃
度を測定する方法や、この原理をさらに発展させて、湿
度センサを多孔性のポリプロピレン膜の孔を介して拡散
してくる水蒸気の分圧を湿度センサで測定する方法《J.
L.Weininger et.al., J.Electrochem.Soc.,129,2409(19
82) 》や、二酸化鉛電極と鉛電極との電位差が硫酸の濃
度に依存するという原理に基づいた電極式比重計(例え
ば特開昭60-62066号)が提案されている。
[0006] Even in a sealed lead-acid battery, as a method for measuring the concentration of the electrolyte, for example, West German Patent 2,254,2
As shown in No. 07 (1973), focusing on the fact that the water vapor pressure in the space above the sulfuric acid solution in vapor-liquid equilibrium with the sulfuric acid solution depends on the concentration of the sulfuric acid solution, A method for measuring the concentration of sulfuric acid aqueous solution by measuring humidity, and further developing this principle, the humidity sensor measures the partial pressure of water vapor that diffuses through the pores of a porous polypropylene membrane. How to measure 《J.
L. Weininger et.al., J. Electrochem. Soc. , 129 , 2409 (19
82)], and an electrode-type hydrometer (for example, JP-A-60-62066) based on the principle that the potential difference between the lead dioxide electrode and the lead electrode depends on the concentration of sulfuric acid.

【0007】[0007]

【発明が解決しようとする課題】pHメータをはじめとす
る水素イオン電極は、従来、一般に、いわゆるpH測定領
域(2 〜12)を越えた領域では、いわゆる、酸誤差ある
いはアルカリ誤差といわれるように、ネルンスト式の直
線から大幅にずれるので、強酸あるいは強アルカリ水溶
液中では使用できなかった。鉛蓄電池で使用される硫酸
水溶液の濃度は通常比重約1.28〜1.05の範囲(濃度約5.
2mol/l 〜0.8mol/l )にあるために、水素イオン電極
を鉛蓄電池の硫酸濃度センサとして使用するという提案
は、従来皆無であった。
Hydrogen ion electrodes such as pH meters have hitherto been generally called so-called acid error or alkali error in a region beyond the so-called pH measurement region (2 to 12). Since it deviates significantly from the Nernst type straight line, it cannot be used in a strong acid or strong alkaline aqueous solution. The concentration of sulfuric acid aqueous solution used in lead acid batteries is usually in the range of specific gravity of about 1.28 to 1.05 (concentration of about 5.
Since there is 2 mol / l to 0.8 mol / l), there has been no proposal to use a hydrogen ion electrode as a sulfuric acid concentration sensor for a lead storage battery.

【0008】唯一の例外として、上述のようにモリブド
リン酸を結着剤で結着した固体膜型水素イオンセンサの
場合には、この鉛蓄電池で使用される硫酸水溶液の濃度
範囲でネルンスト式に従うことが報告されているが、こ
の方法は現在開発中であり信頼性の点で劣っている。
As the only exception, in the case of the solid film type hydrogen ion sensor in which molybdophosphoric acid is bound with a binder as described above, the Nernst equation must be obeyed in the concentration range of the sulfuric acid aqueous solution used in this lead acid battery. However, this method is currently under development and is inferior in reliability.

【0009】また、酸化物や窒化物被膜を取り付けた電
界効果型トランジスタを使用して水素イオン濃度を測定
する方法の中では、酸化タンタル( Ta2O 5 ) がもっと
も優れた特性を示すことが報告されている《松尾、江刺
応用物理49 596 (1980) 》。しかし、この系は鉛蓄電
池の電解液に使われる濃度の硫酸の中に浸漬しておく
と、数カ月で電位が不安定になるという欠点がある。ま
た、従来の湿度センサーを用いて硫酸濃度を測定する方
法の場合、一般に応答が遅いし、硫酸の蒸気が湿度セン
サを腐食させる難点がある。上述の電極式比重センサの
場合には、電極の自己放電が起こるので、ときどき外部
から電流を流し、電解酸化還元をしなければならないの
で、操作上極めて面倒という欠点がある。
In addition, tantalum oxide (Ta 2 O 5 ) exhibits the most excellent characteristics among the methods for measuring the hydrogen ion concentration using a field effect transistor having an oxide or nitride film attached. Reported 《Matsuo, Esashi Applied Physics 49 596 (1980)》. However, this system has the drawback that the potential becomes unstable within a few months if it is immersed in sulfuric acid at the concentration used for the electrolyte of lead acid batteries. In addition, in the case of the method of measuring the sulfuric acid concentration using the conventional humidity sensor, the response is generally slow, and the vapor of sulfuric acid corrodes the humidity sensor. In the case of the above-mentioned electrode type specific gravity sensor, since self-discharge of the electrodes occurs, it is necessary to flow an electric current from the outside to perform electrolytic oxidation-reduction, so that there is a drawback that it is extremely troublesome in operation.

【0010】しかも、密閉型鉛蓄電池の場合には、一般
に、非常に少量の硫酸水溶液が、セパレータであると同
時に電解液保持剤であるガラスマットの中に保持されて
いて、自由電解液はほとんど存在しないため、水素イオ
ン検出素子をこのガラスマット部の硫酸濃度を測定し得
るほどに小型化することが必要である。
Moreover, in the case of a sealed lead-acid battery, a very small amount of sulfuric acid aqueous solution is generally held in a glass mat which is a separator and an electrolyte holding agent at the same time. Since it does not exist, it is necessary to miniaturize the hydrogen ion detection element so that the sulfuric acid concentration in the glass mat portion can be measured.

【0011】[0011]

【課題を解決するための手段】本発明は、水素イオン濃
度検出素子のイオン感応物質として窒化ニオブ(NbN)を
使用し、電界効果型トランジスタのゲート絶縁膜表面も
しくは金属表面を窒化ニオブで被覆した水素イオン電極
と、照合電極とを組み合わせることによって、上記問題
点を解決しようとするものである。
According to the present invention, niobium nitride (NbN) is used as an ion sensitive substance of a hydrogen ion concentration detecting element, and the surface of a gate insulating film or a metal surface of a field effect transistor is coated with niobium nitride. By combining a hydrogen ion electrode and a reference electrode, it is intended to solve the above problems.

【0012】さらに、この水素イオン検出素子を鉛蓄電
池に装着することにより、電解液である硫酸の濃度を検
出し、そのことを通して鉛蓄電池の充放電状態を常時知
ることができるようにするものである。
Further, by mounting this hydrogen ion detecting element on a lead storage battery, the concentration of sulfuric acid as an electrolytic solution can be detected, and the charging / discharging state of the lead storage battery can be always known through this. is there.

【0013】[0013]

【作用】本発明者らは、水素イオン感応材料として窒化
ニオブ (NbN)を用い、電界効果型トランジスタのゲート
絶縁膜表面もしくは金属表面を酸化ニオブで被覆した水
素イオン検出素子が、水素イオン濃度が10-6mol /l 〜
2mol/l の範囲で、電位と水素イオン濃度の対数との間
に直線関係を示し、その感度(濃度が10倍変化した場合
の電位変化)が約60mVであることを発見した。
The present inventors have found that the hydrogen ion detecting element in which niobium nitride (NbN) is used as the hydrogen ion sensitive material and the surface of the gate insulating film or the metal surface of the field effect transistor is covered with niobium oxide is 10 -6 mol / l ~
In the range of 2 mol / l, a linear relationship was shown between the potential and the logarithm of the hydrogen ion concentration, and it was found that its sensitivity (potential change when the concentration was changed 10 times) was about 60 mV.

【0014】窒化ニオブと水素イオンの電位応答メカニ
ズムの詳細は明かではないが、水素イオン感応物質に窒
化ニオブを使用したイオン選択性電界効果型トランジス
タもしくは水素イオン電極を、水素イオンを含んだ被測
定溶液中に入れると、電位Eと水素イオン活量[aH +
]mol /l の間には次のネルンスト式が成り立つ。 E=2.303 ×(RT/F)×log [aH + ]
Although the details of the potential response mechanism of niobium nitride and hydrogen ions are not clear, an ion-selective field-effect transistor or a hydrogen ion electrode using niobium nitride as a hydrogen ion sensitive substance was measured using hydrogen ions. When placed in a solution, the potential E and the hydrogen ion activity [a H +
] The following Nernst equation holds between mol / l. E = 2.303 x (RT / F) x log [a H +]

【0015】したがって、上記電極と適当な照合電極と
の間の電圧を測定することによって、被測定溶液中の水
素イオン活量を求めることができる。いっぽう、各種酸
溶液における、水素イオン活量と濃度の関係はわかって
いるので、電圧から濃度がわかることになる。しかも、
このイオン選択性電界効果型トランジスタもしくは水素
イオン電極が、水素イオン濃度10-6mol /l 〜2mol/l
という通常の薄い濃度範囲のみならず、鉛蓄電池の電解
液である硫酸の濃度範囲である5.2mol/l 〜0.8 mol/
l といった広い範囲においても、上述のネルンスト式が
成立し、しかもこのような濃度の硫酸中に半年以上もの
長期間浸漬しておいてもその電位特性は変化しないこと
を発見し、本発明に至った。先にも述べたように、水素
イオン電極が一般に、このような高い酸濃度では、ネル
ンスト式からずれるのが常識であったことを考えると、
この発見はきわめて大きな意義をもっていることが、ま
ず理解されるべきである。
Therefore, the hydrogen ion activity in the solution to be measured can be determined by measuring the voltage between the electrode and a suitable reference electrode. On the other hand, since the relationship between the hydrogen ion activity and the concentration in various acid solutions is known, the concentration can be known from the voltage. Moreover,
This ion-selective field-effect transistor or hydrogen ion electrode has a hydrogen ion concentration of 10 -6 mol / l to 2 mol / l
Not only the usual thin concentration range, but also the concentration range of sulfuric acid, which is the electrolyte of lead-acid batteries, of 5.2 mol / l to 0.8 mol /
It was discovered that the above Nernst equation holds even in a wide range such as l, and that the potential characteristics do not change even when immersed in sulfuric acid of such a concentration for a long period of more than half a year, leading to the present invention. It was As described above, considering that it is common knowledge that the hydrogen ion electrode generally deviates from the Nernst equation at such a high acid concentration,
First of all, it should be understood that this finding is of great significance.

【0016】窒化ニオブは、水素イオン感応性にすぐれ
ていることの他に、高濃度の硫酸に侵されないことも、
この水素イオン電極が鉛蓄電池に使用できるきわめて大
きな要因のひとつである。
Niobium nitride is not only highly sensitive to hydrogen ions, but also is not affected by high-concentration sulfuric acid.
This hydrogen ion electrode is one of the most important factors that can be used in lead acid batteries.

【0017】照合電極としては、従来公知の銀―塩化銀
電極を用いてもよいし、電界効果型トランジスタの中
に、測定電極である水素イオン電極ともども一体に組み
込むこともできる。
As the reference electrode, a conventionally known silver-silver chloride electrode may be used, or it may be incorporated in a field effect transistor together with a hydrogen ion electrode which is a measuring electrode.

【0018】特に、水素イオン電極に上記電界効果型ト
ランジスタシステムを使用すれば、その断面を0.23×0.
5mm 程度の細線にできるので、鉛蓄電池、特に非常に少
量の電解液を含む密閉型鉛蓄電池に装着しやすい。この
ことは、例えば、モリブドリン酸をポリ塩化ビニルで固
定した固体膜型水素イオン電極の断面の直径が10mm以下
にはほとんどできないことを考え合わすと理解されるは
ずである。
In particular, when the above field effect transistor system is used for the hydrogen ion electrode, its cross section is 0.23 × 0.
Since it can be made as thin as about 5 mm, it is easy to install in lead acid batteries, especially sealed lead acid batteries containing a very small amount of electrolyte. It should be understood that this can be understood by considering that the diameter of the cross section of the solid film type hydrogen ion electrode in which molybdophosphoric acid is fixed with polyvinyl chloride can hardly be made to be 10 mm or less.

【0019】具体的な装着場所としては、鉛蓄電池の電
極とセパレータとの間が適しているが、これに限定する
ものではない。また、鉛蓄電池としては、本発明の効果
は、密閉型の場合により顕著にあらわれるが、非密閉型
でももちろんその効果は発揮基できる。
A specific mounting location is suitable between the electrodes of the lead storage battery and the separator, but is not limited to this. Further, as a lead storage battery, the effect of the present invention is more remarkable in the case of the sealed type, but of course, the effect can be exhibited even in the non-sealed type.

【0020】[0020]

【実施例】以下、本発明を好適な実施例を用いて説明す
る。 [実施例1]電界効果型トランジスタ(FET,寸法0.5 ×
6.5 ×0.23mm)のゲート絶縁膜上に、プラズマCVD法
によつて窒化ニオブ (NbN)薄膜を形成した。原料ガスと
しては、五塩化ニオブ(NbCl5 )と窒素( N2 )を使用
し、キャリアガスとしては水素( H2 )を使用した。基
板温度は700 ℃とし、 13.56MHZ のRFプラズマを使用
した。窒化ニオブはつぎの反応式によって得られる。 2NbCl 5 + N2 +5H2 →2NbN+10HCl 得られた窒化ニオブ薄膜の厚みは約2000オングストロー
ムであつた。図1は、作製したイオン選択性電界効果型
トランジスタの構造を示したもので、図において、1は
ソース、2はドレイン、3はゲートであり、4は温度補
償用のトランジスタ、5はゲート上に形成した窒化ニオ
ブ(NbN )薄膜である。
EXAMPLES The present invention will be described below with reference to preferred examples. [Example 1] Field effect transistor (FET, size: 0.5 x
A niobium nitride (NbN) thin film was formed on the gate insulating film of 6.5 × 0.23 mm by the plasma CVD method. Niobium pentachloride (NbCl 5 ) and nitrogen (N 2 ) were used as raw material gases, and hydrogen (H 2 ) was used as a carrier gas. Substrate temperature was 700 ° C., using a RF plasma 13.56MH Z. Niobium nitride is obtained by the following reaction formula. 2NbCl 5 + N 2 + 5H 2 → 2NbN + 10HCl The thickness of the obtained niobium nitride thin film was about 2000 Å. FIG. 1 shows the structure of the produced ion selective field effect transistor. In the figure, 1 is a source, 2 is a drain, 3 is a gate, 4 is a temperature compensation transistor, and 5 is on the gate. Is a niobium nitride (NbN) thin film formed on.

【0021】次に、このイオン選択性電界効果型トラン
ジスタと、ダブルジャンクション型銀―塩化銀照合電極
を組み合わせて各種酸溶液中に浸漬し、水溶液中の水素
イオン濃度と電圧との関係を求めた。酸溶液としては、
硫酸、塩酸、硝酸の各水溶液を用い、それぞれの濃度を
変化させた。この時のイオン選択性電界効果型トランジ
スタの測定条件は、ドレイン―ソース間電圧(VDS)=2.50
V 、ドレイン電流(ID )=100 μA とした。図2は、その
結果を示したもので、図において、○印は硫酸の、●印
は塩酸の、□印は硝酸の、それぞれの結果である。図か
ら、酸の種類にかかわらず、水素イオン濃度の対数と電
圧の関係は、広い濃度範囲で直線関係を示し、感度(濃
度が10倍変化する場合の電圧変化)はいずれも約60mVと
なった。また、本発明になるイオン選択性電界効果型ト
ランジスタの電位が安定するまでの時間は約5 秒以内と
きわめて短く、応答速度が速いことが示された。
Next, this ion-selective field-effect transistor was combined with a double-junction type silver-silver chloride reference electrode and immersed in various acid solutions to determine the relationship between the hydrogen ion concentration in the aqueous solution and the voltage. . As an acid solution,
Each concentration was changed using each aqueous solution of sulfuric acid, hydrochloric acid, and nitric acid. At this time, the measurement condition of the ion selective field effect transistor is drain-source voltage (V DS ) = 2.50
V and drain current ( ID ) = 100 μA. FIG. 2 shows the results. In the figure, ◯ marks are for sulfuric acid, ● marks are for hydrochloric acid, and □ marks are for nitric acid. From the figure, regardless of the type of acid, the relationship between the logarithm of the hydrogen ion concentration and the voltage shows a linear relationship in a wide concentration range, and the sensitivity (voltage change when the concentration changes 10 times) is about 60 mV. It was Further, it was shown that the time required for the potential of the ion-selective field effect transistor according to the present invention to stabilize is extremely short, within about 5 seconds, and the response speed is fast.

【0021】[実施例2]実施例1と同じ条件で、図3
に断面を示した形状の電極の先端部分の金属表面上に、
窒化ニオブ(NbN) 薄膜を形成して水素イオン電極を得
た。図において、6は窒化ニオブ(NbN) 薄膜、7はチタ
ン円板、8はリード線、9はポリカーボネート管、10
はハンダ付け部分である。
[Embodiment 2] Under the same conditions as in Embodiment 1, FIG.
On the metal surface of the tip of the electrode of the shape shown in cross section,
A hydrogen ion electrode was obtained by forming a niobium nitride (NbN) thin film. In the figure, 6 is a niobium nitride (NbN) thin film, 7 is a titanium disc, 8 is a lead wire, 9 is a polycarbonate tube, and 10 is a polycarbonate tube.
Is the soldering part.

【0022】[実施例3]つぎに、実施例1で述べたイ
オン選択性電界効果型トランジスタと、照合電極として
の銀―塩化銀電極とを組み合わせて、自動車用鉛蓄電池
の電解液中に浸漬して、電池の充放電状態に応じてイオ
ン選択性電界効果型トランジスタと照合電極間の電圧を
測定した。図4は、鉛蓄電池への電極の取り付け状態を
示したもので、図において、11はイオン選択性電界効
果型トランジスタ、12は照合電極、13は正極板、1
4は負極板、15はセパレータであり、16はイオン選
択性電界効果型トランジスタと正極板との接触を防止す
るための絶縁膜、17は電解液である。イオン選択性電
界効果型トランジスタの測定条件は実施例1の場合と同
じとした。同時に、浮子式比重計で電解液の比重を測定
した。
[Embodiment 3] Next, the ion-selective field-effect transistor described in Embodiment 1 and a silver-silver chloride electrode as a reference electrode were combined and immersed in the electrolyte of a lead acid battery for automobiles. Then, the voltage between the ion selective field effect transistor and the reference electrode was measured according to the charge / discharge state of the battery. FIG. 4 shows how electrodes are attached to a lead storage battery. In the figure, 11 is an ion-selective field effect transistor, 12 is a reference electrode, 13 is a positive electrode plate, and 1 is a positive electrode plate.
Reference numeral 4 is a negative electrode plate, 15 is a separator, 16 is an insulating film for preventing contact between the ion selective field effect transistor and the positive electrode plate, and 17 is an electrolytic solution. The measurement conditions of the ion-selective field effect transistor were the same as in the case of Example 1. At the same time, the specific gravity of the electrolytic solution was measured with a float type hydrometer.

【0023】図5は、電圧と電解液比重の関係を示した
もので、電解液比重が1.28(完全充電状態)の時の電圧
は約 120mVを示し、電解液比重が1.05(完全放電状態)
の時の電圧は約 80mV を示し、この濃度範囲では電圧と
濃度の対数値は直線関係を示した。図5からわかるよう
に、イオン選択性電界効果型トランジスタと照合電極間
の電圧を知ることによって、電解液の比重を知ることが
できる。鉛蓄電池において、電解液の比重は直接電池の
充放電状態を示すことがわかっているので、イオン選択
性電界効果型トランジスタと照合電極の間の電圧から、
電池の充放電状態を知ることができる。
FIG. 5 shows the relationship between the voltage and the specific gravity of the electrolytic solution. When the specific gravity of the electrolytic solution is 1.28 (fully charged state), the voltage is about 120 mV and the specific gravity of electrolytic solution is 1.05 (fully discharged state).
The voltage at the time of was about 80 mV, and the logarithmic value of voltage and concentration showed a linear relationship in this concentration range. As can be seen from FIG. 5, the specific gravity of the electrolytic solution can be known by knowing the voltage between the ion selective field effect transistor and the reference electrode. In lead acid batteries, the specific gravity of the electrolyte is known to directly indicate the charge / discharge state of the battery, so from the voltage between the ion selective field effect transistor and the reference electrode,
It is possible to know the charge / discharge status of the battery.

【0024】[0024]

【発明の効果】本発明になる、電界効果型トランジスタ
のゲート絶縁膜上もしくは金属表面に窒化ニオブ薄膜を
形成し、これと適当な照合電極と組み合わせた水素イオ
ン濃度検出素子は、広い範囲の水素イオン濃度を電圧の
形で表示することができる。しかも、その取り扱いが簡
単で、応答速度が速く、被測定液中に浸漬した状態で連
続測定が可能である。
According to the present invention, a hydrogen ion concentration detecting element in which a niobium nitride thin film is formed on a gate insulating film or a metal surface of a field effect transistor and is combined with a suitable reference electrode is used in a wide range of hydrogen. The ion concentration can be displayed in the form of voltage. Moreover, the handling is simple, the response speed is fast, and continuous measurement is possible while being immersed in the liquid to be measured.

【0025】また、窒化ニオブ薄膜の製法は、実施例で
示したプラズマCVD法に限定されるものではなく、金
属ニオブ薄膜を高温の窒素やアンモニア雰囲気中で窒化
する方法など、その他の種々の方法が利用できる。
The method for producing the niobium nitride thin film is not limited to the plasma CVD method shown in the embodiment, but various other methods such as a method of nitriding the metal niobium thin film in a high temperature nitrogen or ammonia atmosphere. Is available.

【0026】さらに、窒化ニオブとしては、実施例では
一窒化ニオブ(NbN)を示したが、これ以外の化学量論
比の窒化二ニオブ(Nb2 N )を使用した場合も、同様の
効果が得られることはいうまでもない。
As the niobium nitride, niobium mononitride (NbN) is shown in the embodiment, but the same effect can be obtained when niobium nitride (Nb 2 N) having a stoichiometric ratio other than this is used. Needless to say, it can be obtained.

【0027】また、窒化ニオブ膜は化学的にきわめて安
定であるため、長期間の使用が可能で、かつ信頼性はき
わめて高い。さらに、膜の部分が小さくても得られる電
圧特性は同じであるため、製作方法を工夫すればいくら
でも小型化することも可能である。
Further, since the niobium nitride film is chemically extremely stable, it can be used for a long period of time and has extremely high reliability. Further, even if the film portion is small, the obtained voltage characteristics are the same, so it is possible to make the size as small as possible by devising the manufacturing method.

【0028】したがつて、本発明になる水素イオン検出
素子は、従来、ガラス電極を用いて測定していたうすい
水素イオン濃度の測定にも有効であるのみならず、鉛蓄
電池に取り付けることによつて、常時鉛蓄電池の充放電
状態を知ることができるという利点を持ち、その工業的
価値はきわめて大きい。
Therefore, the hydrogen ion detecting element according to the present invention is not only effective for the measurement of the thin hydrogen ion concentration which has been conventionally measured by using a glass electrode, but is also attached to a lead storage battery. In addition, it has an advantage that the charge / discharge state of the lead storage battery can be always known, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明になるイオン選択性電界効果型トランジ
スタの構造を示した図である。
FIG. 1 is a diagram showing a structure of an ion selective field effect transistor according to the present invention.

【図2】各種酸水溶液中における、本発明になるイオン
選択性電界効果型トランジスタと照合電極間の電圧と、
水素イオン濃度の対数との関係を示した図である。
FIG. 2 shows the voltage between the ion selective field effect transistor according to the present invention and the reference electrode in various acid aqueous solutions,
It is the figure which showed the relationship with the logarithm of hydrogen ion concentration.

【図3】本発明になる、金属表面に窒化ニオブ薄膜をそ
なえた水素イオン電極の断面図である。
FIG. 3 is a cross-sectional view of a hydrogen ion electrode having a niobium nitride thin film on a metal surface according to the present invention.

【図4】鉛蓄電池に本発明になるイオン選択性電界効果
型トランジスタを取り付けた状態を示した図である。
FIG. 4 is a diagram showing a state in which an ion selective field effect transistor according to the present invention is attached to a lead acid battery.

【図5】本発明になるイオン選択性電界効果型トランジ
スタと照合電極間の電圧と、鉛蓄電池の電解液比重およ
び電池の充放電状態との関係を示した図である。
FIG. 5 is a diagram showing the relationship between the voltage between the ion-selective field-effect transistor and the reference electrode according to the present invention, the electrolytic solution specific gravity of the lead storage battery, and the charge / discharge state of the battery.

【符号の説明】[Explanation of symbols]

3 ゲート 5 ゲート上に形成した窒化ニオブ薄膜 6 窒化ニオブ薄膜 7 チタン円板 11 イオン選択性電界効果型トランジスタ 12 照合電極 3 gates 5 Niobium Nitride Thin Film Formed on Gate 6 Niobium nitride thin film 7 Titanium disc 11 Ion-selective field effect transistor 12 Reference electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電界効果型トランジスタのゲート絶縁膜表
面もしくは金属表面に窒化ニオブ薄膜を形成したことを
特徴とする水素イオン電極と、照合電極とから構成され
る、水素イオン検出素子。
1. A hydrogen ion detection element comprising a hydrogen ion electrode having a niobium nitride thin film formed on the surface of a gate insulating film or a metal surface of a field effect transistor, and a reference electrode.
【請求項2】請求項1記載の水素イオン検出素子をそな
えた鉛蓄電池。
2. A lead storage battery provided with the hydrogen ion detection element according to claim 1.
JP3204708A 1991-02-18 1991-07-19 Hydrogen ion detection element and lead storage battery equipped therewith Pending JPH0526843A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3204708A JPH0526843A (en) 1991-07-19 1991-07-19 Hydrogen ion detection element and lead storage battery equipped therewith
US07/835,391 US5288563A (en) 1991-02-18 1992-02-14 Hydrogen ion concentration sensor and lead-acid battery having the sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3204708A JPH0526843A (en) 1991-07-19 1991-07-19 Hydrogen ion detection element and lead storage battery equipped therewith

Publications (1)

Publication Number Publication Date
JPH0526843A true JPH0526843A (en) 1993-02-02

Family

ID=16495001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3204708A Pending JPH0526843A (en) 1991-02-18 1991-07-19 Hydrogen ion detection element and lead storage battery equipped therewith

Country Status (1)

Country Link
JP (1) JPH0526843A (en)

Similar Documents

Publication Publication Date Title
US6793789B2 (en) Reference electrode with a polymeric reference electrode membrane
US5288563A (en) Hydrogen ion concentration sensor and lead-acid battery having the sensor
Kahlert Reference electrodes
WO2002031485A1 (en) Acid gas measuring sensors and method of making same
GB2460130A (en) Self calibrating reference electrode
JPH0529024A (en) Hydrogen ion detecting element and lead acid battery provided with the same
JPH0526843A (en) Hydrogen ion detection element and lead storage battery equipped therewith
JPH0720087A (en) Hydrogen ion detection element and lead battery with it
JP5311501B2 (en) Method and apparatus for measuring pH using boron-doped diamond electrode
US4168220A (en) Method for detecting the fouling of a membrane covered electrochemical cell
JPH0487272A (en) Lead storage battery
JPH0772114A (en) Hydrogen ion concentration detector and lead battery having the same
JPH0697258B2 (en) Method for detecting specific gravity of electrolyte in lead acid battery
JPH0239740B2 (en)
US3681228A (en) Electrochemical concentration cell for gas analysis
JP3650919B2 (en) Electrochemical sensor
JPH05251114A (en) Hydrogen ion concentration detecting element and lead-acid battery provided with element thereof
JPH04282447A (en) Hydrogen ion detection element and lead storage battery equipped therewith
SU834491A1 (en) Ion-selective electrode for mercury ion concentration determination
Toniolo et al. A Novel Assembly for Perfluorinated Ion‐Exchange Membrane‐Based Sensors Designed for Electroanalytical Measurements in Nonconducting Media
JP2003254936A (en) Oxidation-reduction potential measuring method and oxidation-reduction potential measuring device
Akhter et al. Potentiometry
JPH04328280A (en) Lead-acid battery having sulfuric acid concentration detecting element
Radić et al. Fluoride-selective electrode with internal redox reference electrode
JPS63281041A (en) Measuring electrode