JPH05251114A - Hydrogen ion concentration detecting element and lead-acid battery provided with element thereof - Google Patents

Hydrogen ion concentration detecting element and lead-acid battery provided with element thereof

Info

Publication number
JPH05251114A
JPH05251114A JP4084705A JP8470592A JPH05251114A JP H05251114 A JPH05251114 A JP H05251114A JP 4084705 A JP4084705 A JP 4084705A JP 8470592 A JP8470592 A JP 8470592A JP H05251114 A JPH05251114 A JP H05251114A
Authority
JP
Japan
Prior art keywords
electrode
hydrogen ion
ion concentration
film
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4084705A
Other languages
Japanese (ja)
Inventor
Satoru Saito
哲 斉藤
Yuko Fujita
雄耕 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP4084705A priority Critical patent/JPH05251114A/en
Publication of JPH05251114A publication Critical patent/JPH05251114A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To stably detect hydrogen ion concentration in a wide range. CONSTITUTION:A hydrogen ion detecting element is composed of a first electrode and a second electrode wherein the first electrode is an ion electrode which corresponds to the hydrogen ion concentration or is composed of an ion selective field effect type transistor and the second electrode is prepared by coating the surface of a silver 1 with silver chloride 2 to give an electrode, coating the electrode with a first film 3 composed of a mixture of a water soluble polymer compound and a salt which dissociate in water and produces chlorine ion, and coating the first film with a mixture of a water insoluble polymer compound and a proton sensitive material and a lead-acid storage battery is provided with the hydrogen ion cocentration detecting element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水溶液中の水素イオン
濃度を測定する水素イオン濃度検出素子と、この素子を
備えた鉛蓄電池とに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen ion concentration detecting element for measuring the hydrogen ion concentration in an aqueous solution and a lead storage battery equipped with this element.

【0002】[0002]

【従来の技術】水溶液中の水素イオン濃度を測定する方
法としては、目的のイオン濃度に応じて電位が変化する
イオン選択性電極と目的のイオン濃度が変化しても電位
が変化しない照合電極とを組合せ、両電極間の電位差か
ら濃度を求めるという方法が一般的である。
2. Description of the Related Art As a method for measuring the hydrogen ion concentration in an aqueous solution, an ion-selective electrode whose potential changes according to the target ion concentration and a reference electrode whose potential does not change even when the target ion concentration changes A general method is to combine the above and obtain the concentration from the potential difference between both electrodes.

【0003】水素イオン濃度を測定するイオン選択性電
極としてはガラス電極を使用したpHメータが広く知られ
ており、また、モリブドリン酸《古大工,村田,池田,
日本分析化学会第34年会予稿集,2D05,P489( 1985) 》
やドデシルアミン《 D.Ammann et.al., Anal.Chem.,53,
2267(1981)》などのイオン感応物質を、例えば高分子で
固定化した固体膜型水素イオン電極も提案されている。
さらに、水素イオン感応物質として、SiO 2 、Al2 O
3 、Ta2 O 5 などの酸化物やSi3 N 4 《松尾,江刺,
電気化学,50,64 (1982)》、あるいは窒化チタン(TiN
)《脇田,真壁,望月,山根,東,日本化学会第58回
春季年会予稿集1,3IG17,P360(1989)》を使用したイオン
選択性電界効果型トランジスタ(ISFET )が提案されて
いる。
A pH meter using a glass electrode is widely known as an ion-selective electrode for measuring hydrogen ion concentration, and molybdophosphoric acid << Old Carpenter, Murata, Ikeda,
Proceedings of the 34th Annual Meeting of the Analytical Chemistry Society of Japan, 2D05, P489 (1985)》
And dodecylamine << D. Ammann et.al., Anal. Chem., 53,
2267 (1981) >> and the like, a solid film type hydrogen ion electrode in which an ion-sensitive substance is immobilized by, for example, a polymer has also been proposed.
Furthermore, as a hydrogen ion sensitive substance, SiO 2 , Al 2 O
3 , oxides such as Ta 2 O 5 and Si 3 N 4 《Matsuo, Esashi,
Electrochemical, 50, 64 (1982) ", or titanium nitride (TiN
) Wakida, Makabe, Mochizuki, Yamane, East, Proposal of 58th Spring Annual Meeting of the Chemical Society of Japan 1,3IG17, P360 (1989) >> has been proposed for an ion selective field effect transistor (ISFET). ..

【0004】照合電極としては標準水素電極・カロメル
電極・塩化銀電極などがよく知られているが、これらは
いずれも水溶液電解液をその照合電極の中に組み込んだ
ものである。
Standard hydrogen electrodes, calomel electrodes, silver chloride electrodes and the like are well known as reference electrodes, all of which are prepared by incorporating an aqueous electrolyte into the reference electrode.

【0005】また、一方、鉛蓄電池において、電池の充
放電反応は次式に従う。
On the other hand, in a lead storage battery, the charge / discharge reaction of the battery follows the following equation.

【化1】 [Chemical 1]

【0006】すなわち、電池の放電が進むに従って電解
液の硫酸( H2 SO4 )が消費され、その濃度が低下し、
逆に充電が進むにしたがって硫酸が生成し、その濃度が
増大する。換言すると、これらの硫酸の消費量あるいは
生成量はそれぞれ放電電気量あるいは充電電気量に比例
するので、硫酸の濃度を測定することによって鉛蓄電池
の充放電状態あるいは残存容量を知ることができる。
That is, as the battery discharges, the sulfuric acid (H 2 SO 4 ) in the electrolytic solution is consumed and its concentration decreases,
On the contrary, as the charge progresses, sulfuric acid is produced and its concentration increases. In other words, since the consumption amount or production amount of sulfuric acid is proportional to the discharge electricity amount or the charge electricity amount, the charge / discharge state or the remaining capacity of the lead storage battery can be known by measuring the sulfuric acid concentration.

【0007】このような原理に基づいて、従来、鉛蓄電
池の充放電状態を知るために浮子式比重計や光屈折式比
重計が実用に供されている。しかし、これらの比重計は
一般にその寸法が大きく、鉛蓄電池に一体に装着されて
使われるのではなく、電解液の一部を鉛蓄電池の外にい
ったん汲み出してからその比重を測定するという方法が
採用されている。したがって、鉛蓄電池が特に密閉型で
ある場合には、このような比重計は使用できない。
On the basis of such a principle, a float type hydrometer and a photorefractive hydrometer have been put to practical use in order to know the charge / discharge state of a lead storage battery. However, these pycnometers are generally large in size, and are not used by being integrally attached to a lead acid battery, but the method of pumping a part of the electrolyte solution out of the lead acid battery and then measuring its specific gravity is Has been adopted. Therefore, such a hydrometer cannot be used especially when the lead acid battery is a sealed type.

【0008】密閉型鉛蓄電池でも、その電解液濃度を測
定し得る方法としては、例えば、西ドイツ特許 2,254,2
07号(1973)に示されているように、硫酸水溶液と気液平
衡状態にある硫酸水溶液の上部の空間部の水蒸気圧が硫
酸水溶液の濃度に依存することに着目して、湿度センサ
により湿度を測定することによって硫酸水溶液の濃度を
測定する方法や、この原理をさらに発展させて、湿度セ
ンサを多孔性のポリプロピレン膜の孔を介して拡散して
くる水蒸気の分圧を湿度センサで測定する方法《J.L.We
ininger et.al., J.Electrochem.Soc.,129,2409(1982)
》や、二酸化鉛電極と鉛電極との電位差が硫酸の濃度
に依存するという原理に基づいた電極式比重計(例えば
特開昭60-62066号)が提案されている。
As a method for measuring the concentration of the electrolytic solution even in the sealed lead-acid battery, for example, West German Patent 2,254,2
As shown in No. 07 (1973), focusing on the fact that the water vapor pressure in the space above the sulfuric acid solution in vapor-liquid equilibrium with the sulfuric acid solution depends on the concentration of the sulfuric acid solution, the humidity sensor Method for measuring the concentration of sulfuric acid aqueous solution by measuring, and further developing this principle, the humidity sensor measures the partial pressure of water vapor diffused through the pores of the porous polypropylene membrane with the humidity sensor. Method 《JLWe
ininger et.al., J. Electrochem. Soc. , 129 , 2409 (1982)
], And an electrode-type hydrometer based on the principle that the potential difference between a lead dioxide electrode and a lead electrode depends on the concentration of sulfuric acid (for example, JP-A-60-62066).

【0009】[0009]

【発明が解決しようとする課題】イオン選択性電極でイ
オン濃度を測定する際に、これまで使用されてきた照合
電極については、例えば、標準水素電極は電位の安定性
は優れているが系が複雑で簡単に使用できないし、カロ
メル電極や塩化銀電極は通常ダブルジャンクション型で
複雑な形状をしており小型化できない、という欠点があ
った。
Regarding the reference electrode which has been used so far when the ion concentration is measured by the ion selective electrode, for example, the standard hydrogen electrode has excellent potential stability, but the system is not stable. It has a drawback that it is complicated and cannot be used easily, and that the calomel electrode and the silver chloride electrode are usually double-junction type and have a complicated shape and cannot be miniaturized.

【0010】pHメータをはじめとする水素イオン電極
は、従来、一般に、いわゆるpH測定領域(2 〜12)を越
えた領域では、酸誤差あるいはアルカリ誤差といわれる
ように、ネルンスト式の直線から大幅にずれるので、強
酸あるいは強アルカリ水溶液中では使用できなかった。
鉛蓄電池で使用される硫酸水溶液の濃度は、通常、比重
約1.28〜1.05の範囲(濃度約5.2mol/l 〜0.8mol/l )
にあるために、水素イオン電極を鉛蓄電池の硫酸濃度セ
ンサとして使用するという提案は、従来皆無であった。
例外として、上述のようにモリブドリン酸を結着剤で結
着した固体膜型水素イオンセンサの場合には、この鉛蓄
電池で使用される硫酸水溶液の濃度範囲でネルンスト式
に従うことが報告されている。また、酸化物や窒化物被
膜を取り付けた電界効果型トランジスタを使用して水素
イオン濃度を測定する方法の中では、酸化タンタル( Ta
2 O 5 ) がもっとも優れた特性を示すことが報告されて
いる《松尾、江刺、応用物理49 596 (1980) 》。さら
に、イオン感応物質にプロトン導電性固体電解質である
リン酸ジルコニウムを使用した例《特開平3-165252》も
ある。
Conventionally, hydrogen ion electrodes such as a pH meter have generally been drastically changed from a Nernst's straight line to a so-called acid error or alkali error in a region beyond the so-called pH measurement region (2 to 12). Since it shifts, it cannot be used in a strong acid or strong alkaline aqueous solution.
The concentration of sulfuric acid aqueous solution used in lead-acid batteries is usually in the range of specific gravity of about 1.28 to 1.05 (concentration of about 5.2 mol / l to 0.8 mol / l)
Therefore, there has been no proposal to use a hydrogen ion electrode as a sulfuric acid concentration sensor for a lead storage battery.
As an exception, in the case of the solid film type hydrogen ion sensor in which molybdophosphoric acid is bound with a binder as described above, it is reported that the Nernst equation is obeyed in the concentration range of the sulfuric acid aqueous solution used in this lead acid battery. .. Among the methods for measuring the hydrogen ion concentration using a field effect transistor with an oxide or nitride film attached, tantalum oxide (Ta
2 O 5 ) has been reported to show the most excellent properties << Matsuo, Esashi, Applied Physics 49 596 (1980) >>. In addition, there is also an example of using zirconium phosphate, which is a proton conductive solid electrolyte, as an ion sensitive substance <JP-A-3-165252>.

【0011】また、従来の湿度センサーを用いて硫酸濃
度を測定する方法の場合、一般に応答が遅いし、硫酸の
蒸気が湿度センサを腐食させる難点がある。上述の電極
式比重センサの場合には電極の自己放電が起こるので、
ときどき外部から電流を流し電解酸化還元をしなければ
ならないので、操作上極めて面倒という欠点がある。し
かも、密閉型鉛蓄電池の場合には、一般に、非常に少量
の硫酸水溶液がセパレータであると同時に電解液保持剤
であるガラスマットの中に保持されていて自由電解液は
ほとんど存在しないため、水素イオン検出素子をこのガ
ラスマット部の硫酸濃度を測定し得るほどに小型化する
ことが必要である。
Further, in the method of measuring the sulfuric acid concentration using the conventional humidity sensor, the response is generally slow and there is a problem that sulfuric acid vapor corrodes the humidity sensor. In the case of the above-mentioned electrode type specific gravity sensor, self-discharge of the electrodes occurs,
Since it is necessary to apply an electric current from the outside to carry out electrolytic redox from time to time, there is a drawback that it is extremely troublesome in operation. Moreover, in the case of a sealed lead-acid battery, generally, a very small amount of sulfuric acid aqueous solution is held in the glass mat which is the electrolytic solution holding agent at the same time as the separator, and there is almost no free electrolytic solution. It is necessary to miniaturize the ion detecting element so that the concentration of sulfuric acid in the glass mat portion can be measured.

【0012】[0012]

【課題を解決するための手段】本発明は、イオン選択性
電極あるいはイオン選択性電界効果型トランジスタを第
一電極とし、銀表面を塩化銀で被覆した電極を、水溶性
高分子化合物と水中で解離して塩素イオンを生じる塩と
の混合物からなる第一の膜で被覆し、さらにこの第一の
膜を水に不溶な高分子化合物とプロトン感応性物質との
混合物からなる第二の膜で被覆した固体電極を第二電極
とし、これら二つの電極を組み合わせることによって水
素イオン濃度検出素子とすることにより、上記課題を解
決しようとするものである。
According to the present invention, an ion-selective electrode or an ion-selective field-effect transistor is used as a first electrode, and an electrode having a silver surface coated with silver chloride is dissolved in a water-soluble polymer compound and water. A first film consisting of a mixture with a salt that dissociates to produce chlorine ions is coated, and this first film is further covered with a second film consisting of a mixture of a water-insoluble polymer compound and a proton-sensitive substance. The above-mentioned problem is solved by using the coated solid electrode as a second electrode and combining these two electrodes to form a hydrogen ion concentration detecting element.

【0013】さらに、この水素イオン検出素子を鉛蓄電
池に装着することにより、電解液である硫酸の濃度を検
出し、そのことを通して鉛蓄電池の充放電状態を常時知
ることができるようにするものである
Further, by mounting this hydrogen ion detecting element on a lead storage battery, it is possible to detect the concentration of sulfuric acid which is an electrolytic solution and to constantly know the charging / discharging state of the lead storage battery through it. is there

【0014】[0014]

【作用】第一電極として使用する、モリブドリン酸やリ
ン酸ジルコニウムを用いた固体膜型水素イオン電極や感
応膜に酸化タンタルや窒化チタンを用いたイオン選択性
電界効果型トランジスタなどのイオン濃度測定電極を、
水素イオンを含んだ試料溶液中に入れると、電位Eと水
素イオン濃度[H+ ]mol /l の間には次のネルンスト
式が成り立つ。 E=E゜+2.303 ×(RT/nF)log [aH + ] 従って、上記電極と測定溶液の濃度範囲で電位が一定で
ある適当な照合電極との間の電圧を測定した場合、水素
イオン濃度あるいは活量の対数と電圧の関係は図2に示
したような右上がりの直線となり、その傾き(濃度ある
いは活量が10倍変化した場合の電圧変化、これを感度と
いう)は室温では約60mVである。
[Function] A solid film type hydrogen ion electrode using molybdophosphoric acid or zirconium phosphate used as the first electrode, and an ion concentration measuring electrode such as an ion selective field effect transistor using tantalum oxide or titanium nitride for the sensitive film. To
When placed in a sample solution containing hydrogen ions, the following Nernst equation holds between the potential E and the hydrogen ion concentration [H + ] mol / l. E = E ° + 2.303 × (RT / nF) log [a H + ] Therefore, when the voltage between the electrode and a suitable reference electrode whose potential is constant in the concentration range of the measurement solution is measured, hydrogen is measured. The relationship between the logarithm of the ion concentration or activity and the voltage is a straight line rising to the right as shown in Fig. 2, and its slope (voltage change when the concentration or activity changes 10 times, this is called sensitivity) is at room temperature. It is about 60 mV.

【0015】第二電極としての固体電極は、銀/塩化銀
電極を二種類の膜で被覆した構造となつている。第一膜
は水溶性高分子化合物と水中で解離して塩素イオンを生
じる塩との混合物からなり、第二膜は水に不溶な高分子
化合物とプロトン感応物質との混合物からなっている。
塩化銀と直接接している第一膜中では塩素イオンと塩化
銀との間で平衡が成り立っており、この第一膜は第二の
膜で覆われているために直接試料溶液とは接触しないの
で、第一膜中のイオンの濃度は常に一定に保たれてい
る。従って、塩化銀/第一膜の界面の電位は常に一定で
ある。なお、第一膜に用いる塩素イオンを生じる塩は、
例外を除き水にはよく溶けるが、有機溶媒への溶解度は
きわめて小さい。従って、これらの塩と高分子化合物と
を混合する場合、有機溶媒は使用できない場合が多い。
そこで、これらの塩を高分子化合物と混合する場合、高
分子化合物が水溶性であると、高分子化合物と塩を共に
水に溶解して混合でき得られる膜は均一な組成となり、
きわめて好都合である。第二膜は、プロトン感応性物質
と高分子化合物とから構成されており、内側で第一膜と
接し、外側で試料溶液と接している。従って、第二膜を
構成する高分子化合物は水に不溶性でなければならな
い。なお、第二膜中のイオン感応物質が試料溶液中に溶
け出し組成変化をすることが考えられるが、この組成変
化はゆるやかなものと考えられ、従って、測定中の第一
膜/第二膜の界面の電位は一定と考えてよい。第二膜に
はプロトン感応性物質が含まれているため、第二膜/試
料溶液の界面の電位は試料溶液中の水素イオン濃度に応
じて変化する。
The solid electrode as the second electrode has a structure in which a silver / silver chloride electrode is coated with two kinds of films. The first membrane is composed of a mixture of a water-soluble polymer compound and a salt which dissociates in water to generate chloride ions, and the second membrane is composed of a mixture of a water-insoluble polymer compound and a proton-sensitive substance.
In the first film that is in direct contact with silver chloride, there is an equilibrium between chloride ions and silver chloride, and since this first film is covered with the second film, it does not come into direct contact with the sample solution. Therefore, the concentration of ions in the first film is always kept constant. Therefore, the potential at the silver chloride / first film interface is always constant. The salt that produces chlorine ions used for the first film is
It is soluble in water with a few exceptions, but its solubility in organic solvents is extremely low. Therefore, when mixing these salts and a high molecular compound, an organic solvent cannot be used in many cases.
Therefore, when these salts are mixed with the polymer compound, if the polymer compound is water-soluble, the polymer compound and the salt can be dissolved in water together and mixed, and the resulting film has a uniform composition.
It is very convenient. The second film is composed of a proton-sensitive substance and a polymer compound, and is in contact with the first film on the inside and with the sample solution on the outside. Therefore, the polymer compound forming the second membrane must be insoluble in water. It is considered that the ion-sensitive substance in the second film dissolves in the sample solution and changes its composition. However, this composition change is considered to be gradual. It can be considered that the electric potential of the interface is constant. Since the second membrane contains a proton-sensitive substance, the potential of the interface of the second membrane / sample solution changes according to the hydrogen ion concentration in the sample solution.

【0016】この第二電極と測定溶液の濃度範囲で電位
が一定である適当な照合電極とを水素イオンを含む試料
溶液中に浸漬し、両電極間の電圧を測定した場合、水素
イオン濃度あるいは活量と電圧との関係は図3に示した
様な右下がりの直線となり、その傾き(感度)は室温で
約-80mV となる。ただし、いまのところこの関係の理論
的な解明はできていない。
When this second electrode and an appropriate reference electrode whose potential is constant within the concentration range of the measurement solution are immersed in a sample solution containing hydrogen ions and the voltage between both electrodes is measured, the hydrogen ion concentration or The relationship between activity and voltage is a straight line descending to the right as shown in Fig. 3, and its slope (sensitivity) is about -80 mV at room temperature. However, at present, the theoretical elucidation of this relationship has not been possible.

【0017】従って、第一電極と第二電極とを組み合わ
せて水素イオン濃度検出素子とし、これを試料溶液中に
浸漬すると、水素イオン濃度あるいは活量の対数と第一
電極と第二電極間の電圧の関係は、図4に示したような
直線となり、その傾き(感度)は約140mV となる。
Therefore, when the first electrode and the second electrode are combined to form a hydrogen ion concentration detecting element and this is immersed in the sample solution, the logarithm of the hydrogen ion concentration or activity and the logarithm between the first electrode and the second electrode are obtained. The voltage relationship is a straight line as shown in FIG. 4, and its slope (sensitivity) is about 140 mV.

【0018】このように、ある濃度変化に対応する電位
差は、従来の試料溶液濃度が変化しても電位が一定であ
る照合電極を使用した場合の約60mVに比べ、本発明にな
る水素イオン検出素子を用いた場合には約140mV と2倍
以上となり、それだけ分解能が高まることになる。
As described above, the potential difference corresponding to a certain concentration change is about 60 mV in the case of using the reference electrode in which the potential is constant even when the concentration of the sample solution changes in the related art, compared to about 60 mV. When the element is used, it is about 140 mV, which is more than doubled, and the resolution is increased accordingly.

【0019】また、本発明になる第二電極は、水素イオ
ン濃度10-5mol /l 〜1mol/l という通常の薄い濃度範
囲のみならず、鉛蓄電池の電解液である硫酸の濃度範囲
である0.8mol/l 〜5.2 mol/l といった広い範囲にお
いても、安定で再現性のある電位特性を示すものであ
る。しかも、このような濃度の硫酸中に半年以上もの長
期間浸漬しておいても、その電位特性は変化しない。ま
た、本発明になる固体電極は全固体型であり、構造がき
わめて簡単であり、その形状を細い線状にすることがで
きるので、同じ様な大きさの水素イオン電極やプロトン
感応性電界効果トランジスタと組み合わせると、鉛蓄電
池、特に非常に少量の電解液を含む密閉型鉛蓄電池に装
着しやすい。具体的な装着場所としては鉛蓄電池の電極
とセパレータとの間が適しているが、これに限定するも
のではない。また、鉛蓄電池としては、本発明の効果
は、密閉型の場合により顕著にあらわれるが、非密閉型
でももちろんその効果は発揮できる。
Further, the second electrode according to the present invention has not only the usual thin concentration range of 10 −5 mol / l to 1 mol / l of hydrogen ion concentration, but also the concentration range of sulfuric acid which is an electrolytic solution of a lead storage battery. It shows stable and reproducible potential characteristics even in a wide range of 0.8 mol / l to 5.2 mol / l. Moreover, even if it is soaked in sulfuric acid having such a concentration for a long period of more than half a year, its potential characteristics do not change. Further, the solid-state electrode according to the present invention is an all-solid-state type, its structure is extremely simple, and its shape can be made into a thin linear shape. Therefore, a hydrogen ion electrode of the same size and a proton-sensitive electric field effect can be obtained. When combined with a transistor, it is easy to install in a lead-acid battery, especially a sealed lead-acid battery containing a very small amount of electrolyte. As a specific mounting place, a space between the electrode of the lead storage battery and the separator is suitable, but not limited to this. Further, as a lead-acid battery, the effect of the present invention is more remarkable in the case of the sealed type, but the effect can of course be exhibited even in the non-sealed type.

【0020】[0020]

【実施例】以下、本発明を好適な実施例を用いて説明す
る。
EXAMPLES The present invention will be described below with reference to preferred examples.

【0021】[実施例1]第二電極は次のような順序で
作製した。長さ約5cm 、直径0.2mm の銀線の先端1cm を
約0.5mol/l塩酸中に入れ、白金電極を対極にして通電
し、銀の表面に塩化銀を取りつけ銀/塩化銀電極を得
る。つぎに、分子量約400 万のポリエチレンオキサイド
の1 %水溶液4cc に塩化テトラn-ブチルアンモニウム40
mgを溶解し、この溶液中に銀/塩化銀電極の塩化銀のつ
いた部分を浸漬し、塩化銀の表面に塩化テトラn-ブチル
アンモニウムを含むポリエチレンオキサイド溶液をぬり
つけ、乾燥させる。この浸漬・乾燥を5 回繰り返した
後、2 日間空気中で乾燥して第一膜をとりつけた。つぎ
に、テトラヒドロフラン4cc にポリ塩化ビニル120mg と
リン酸ジルコニウム40mgを溶解し、この溶液中に第一膜
をとりつけた銀/塩化銀電極を浸漬し、第一膜の上にリ
ン酸ジルコニウムを含むポリ塩化ビニル溶液をぬりつけ
る。この浸漬、乾燥を7 回繰り返した後、2 日間空気中
で乾燥して第二膜をとりつけ、第二電極を得た。図1
は、作製した第二電極の構造を示したもので、同図にお
いて、1は銀、2は塩化銀、3は塩化テトラn-ブチルア
ンモニウムを含むポリエチレンオキサイドからなる第一
膜、4はリン酸ジルコニウムを含むポリ塩化ビニルから
なる第二膜であり、5は絶縁用シールテープである。
Example 1 The second electrode was manufactured in the following order. The tip of a silver wire with a length of about 5 cm and a diameter of 0.2 mm, 1 cm, is placed in about 0.5 mol / l hydrochloric acid, and a platinum electrode is used as a counter electrode to conduct electricity, and silver chloride is attached to the silver surface to obtain a silver / silver chloride electrode. Next, tetra-n-butylammonium chloride 40% was added to 4 cc of a 1% aqueous solution of polyethylene oxide having a molecular weight of about 4 million.
mg is dissolved, the silver chloride part of the silver / silver chloride electrode is immersed in this solution, a polyethylene oxide solution containing tetra-n-butylammonium chloride is applied to the surface of silver chloride, and dried. This dipping / drying was repeated 5 times, followed by drying in air for 2 days to attach the first membrane. Next, 120 mg of polyvinyl chloride and 40 mg of zirconium phosphate were dissolved in 4 cc of tetrahydrofuran, and the silver / silver chloride electrode with the first film attached was immersed in this solution, and the polyzirconium phosphate containing zirconium phosphate was placed on the first film. Apply the vinyl chloride solution. This dipping and drying were repeated 7 times, and then the film was dried in air for 2 days to attach the second film to obtain the second electrode. Figure 1
Shows the structure of the prepared second electrode. In the figure, 1 is silver, 2 is silver chloride, 3 is a first film made of polyethylene oxide containing tetra-n-butylammonium chloride, and 4 is phosphoric acid. A second film made of polyvinyl chloride containing zirconium, and 5 is an insulating seal tape.

【0022】次に、この第二電極と、ダブルジャンクシ
ョン型銀―塩化銀照合電極を組み合わせて、濃度の異な
る硫酸水溶液中に浸漬し、溶液中の硫酸活量と電圧との
関係を求めた。図3はその結果を示したもので、硫酸活
量の対数と電圧の関係は硫酸活量が大きくなると電圧は
低くなり、広い活量範囲で直線関係を示し、感度(活量
が10倍変化する場合の電圧変化)は約-80mV となった。
また、この第二電極の電位が安定するまでの時間は約1
分以内ときわめて短く、応答速度が速いことが示され
た。
Next, this second electrode was combined with a double-junction type silver-silver chloride reference electrode and immersed in sulfuric acid aqueous solutions having different concentrations to determine the relationship between the sulfuric acid activity in the solution and the voltage. Figure 3 shows the results. The relationship between the logarithm of sulfuric acid activity and the voltage is that the voltage decreases as the sulfuric acid activity increases, showing a linear relationship in a wide activity range, and the sensitivity (activity changes 10 times). Voltage change) was about -80 mV.
It takes about 1 time for the potential of the second electrode to stabilize.
It was shown that the response time was very short, being very short within minutes.

【0023】[実施例2]チタン円板表面上にプラズマ
CVD法によって厚さ約3000オングストロームの窒化チ
タン(TiN) 薄膜を形成して得た水素イオン電極を第一電
極とし、実施例1で作製した第二電極とを組み合わせて
水素イオン濃度検出素子を得た。この素子を濃度の異な
る硫酸水溶液中に浸漬し、溶液中の硫酸活量と電圧の関
係を求めた。図4はその結果を示したもので、硫酸活量
の対数と電圧の関係は広い活量範囲で直線関係を示し、
感度は約140mV となった。
[Example 2] A hydrogen ion electrode obtained by forming a titanium nitride (TiN) thin film having a thickness of about 3000 angstroms on the surface of a titanium disk by a plasma CVD method was used as a first electrode, and was prepared in Example 1. A hydrogen ion concentration detecting element was obtained by combining the above-mentioned second electrode. This device was immersed in aqueous sulfuric acid solutions having different concentrations, and the relationship between the sulfuric acid activity in the solution and the voltage was determined. FIG. 4 shows the results, and the logarithm of sulfuric acid activity and the voltage show a linear relationship in a wide activity range,
The sensitivity was about 140 mV.

【0024】[実施例3]電界効果型トランジスタのゲ
ート絶縁膜上にプラズマCVD法によって厚さ約3000オ
ングストロームの窒化チタン薄膜を形成し、イオン選択
性電界効果型トランジスタを得た。次に、このイオン選
択性電界効果型トランジスタを第一電極とし、実施例1
で作製した第二電極とを組み合わせて水素イオン濃度検
出素子を得た。この素子を濃度の異なる硫酸水溶液中に
浸漬し、溶液中の硫酸活量と電圧の関係を求めた。イオ
ン選択性電界効果型トランジスタの測定条件は、ドレイ
ン−ソース間電圧=5.0V、ドレイン電流=200 μA とし
た。溶液中の硫酸活量の対数とソース−第二電極間の電
圧は、広い活量範囲で直線関係を示し、感度は実施例2
と同様に約140mV となった。
[Example 3] A titanium nitride thin film having a thickness of about 3000 angstrom was formed on the gate insulating film of a field effect transistor by a plasma CVD method to obtain an ion selective field effect transistor. Next, using this ion-selective field-effect transistor as the first electrode, Example 1
A hydrogen ion concentration detection element was obtained by combining with the second electrode prepared in. The device was immersed in sulfuric acid aqueous solutions having different concentrations, and the relationship between the sulfuric acid activity in the solution and the voltage was determined. The measurement conditions of the ion-selective field-effect transistor were drain-source voltage = 5.0 V and drain current = 200 μA. The logarithm of the sulfuric acid activity in the solution and the voltage between the source and the second electrode show a linear relationship in a wide activity range, and the sensitivity is shown in Example 2.
It became about 140mV as well.

【0025】[実施例4]実施例3で述べた窒化チタン
膜をつけたイオン選択性電界効果型トランジスタと実施
例1で作製した第二電極とを組み合わせた水素イオン濃
度検出素子を、自動車用鉛蓄電池の電解液中に浸漬し
て、電池の充放電状態に応じてイオン選択性電界効果型
トランジスタのソースと第二電極間の電圧を測定した。
図5は、鉛蓄電池への水素イオン濃度検出素子の取り付
け状態を示したもので、同図において、6は第一電極と
してのイオン選択性電界効果型トランジスタ、7は第二
電極、8は正極板、9は負極板、10はセパレータであ
り、11はイオン選択性電界効果型トランジスタおよび
第二電極と正極板との接触を防止するための絶縁膜、1
2は電解液である。イオン選択性電界効果型トランジス
タの測定条件は実施例3の場合と同じとした。同時に浮
子式比重計で電解液の比重を測定した。図6は電圧と電
解液比重の関係を示したもので、電解液比重が1.28(完
全充電状態)の時の電圧は約390mV を示し、電解液比重
が1.05(完全放電状態)の時の電圧は約300mV を示し、
この濃度範囲では電圧と硫酸活量の対数値は直線関係を
示した。図6からわかるように、イオン選択性電界効果
型トランジスタのソースと第二電極間の電圧から電解液
の比重を知ることができる。鉛蓄電池において、電解液
の比重は直接電池の充放電状態を示すことがわかってい
るので、イオン選択性電界効果型トランジスタのソース
と第二電極の間の電圧から電池の充放電状態を知ること
ができる。
[Embodiment 4] A hydrogen ion concentration detecting element obtained by combining the ion selective field effect transistor having the titanium nitride film described in Embodiment 3 and the second electrode prepared in Embodiment 1 is used for an automobile. It was immersed in an electrolyte solution of a lead storage battery, and the voltage between the source and the second electrode of the ion selective field effect transistor was measured according to the charge / discharge state of the battery.
FIG. 5 shows a state in which a hydrogen ion concentration detection element is attached to a lead storage battery. In FIG. 5, 6 is an ion selective field effect transistor as a first electrode, 7 is a second electrode, and 8 is a positive electrode. Plate, 9 is a negative electrode plate, 10 is a separator, 11 is an ion selective field effect transistor and an insulating film for preventing contact between the second electrode and the positive electrode plate, 1
2 is an electrolytic solution. The measurement conditions of the ion-selective field effect transistor were the same as in the case of Example 3. At the same time, the specific gravity of the electrolytic solution was measured with a float type hydrometer. Fig. 6 shows the relationship between the voltage and the specific gravity of the electrolytic solution. The voltage when the specific gravity of the electrolytic solution is 1.28 (fully charged state) is about 390 mV, and the voltage when the specific gravity of electrolytic solution is 1.05 (fully discharged state). Indicates about 300 mV,
In this concentration range, the voltage and the logarithmic value of sulfuric acid activity showed a linear relationship. As can be seen from FIG. 6, the specific gravity of the electrolytic solution can be known from the voltage between the source and the second electrode of the ion selective field effect transistor. In lead acid batteries, it is known that the specific gravity of the electrolyte directly indicates the charge / discharge state of the battery, so it is necessary to know the charge / discharge state of the battery from the voltage between the source and the second electrode of the ion-selective field effect transistor. You can

【0026】[0026]

【発明の効果】本発明になる、水素イオン電極または水
素イオン感応性電界効果型トランジスタからなる第一電
極と、銀/塩化銀電極を二重の膜で被覆した第二電極と
を組み合わせてなる水素イオン濃度検出素子は、広い範
囲の水素イオン濃度を電圧の形で表示することができ、
感度が大きいために分解能が優れ、しかも高濃度の硫酸
中で安定な特性を示す。また、硫酸以外のあらゆる酸溶
液の濃度測定に利用できる。しかも、その取り扱いが簡
単で、応答速度が速く、被測定溶液中に浸漬した状態で
連続測定が可能であり、長期間の使用が可能で、信頼性
はきわめて高い。さらに、第二電極の電圧特性はその大
きさに無関係であるため、作製方法を工夫すればいくら
でも小型化することも可能であり、超小型の水素イオン
濃度検出素子がえられる。
EFFECTS OF THE INVENTION A first electrode comprising a hydrogen ion electrode or a hydrogen ion sensitive field effect transistor according to the present invention and a second electrode obtained by coating a silver / silver chloride electrode with a double film are combined. The hydrogen ion concentration detection element can display a wide range of hydrogen ion concentration in the form of voltage,
It has excellent sensitivity due to its high sensitivity, and exhibits stable characteristics in high-concentration sulfuric acid. It can also be used to measure the concentration of any acid solution other than sulfuric acid. Moreover, its handling is simple, its response speed is fast, continuous measurement is possible while it is immersed in the solution to be measured, it can be used for a long time, and its reliability is extremely high. Further, since the voltage characteristic of the second electrode is irrelevant to its size, it is possible to miniaturize it by devising the manufacturing method, and an ultra-compact hydrogen ion concentration detecting element can be obtained.

【0027】したがつて、本発明になる水素イオン検出
素子は、従来、ガラス電極を用いて測定していたうすい
水素イオン濃度の測定にも有効であるのみならず、鉛蓄
電池に取り付けることによつて、常時鉛蓄電池の充放電
状態を知ることができるという利点を持つ。
Therefore, the hydrogen ion detecting element according to the present invention is not only effective for measuring the thin hydrogen ion concentration, which has been conventionally measured by using a glass electrode, but is also attached to a lead acid battery. The advantage is that the charge / discharge state of the lead storage battery can always be known.

【0028】なお、本発明になる水素イオン濃度検出素
子に用いる第二電極の第一膜および第二膜に使用する材
料としては、実施例で述べたものに限定されるものでは
ない。すなわち、第一膜の水溶性高分子化合物としては
ポリビニルアルコール、ポリメタクリル酸など、第一膜
に含まれる塩としては塩化カリウム・塩化ナトリウム・
四級アンモニウムの塩化物など、また、第二膜の水に不
溶な高分子化合物としてはポリスチレン・ポリアクリロ
ニトリル・天然のうるしなど、第二膜に含まれる水素イ
オン感応物質としてはモリブドリン酸やタングストリン
酸などのプロトン導電性固体電解質・キノン系化合物・
パーフルオロカーボンスルフォン酸樹脂・四級アンモニ
ウムの塩化物などを使用しても、同様の効果が得られる
ことはいうまでもない。
The materials used for the first film and the second film of the second electrode used in the hydrogen ion concentration detecting element according to the present invention are not limited to those described in the embodiments. That is, the water-soluble polymer compound of the first film is polyvinyl alcohol, polymethacrylic acid, etc., and the salt contained in the first film is potassium chloride / sodium chloride.
Quaternary ammonium chloride, polystyrene, polyacrylonitrile, natural lacquer, etc. as the water-insoluble polymer compound of the second membrane, and molybdophosphoric acid and tungstoline as the hydrogen ion sensitive substance contained in the second membrane. Proton conductive solid electrolyte such as acid, quinone compound,
Needless to say, the same effect can be obtained by using a perfluorocarbon sulfonic acid resin or a quaternary ammonium chloride.

【0029】また、本発明に係る水素イオン濃度検出素
子を備えた鉛蓄電池とすることにより、より確実かつ簡
便にその充放電状態を知ることができる。
Further, by using the lead-acid battery equipped with the hydrogen ion concentration detecting element according to the present invention, the charge / discharge state can be detected more reliably and easily.

【0030】以上のように、本発明になる水素イオン濃
度検出素子及びそれを備えた鉛蓄電池の工業的価値・実
用的価値はきわめて大きい。
As described above, the hydrogen ion concentration detecting element according to the present invention and the lead storage battery provided with the element have extremely high industrial and practical values.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明になる水素イオン濃度検出素子の第二電
極の構造を示した図である。
FIG. 1 is a diagram showing a structure of a second electrode of a hydrogen ion concentration detection element according to the present invention.

【図2】硫酸水溶液中における、従来の水素イオン電極
と銀/塩化銀照合電極間電圧と、硫酸活量の対数の関係
を示した図である。
FIG. 2 is a diagram showing a relationship between a voltage between a conventional hydrogen ion electrode and a silver / silver chloride reference electrode and a logarithm of sulfuric acid activity in a sulfuric acid aqueous solution.

【図3】硫酸水溶液中における、本発明になる水素イオ
ン濃度検出素子の第二電極と銀/塩化銀照合電極間の電
圧と、硫酸活量の対数との関係を示した図である。
FIG. 3 is a diagram showing the relationship between the voltage between the second electrode and the silver / silver chloride reference electrode of the hydrogen ion concentration detection element according to the present invention and the logarithm of sulfuric acid activity in an aqueous sulfuric acid solution.

【図4】硫酸水溶液中における、本発明になる水素イオ
ン濃度検出素子の電圧と、硫酸活量の対数との関係を示
した図である。
FIG. 4 is a diagram showing the relationship between the voltage of the hydrogen ion concentration detection element of the present invention and the logarithm of sulfuric acid activity in an aqueous sulfuric acid solution.

【図5】本発明になる水素イオン濃度検出素子を鉛蓄電
池に取り付けた状態を示した図である。
FIG. 5 is a view showing a state in which the hydrogen ion concentration detecting element according to the present invention is attached to a lead storage battery.

【図6】本発明になる水素イオン濃度検出素子の電圧
と、鉛蓄電池の電解液比重および電池の充放電状態との
関係を示した図である。
FIG. 6 is a diagram showing the relationship between the voltage of the hydrogen ion concentration detection element according to the present invention, the electrolytic solution specific gravity of the lead storage battery, and the charge / discharge state of the battery.

【符号の説明】[Explanation of symbols]

1 銀 2 塩化銀 3 第一膜 4 第二膜 1 silver 2 silver chloride 3 first film 4 second film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】水素イオン濃度に応答するイオン電極ある
いはイオン選択性電界効果型トランジスタからなる第一
電極と、 銀表面(1)を塩化銀(2)で被覆した電極を、水溶性
高分子化合物と水中で解離して塩素イオンを生じる塩と
の混合物からなる第一膜(3)で被覆し、該第一膜を水
に不溶な高分子化合物とプロトン感応性物質との混合物
からなる第二膜(4)で被覆した第二電極と、 から構成されることを特徴とする水素イオン濃度検出素
子。
1. A water-soluble polymer compound comprising a first electrode composed of an ion electrode or an ion-selective field effect transistor responsive to hydrogen ion concentration, and an electrode having a silver surface (1) coated with silver chloride (2). And a second membrane (3) made of a mixture of water and a salt which dissociates in water to generate chlorine ions, and the first membrane is made of a mixture of a water-insoluble polymer compound and a proton-sensitive substance. A hydrogen ion concentration detecting element comprising: a second electrode coated with a film (4);
【請求項2】請求項1記載の水素イオン濃度検出素子を
備えた鉛蓄電池。
2. A lead storage battery provided with the hydrogen ion concentration detection element according to claim 1.
JP4084705A 1992-03-06 1992-03-06 Hydrogen ion concentration detecting element and lead-acid battery provided with element thereof Pending JPH05251114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4084705A JPH05251114A (en) 1992-03-06 1992-03-06 Hydrogen ion concentration detecting element and lead-acid battery provided with element thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4084705A JPH05251114A (en) 1992-03-06 1992-03-06 Hydrogen ion concentration detecting element and lead-acid battery provided with element thereof

Publications (1)

Publication Number Publication Date
JPH05251114A true JPH05251114A (en) 1993-09-28

Family

ID=13838080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4084705A Pending JPH05251114A (en) 1992-03-06 1992-03-06 Hydrogen ion concentration detecting element and lead-acid battery provided with element thereof

Country Status (1)

Country Link
JP (1) JPH05251114A (en)

Similar Documents

Publication Publication Date Title
US6793789B2 (en) Reference electrode with a polymeric reference electrode membrane
JP2546786Y2 (en) Graphite-based solid-state polymer membrane ion-selective electrode
KR100358933B1 (en) Planar reference electrode
US5472590A (en) Ion sensor
US6423209B1 (en) Acid gas measuring sensors and method of using same
US5288563A (en) Hydrogen ion concentration sensor and lead-acid battery having the sensor
Pandey et al. Electrochemical synthesis of tetraphenylborate doped polypyrrole and its applications in designing a novel zinc and potassium ion sensor
Alva et al. Ag/AgCl reference electrode based on thin film of arabic gum membrane
Khripoun et al. Nitrate‐selective solid contact electrodes with poly (3‐octylthiophene) and poly (aniline) as ion‐to‐electron transducers buffered with electron‐ion‐exchanging resin
Cheng et al. Study on all-solid-state chloride sensor based on tin oxide/indium tin oxide glass
JPH05251114A (en) Hydrogen ion concentration detecting element and lead-acid battery provided with element thereof
JPH0772114A (en) Hydrogen ion concentration detector and lead battery having the same
CN113514525A (en) Method for measuring nitrate ions by using solid contact type ion selective electrode
JP2003172722A (en) Electrochemical nitrogen oxide sensor
JPH0239740B2 (en)
JPH0720087A (en) Hydrogen ion detection element and lead battery with it
Kang et al. Polypyrrole modified electrode as a nitrate sensor
JPS60112266A (en) Specific gravity sensor for lead storage battery
US3681228A (en) Electrochemical concentration cell for gas analysis
JPH0529024A (en) Hydrogen ion detecting element and lead acid battery provided with the same
JPH04282447A (en) Hydrogen ion detection element and lead storage battery equipped therewith
JPH0487272A (en) Lead storage battery
Henn et al. Voltammetric Ion‐Selective Electrodes (VISE)
Khaled et al. Novel metformin carbon paste and PVC electrodes
JPH0526843A (en) Hydrogen ion detection element and lead storage battery equipped therewith