JPH0526828A - Method and device for measuring liquid water content in air - Google Patents

Method and device for measuring liquid water content in air

Info

Publication number
JPH0526828A
JPH0526828A JP17853291A JP17853291A JPH0526828A JP H0526828 A JPH0526828 A JP H0526828A JP 17853291 A JP17853291 A JP 17853291A JP 17853291 A JP17853291 A JP 17853291A JP H0526828 A JPH0526828 A JP H0526828A
Authority
JP
Japan
Prior art keywords
amount
water
atmosphere
fog
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17853291A
Other languages
Japanese (ja)
Other versions
JP2783393B2 (en
Inventor
Tetsumi Takano
哲美 高野
Takayuki Iwama
貴行 岩間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Fuji Electric Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP17853291A priority Critical patent/JP2783393B2/en
Publication of JPH0526828A publication Critical patent/JPH0526828A/en
Application granted granted Critical
Publication of JP2783393B2 publication Critical patent/JP2783393B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To measure the liquid water content in the air regardless of the diame ter of mists and, at the same time, to eliminate restriction to the installing location of a measuring device. CONSTITUTION:After the air to be measured is led into a measurement container 16 while the air is heated through a lead-in section 15 provided with a heater, the temperature and relative humidity in the container 16 are measured. An arithmetic section 14 calculates the water vapor content in the air from the measurements and finds the liquid water content in the air by subtracting the saturated water vapor content decided by the temperature of the air from the calculated water vapor content.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は大気中の水分が過飽和
となって霧状に浮遊する霧水の量を測定する方法および
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the amount of fog water floating in a mist state due to supersaturation of water in the atmosphere.

【0002】[0002]

【従来の技術】大気中の水分量の測定は、その含有水分
量が未飽和領域の場合は大気中の温度および相対湿度を
測定することによって求めることができる。しかし、大
気中の含有水分量が増し過飽和領域になると霧という液
体状態が存在するために、含有水分量の測定は容易では
ない。しかし、霧水の量を測定する事は、例えば、がい
しなどを霧中法によって人工的汚損試験を行う場合、そ
の雰囲気の霧水量を所要の値に設定するのに非常に重要
である。
2. Description of the Related Art The amount of water in the atmosphere can be measured by measuring the temperature and relative humidity in the air when the amount of water contained is in the unsaturated region. However, when the amount of water contained in the atmosphere increases and the supersaturated region is reached, a liquid state called fog exists, so that the measurement of the amount of water contained is not easy. However, measuring the amount of fog water is very important to set the amount of fog water in the atmosphere to a required value, for example, when an artificial stain test is performed on an insulator by the fog method.

【0003】図4は従来の大気中の霧水量の測定装置の
構成例を示す斜視図である。霧を含む被測定大気1の中
に風洞2が配され、この風洞2には管壁を貫通する2つ
の穴3が明けられている。この穴3に直径200μmの
ステンレス製のワイヤ4が通され、このワイヤ4は2つ
の回転軸5とピン6とによって三角状に張られている。
ピン6にはピン穴7が貫通しており、このピン穴7にワ
イヤ4が通されている。一方、ピン6はその下方端が記
録紙8に接するように配されており、図示されていない
支持装置によってピン6が固定されている。記録紙8は
2つの巻取り軸9によって矢印Bの方向に巻き取り可能
になっている。
FIG. 4 is a perspective view showing an example of the configuration of a conventional measuring apparatus for measuring the amount of fog water in the atmosphere. A wind tunnel 2 is arranged in a measured atmosphere 1 containing fog, and two holes 3 are formed in the wind tunnel 2 to penetrate a pipe wall. A stainless wire 4 having a diameter of 200 μm is passed through the hole 3, and the wire 4 is stretched in a triangular shape by two rotating shafts 5 and pins 6.
A pin hole 7 penetrates the pin 6, and the wire 4 is passed through the pin hole 7. On the other hand, the pin 6 is arranged so that its lower end is in contact with the recording paper 8, and the pin 6 is fixed by a supporting device (not shown). The recording paper 8 can be wound in the direction of arrow B by two winding shafts 9.

【0004】図4において、被測定大気1を霧水ととも
に風洞2内の図示されていない吸い込みファンによって
矢印C方向に吸い込む。吸引された霧水は風洞2内のワ
イヤ4に付着する。回転軸5によって、ワイヤ4を矢印
D方向に一定時間動かすと、その際にワイヤ4はピン穴
7でしごかれるのでワイヤ4に付着した霧水は水滴とな
って記録紙8上に溜る。記録紙8はウオータブルー処理
紙が用いられ、水が付着すると染色する性質を備えてい
る。図4の10は染色部を示し、この染色部10の面積
が、ワイヤ4に付着した霧水量に比例する。この染色部
10の面積を求め、あらかじめその測定装置の構成によ
って決まる比例定数を校正によって調べておくことによ
り、被測定大気1の霧水量に換算することができる。次
の測定を行うときには、記録紙8をB方向に所定距離ず
らし、未染色な部分にピン6の下端部が来るようにす
る。この操作を繰り返すことによって、何回も霧水量の
測定を行うことができる。
In FIG. 4, the measured atmosphere 1 is sucked together with fog water in the direction of arrow C by a suction fan (not shown) in the wind tunnel 2. The sucked fog water adheres to the wire 4 in the wind tunnel 2. When the wire 4 is moved in the direction of arrow D by the rotating shaft 5 for a certain period of time, the wire 4 is squeezed by the pin hole 7 at that time, so that the fog water adhering to the wire 4 accumulates on the recording paper 8 as water droplets. The recording paper 8 is made of water blue treated paper and has the property of being dyed when water adheres to it. Reference numeral 10 in FIG. 4 denotes a dyed portion, and the area of this dyed portion 10 is proportional to the amount of fog water attached to the wire 4. The area of the dyeing unit 10 is obtained, and the proportional constant determined by the configuration of the measuring device is checked in advance by calibration, so that the amount of fog water in the measured atmosphere 1 can be converted. When performing the next measurement, the recording paper 8 is shifted in the B direction by a predetermined distance so that the lower end of the pin 6 comes to the undyed portion. By repeating this operation, the amount of fog water can be measured many times.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前述し
たような従来の装置は霧水の粒径が小さいものほどワイ
ヤへの付着性が悪いという問題点があった。
However, the conventional apparatus described above has a problem that the smaller the particle size of the fog water, the worse the adhesion to the wire.

【0006】一般に近接する物体間には分子間引力に起
因するファンデルワールス力が働き、水滴のワイヤへの
付着力はこの力によるものである。水滴がワイヤに接触
したときの付着力はその粒径が大きいものほど強い。す
なわち、水滴がワイヤに接触した場合に水滴自体が球形
から偏平状に変形し、その粒径が大きいほどワイヤへの
接触面積が大きくなる。単位面積あたりに働くファンデ
ルワールス力の合成が付着力となるので、水滴の粒径が
大きいほどその付着力は増す。したがって、霧はその粒
径が小さいと、ワイヤに付着しにくくなる。図4のよう
にワイヤに霧を付着させる方法は、小さい粒径の霧が存
在する大気の場合、その霧水量の測定値がどうしても小
さ目になるという問題点があった。また、水滴の付着状
態がワイヤの移動中に変わらないように風洞とピンとの
間をできるだけ近づける必要があり、測定装置の設置場
所にも制限があった。
In general, a Van der Waals force due to an intermolecular attractive force works between adjacent objects, and the adhesion force of a water drop to a wire is due to this force. The larger the particle size is, the stronger the adhesive force when the water droplet contacts the wire. That is, when the water droplet contacts the wire, the water droplet itself deforms from a spherical shape to a flat shape, and the larger the particle diameter, the larger the contact area with the wire. Since the combined force of van der Waals forces acting per unit area becomes the adhesive force, the adhesive force increases as the particle size of the water droplet increases. Therefore, if the mist has a small particle size, it becomes difficult to adhere to the wire. The method of attaching mist to the wire as shown in FIG. 4 has a problem that the measured value of the amount of mist water is inevitably small in the case of an atmosphere in which mist with a small particle size exists. Further, it is necessary to bring the wind tunnel and the pin as close as possible so that the adhered state of water droplets does not change during the movement of the wire, and there is also a restriction on the installation location of the measuring device.

【0007】図4の例のようなワイヤ方式以外に、大気
中の浮遊粒子を測定する方法として、光散乱法やβ線吸
収法などがある。しかし、これらの方法はサンプリング
をチューブ状のもので行う必要があるので、霧の場合に
はそのチューブへ付着したり、途中で気化しやすく測定
精度が極めて悪い。
In addition to the wire method as shown in FIG. 4, methods for measuring airborne particles include a light scattering method and a β ray absorption method. However, in these methods, it is necessary to perform sampling with a tube-shaped one, and therefore, in the case of fog, it is likely to adhere to the tube or vaporize in the middle, and the measurement accuracy is extremely poor.

【0008】この発明の目的は、霧の粒径に関係なく測
定精度を高めるとともにその設置場所に何らの制限もな
い大気中の霧水量の測定方法および装置を提供すること
にある。
It is an object of the present invention to provide a method and apparatus for measuring the amount of fog water in the atmosphere, which enhances the measurement accuracy irrespective of the particle size of the fog and has no restriction on the place of installation.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、この発明による方法は、霧水を含有する被測定大気
を所定温度に加熱し含有霧水をすべて水蒸気にした状態
で測定容器内へ導き、この測定容器内の温度と相対湿度
とから被測定大気中の水蒸気量を算出し、この水蒸気量
から前記被測定大気の温度によって決まる飽和水蒸気量
を差し引くことによって大気中の霧水量を求めるものと
する。
In order to achieve the above-mentioned object, the method according to the present invention is a method in which the atmosphere to be measured containing fog water is heated to a predetermined temperature, and the fog water contained is entirely converted to steam. To calculate the amount of water vapor in the measured atmosphere from the temperature and relative humidity in this measurement container, and subtract the saturated amount of water vapor determined by the temperature of the measured air from this amount of water vapor to determine the amount of fog in the atmosphere. Shall seek.

【0010】さらに、この発明による装置は、霧水を含
有する被測定大気の温度を検出して出力する大気温度セ
ンサと、ヒータを備え前記被測定大気を所定温度に加熱
する導入部と、この導入部を通して前記被測定大気がそ
の含有霧水をすべて水蒸気にした状態で導入される測定
容器と、この測定容器内の温度を検出して出力する容器
温度センサと、前記測定容器内の相対湿度を検出して出
力する湿度センサと、前記大気温度センサ、前記容器温
度センサおよび前記湿度センサの出力信号をそれぞれ受
け被測定大気の霧水量を算出して出力する演算部と、こ
の演算部の出力信号を受け被測定大気の霧水量を表示す
る表示部とにより構成され、前記演算部が測定容器内の
温度と相対湿度とから被測定大気中の水蒸気量を算出
し、この水蒸気量から前記被測定大気の温度によって決
まる飽和水蒸気量を差し引くことによって大気中の霧水
量を算出するものとする。
Further, the apparatus according to the present invention includes an atmospheric temperature sensor for detecting and outputting the temperature of the atmosphere to be measured containing fog water, an introducing portion provided with a heater for heating the atmosphere to be measured to a predetermined temperature, and A measurement container in which the measured atmosphere is introduced into the measurement unit in a state where all the fog water contained therein is changed to steam through an introduction unit, a container temperature sensor for detecting and outputting the temperature in the measurement container, and a relative humidity in the measurement container. A humidity sensor that detects and outputs the temperature sensor, a calculation unit that receives the output signals of the atmospheric temperature sensor, the container temperature sensor, and the humidity sensor, respectively, and calculates and outputs the fog water amount of the measured atmosphere, and the output of this calculation unit The calculation unit calculates the amount of water vapor in the measured atmosphere from the temperature and relative humidity in the measuring container. And it calculates a fog amount of water in the air by subtracting the saturated steam amount determined by the temperature of the air to be measured.

【0011】[0011]

【作用】この発明の構成によれば、ヒータを備えた導入
部によって霧水を含有する被測定大気を所定温度に加熱
し含有霧水をすべて水蒸気にした状態で測定容器内へ案
内する。測定容器内の容器温度センサと湿度センサとに
より測定容器内に導入された被測定大気の温度と相対湿
度を求める。演算部によって、この温度と相対湿度とか
ら被測定大気中の水蒸気量を算出する。さらに、この演
算部によって、その水蒸気量から被測定大気の温度によ
って決まる飽和水蒸気量を差し引けば、この値は空間内
で過飽和により霧水状態となっていた量、すなわち、被
測定大気中の霧水量に相当する。
According to the structure of the present invention, the atmosphere to be measured containing fog water is heated to a predetermined temperature by the introduction portion provided with the heater, and the fog water contained is entirely introduced into the measurement container in the state of being steam. The temperature and the relative humidity of the measured atmosphere introduced into the measurement container are obtained by the container temperature sensor and the humidity sensor in the measurement container. The calculation unit calculates the amount of water vapor in the measured atmosphere from the temperature and the relative humidity. Furthermore, by subtracting the saturated water vapor amount determined by the temperature of the measured atmosphere from the amount of water vapor by this calculation unit, this value is the amount that was in the fog state due to supersaturation in the space, that is, It is equivalent to the amount of fog water.

【0012】[0012]

【実施例】以下この発明を実施例に基づいて説明する。
図1はこの発明の実施例にかかる大気中の霧水量を測定
する装置の構成を示す断面図である。霧水を含有する被
測定大気11の温度を空間12に設けた大気温度センサ
13が検出し、その出力信号13Sが増幅器13Aを介
して演算部14へ送られている。導入部15が空間12
と測定空間16との間に介装されるとともに、導入部1
5の途中にはダイヤフラムなどのポンプ17が介装さ
れ、被測定大気11が矢印Eの方向に吸引されて測定容
器16内に送られ出口19より排気される。導入部1
5、ポンプ17および測定容器16は断熱材18で覆わ
れている。測定容器16には容器温度センサ20および
湿度センサ21が設けられ、吸引された大気の温度およ
び相対湿度を検出し、その出力信号20S, 21Sがそ
れぞれ増幅器20A, 21Aを介して演算部14へ送ら
れている。演算部14は出力信号13S, 20Sおよび
21Sを受け出力信号14Sを出力し、表示部22がそ
の出力信号14Sを受けてタイムチャートなどに表示す
る。
EXAMPLES The present invention will be described below based on examples.
FIG. 1 is a sectional view showing the arrangement of an apparatus for measuring the amount of fog water in the atmosphere according to the embodiment of the present invention. The temperature of the measured atmosphere 11 containing fog water is detected by the atmospheric temperature sensor 13 provided in the space 12, and the output signal 13S is sent to the arithmetic unit 14 via the amplifier 13A. Introductory part 15 is space 12
And the measurement space 16 and the introduction part 1
A pump 17 such as a diaphragm is provided in the middle of 5, and the atmosphere 11 to be measured is sucked in the direction of arrow E, sent into the measurement container 16, and exhausted from the outlet 19. Introductory part 1
5, the pump 17 and the measuring container 16 are covered with a heat insulating material 18. The measuring container 16 is provided with a container temperature sensor 20 and a humidity sensor 21, which detect the temperature and relative humidity of the sucked air, and output signals 20S and 21S to the arithmetic unit 14 via amplifiers 20A and 21A, respectively. Has been. The calculation unit 14 receives the output signals 13S, 20S and 21S and outputs the output signal 14S, and the display unit 22 receives the output signal 14S and displays it on a time chart or the like.

【0013】図2は図1のA−A断面図であり、導入部
15の構成を示す拡大断面図である。被測定大気11を
送る金属管23の外壁面に絶縁体27を介してリード線
25, 26に接続されたヒータ24が配されている。最
外周には断熱材18が被されている。リード線25, 2
6は導入部15の長手方向に並設され、両者から給電す
ることによってヒータ24に導入部15の周方向に電流
を流す構成となっている。ヒータ24, 絶縁体27およ
びリード線25, 26は、一体のものとして例えば、米
国Raychem 社より「オートトレース」の商品名で一般に
市販されている。このヒータ24は高分子に導電粒子を
混在させたものであり、自己温度制御性を備えている。
すなわち、ヒータ24は温度が高くなるとその抵抗値を
増して温度を下げ、温度が低くなるとその抵抗値を減ら
して温度を高める機能を有する。したがって、金属管2
3の長手方向のいずれの個所も温度を均一に保つことが
できる。金属管23はステンレス製で外径8mmのもの、
断熱材18としてはポリウレタン発泡管を使用してい
る。
FIG. 2 is a sectional view taken along the line AA of FIG. 1 and is an enlarged sectional view showing the structure of the introducing portion 15. A heater 24 connected to lead wires 25 and 26 via an insulator 27 is arranged on the outer wall surface of a metal tube 23 that sends the measured atmosphere 11. The outermost periphery is covered with a heat insulating material 18. Lead wire 25, 2
6 are arranged side by side in the longitudinal direction of the introducing portion 15, and a current is supplied to the heater 24 in the circumferential direction of the introducing portion 15 by supplying power from both. The heater 24, the insulator 27, and the lead wires 25, 26 are generally sold as a unit as a unit, for example, under the trade name of "auto trace" from Raychem, USA. The heater 24 is a mixture of polymer and conductive particles, and has a self-temperature controllability.
That is, the heater 24 has a function of increasing its resistance value and lowering the temperature when the temperature rises, and decreasing the resistance value and raising the temperature when the temperature lowers. Therefore, the metal tube 2
The temperature can be kept uniform at any position in the longitudinal direction of No. 3. The metal tube 23 is made of stainless steel and has an outer diameter of 8 mm,
A polyurethane foam tube is used as the heat insulating material 18.

【0014】図1に戻り、導入部15によって被測定大
気11が所定温度(含有霧水がすべて水蒸気になる温度
以上) に加熱され測定容器16内へ送られる。前述した
ように、被測定大気11は図2のヒータ24によって、
所定の一定温度に設定されるので導入部15やポンプ1
7、測定容器16において結露することはない。測定容
器16内の温度と相対湿度とから被測定大気11中の水
蒸気量を演算部14が算出し、この水蒸気量から空間1
2の温度によって決まる飽和水蒸気量を差し引くことに
よって空間12内の霧水量を求めることができる。
Returning to FIG. 1, the air to be measured 11 is heated to a predetermined temperature (above the temperature at which all the fog water contained therein becomes steam) by the introduction part 15 and sent into the measuring container 16. As described above, the measured atmosphere 11 is generated by the heater 24 shown in FIG.
Since the temperature is set to a predetermined constant temperature, the introduction part 15 and the pump 1
7. No condensation occurs in the measurement container 16. The calculation unit 14 calculates the amount of water vapor in the measured atmosphere 11 from the temperature and relative humidity in the measurement container 16, and the space 1 is calculated from this amount of water vapor.
The amount of fog water in the space 12 can be obtained by subtracting the amount of saturated steam determined by the temperature of 2.

【0015】次に、図1の演算部14において、霧水量
を算出する方法について述べる。空間12, 測定容器1
6の温度をそれぞれT1 , T2 〔°K〕, 測定容器16
内の相対湿度をHR 〔%〕とし、これらの値が各センサ
によって検出される。空間12, 測定容器16のそれぞ
れの飽和水蒸気量〔kg/m3 〕(その温度において水蒸
気として存在し得る最大の水蒸気密度) をY1 , Y2
すると、 Yi =Xi /{0.004555 (Xi +0.662)Ti } …… (1) となる。ここで、i=1または2とし、 Xi =0.622 P (Ti ) /{760 −P (Ti ) } …… (2)
Next, a method of calculating the amount of fog water in the calculation unit 14 of FIG. 1 will be described. Space 12, measuring container 1
6 and T 1 and T 2 [° K], respectively, and measuring container 16
The relative humidity inside is set to H R [%], and these values are detected by each sensor. Letting Y 1 and Y 2 be the saturated water vapor amount [kg / m 3 ] of each of the space 12 and the measurement container 16 (maximum water vapor density that can exist as water vapor at that temperature), Y i = X i /{0.004555 ( X i +0.662) T i } (1) Here, i = 1 or 2, and X i = 0.622 P (T i ) / {760 −P (T i )} (2)

【0016】[0016]

【数1】 [Equation 1]

【0017】(3) 式のP (Ti ) は、その温度Ti にお
ける飽和水蒸気圧曲線が近似式にて表わされたものであ
り、その誤差は0℃から70℃の範囲で+3%から−1.
7%以内である。したがって、空間12内の単位体積あ
たりの霧水量F (kg/m3 ) は、 F=Y2 ・ (HR /100)−Y1 …… (4) となる。すなわち、(4) 式の第一項は測定容器16内に
実際に存在する水蒸気密度 (絶対湿度HA ) に対応し、
空間12内に実際に存在する単位体積あたりの水分量
(水蒸気と霧水との和) に等しい。したがって、この絶
対湿度HA から空間12の飽和水蒸気量Y1 を差し引け
ば空間12内の霧水量Fとなり、霧の粒径がどんなに小
さくても漏らさず測定することができる。さらに、空間
12内のセンサが大気温度センサ13のみであり、導入
部15も長手方向に10m以上も張ることができるの
で、測定装置の設置場所の制限は全く受けない。
P (T i ) in the equation (3) is a saturated vapor pressure curve at the temperature T i expressed by an approximate equation, and the error is + 3% in the range of 0 ° C to 70 ° C. To -1.
Within 7%. Thus, the fog amount of water F (kg / m 3) per unit volume in the space 12 becomes F = Y 2 · (H R / 100) -Y 1 ...... (4). That is, the first term of the equation (4) corresponds to the water vapor density (absolute humidity H A ) actually existing in the measurement container 16,
Water content per unit volume actually existing in the space 12
Is equal to (sum of steam and fog). Therefore, if the saturated water vapor amount Y 1 of the space 12 is subtracted from the absolute humidity H A , the fog water amount F in the space 12 is obtained, and it is possible to perform measurement without leaking even if the particle diameter of the fog is small. Further, since the sensor in the space 12 is only the atmospheric temperature sensor 13, and the introduction part 15 can be stretched by 10 m or more in the longitudinal direction, there is no restriction on the installation place of the measuring device.

【0018】図3は図1の霧水量測定装置による実測結
果を示す特性線図である。横軸に時刻tを、縦軸に温
度, 絶対湿度または霧水量を目盛ってある。外径8mm,
長さ10mのステンレス製の金属管23よりなる導入部
15によって、被測定大気11を40℃ないし60℃
(=T2 )に加熱し、空間12に霧を噴霧したときの霧水
量Fの時間変化を求めた。時刻t1 に噴霧開始し、時刻
2 に噴霧を停止させた。特性曲線28は空間12の温
度T1 、特性曲線29は被測定大気11の絶対湿度
A 、特性曲線30が空間12の霧水量Fである。霧水
量または絶対湿度が負となるのは、空間12に霧水が存
在していない状態であり、水蒸気が未飽和であることを
示す。図4の従来の測定装置が、未飽和のときの水蒸気
量を求めることができないのに比べ、この発明による装
置では未飽和のときの水蒸気密度も求めることができる
という利点もある。
FIG. 3 is a characteristic diagram showing the actual measurement results by the fog water amount measuring device of FIG. The horizontal axis shows time t, and the vertical axis shows temperature, absolute humidity or amount of fog water. Outer diameter 8mm,
The atmosphere 15 to be measured is kept at 40 ° C. to 60 ° C. by the introduction part 15 made of a metal tube 23 made of stainless steel having a length of 10 m
The time change of the fog water amount F when the space 12 was heated to (= T 2 ) and the fog was sprayed to the space 12 was obtained. Spraying was started at time t 1 and stopped at time t 2 . The characteristic curve 28 is the temperature T 1 of the space 12, the characteristic curve 29 is the absolute humidity H A of the measured atmosphere 11, and the characteristic curve 30 is the fog water amount F of the space 12. The amount of fog water or the absolute humidity becomes negative in a state where the fog water does not exist in the space 12, indicating that the water vapor is unsaturated. The conventional measuring device shown in FIG. 4 is not able to determine the amount of water vapor when it is unsaturated, while the device according to the present invention has the advantage that it can also determine the water vapor density when it is unsaturated.

【0019】[0019]

【発明の効果】この発明の方法は前述のように、ヒータ
を備えた導入部によって被測定大気を加熱して測定容器
に案内する。測定容器の温度と相対湿度、および被測定
大気の空間温度を測定し、演算部にてこれらの測定値か
ら空間の霧水量を算出するようにした。この方法により
被測定大気中の霧を細かい粒径のもの全てを含めて計測
することができ、測定精度を向上させることができる。
As described above, according to the method of the present invention, the atmosphere to be measured is heated by the introduction part provided with the heater and guided to the measurement container. The temperature and relative humidity of the measuring container and the space temperature of the measured atmosphere were measured, and the amount of fog water in the space was calculated by the calculation unit from these measured values. By this method, it is possible to measure the fog in the measured atmosphere including all those having a small particle size, and it is possible to improve the measurement accuracy.

【0020】また、空間に大気温度センサを設置し、導
入部を介して空間から10m以上離れて計測することが
できるので、測定装置の設置場所の制限も受けない。
Further, since the atmospheric temperature sensor is installed in the space and the measurement can be performed at a distance of 10 m or more from the space through the introduction part, there is no restriction on the installation place of the measuring device.

【0021】さらに、水蒸気が未飽和状態の空間の水蒸
気量も求めることができるので、この方法による霧水量
測定装置は絶対湿度計としても使え、計測範囲の広い測
定器を提供することができる。
Furthermore, since the amount of water vapor in the space where the water vapor is unsaturated can also be determined, the fog water amount measuring device according to this method can also be used as an absolute hygrometer, and a measuring device having a wide measuring range can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例にかかる霧水量測定装置の構
成を示す断面図
FIG. 1 is a sectional view showing the configuration of a fog water amount measuring device according to an embodiment of the present invention.

【図2】図1のA−A断面図FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図1の霧水量測定装置による実測結果を示す特
性線図
FIG. 3 is a characteristic diagram showing measurement results obtained by the fog water amount measuring device of FIG.

【図4】従来の霧水量測定装置の構成例を示す斜視図FIG. 4 is a perspective view showing a configuration example of a conventional fog water amount measuring device.

【符号の説明】[Explanation of symbols]

11 被測定大気 12 空間 13 大気温度センサ 14 演算部 13A 増幅器 20A 増幅器 21A 増幅器 15 導入部 16 測定容器 17 ポンプ 18 断熱材 19 出口 20 容器温度センサ 21 湿度センサ 22 表示部 23 金属管 24 ヒータ 25 リード線 26 リード線 27 絶縁体 11 Measured atmosphere 12 spaces 13 Air temperature sensor 14 Operation part 13A amplifier 20A amplifier 21A amplifier 15 Introduction 16 measuring vessels 17 pumps 18 Insulation 19 exit 20 Container temperature sensor 21 Humidity sensor 22 Display 23 Metal tube 24 heater 25 lead wire 26 Lead wire 27 Insulator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】霧水を含有する被測定大気を所定温度に加
熱し含有霧水をすべて水蒸気にした状態で測定容器内へ
導き、この測定容器内の温度と相対湿度とから被測定大
気中の水蒸気量を算出し、この水蒸気量から前記被測定
大気の温度によって決まる飽和水蒸気量を差し引くこと
によって大気中の霧水量を求めることを特徴とする大気
中の霧水量を測定する方法。
1. The atmosphere to be measured containing fog water is heated to a predetermined temperature, and the fog water is introduced into a measuring container in a state where all of the fog water is converted into water vapor. A method for measuring the amount of fog water in the atmosphere, the method comprising: calculating the amount of water vapor in the atmosphere and subtracting the amount of saturated water vapor determined by the temperature of the atmosphere to be measured from the amount of water vapor to obtain the amount of fog water in the atmosphere.
【請求項2】霧水を含有する被測定大気の温度を検出し
て出力する大気温度センサと、ヒータを備え前記被測定
大気を所定温度に加熱する導入部と、この導入部を通し
て前記被測定大気がその含有霧水をすべて水蒸気にした
状態で導入される測定容器と、この測定容器内の温度を
検出して出力する容器温度センサと、前記測定容器内の
相対湿度を検出して出力する湿度センサと、前記大気温
度センサ、前記容器温度センサおよび前記湿度センサの
出力信号をそれぞれ受け被測定大気の霧水量を算出して
出力する演算部と、この演算部の出力信号を受け被測定
大気の霧水量を表示する表示部とにより構成され、前記
演算部が測定容器内の温度と相対湿度とから被測定大気
中の水蒸気量を算出し、この水蒸気量から前記被測定大
気の温度によって決まる飽和水蒸気量を差し引くことに
よって大気中の霧水量を算出することを特徴とする大気
中の霧水量を測定する装置。
2. An atmospheric temperature sensor for detecting and outputting the temperature of the atmosphere to be measured containing fog water, an introducing portion provided with a heater for heating the atmosphere to be measured to a predetermined temperature, and the object to be measured through this introducing portion. A measuring container that is introduced in a state where the atmosphere contains all of the fog water contained in water vapor, a container temperature sensor that detects and outputs the temperature inside the measuring container, and a relative humidity inside the measuring container that is detected and output. A humidity sensor, a calculation unit that receives the output signals of the atmospheric temperature sensor, the container temperature sensor, and the humidity sensor, and calculates and outputs the amount of fog water in the measured atmosphere, and the measured atmosphere that receives the output signal of this calculation unit And a display unit that displays the amount of fog water, the calculation unit calculates the amount of water vapor in the measurement atmosphere from the temperature and relative humidity in the measurement container, and from the amount of water vapor the temperature of the measurement atmosphere Apparatus for measuring the fog amount of water in the atmosphere, characterized by calculating the fog amount of water in the air by subtracting the full saturation water vapor content.
JP17853291A 1991-07-19 1991-07-19 Method and apparatus for measuring the amount of fog water in the atmosphere Expired - Lifetime JP2783393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17853291A JP2783393B2 (en) 1991-07-19 1991-07-19 Method and apparatus for measuring the amount of fog water in the atmosphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17853291A JP2783393B2 (en) 1991-07-19 1991-07-19 Method and apparatus for measuring the amount of fog water in the atmosphere

Publications (2)

Publication Number Publication Date
JPH0526828A true JPH0526828A (en) 1993-02-02
JP2783393B2 JP2783393B2 (en) 1998-08-06

Family

ID=16050120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17853291A Expired - Lifetime JP2783393B2 (en) 1991-07-19 1991-07-19 Method and apparatus for measuring the amount of fog water in the atmosphere

Country Status (1)

Country Link
JP (1) JP2783393B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292381A (en) * 2007-05-28 2008-12-04 Railway Technical Res Inst Trolley wire frosting prediction method and device
JP2014231937A (en) * 2013-05-28 2014-12-11 株式会社大気社 Method and device for measuring moisture content of air in ice saturation or above below freezing point
JP2017040473A (en) * 2015-08-17 2017-02-23 浜松ホトニクス株式会社 Measurement device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292381A (en) * 2007-05-28 2008-12-04 Railway Technical Res Inst Trolley wire frosting prediction method and device
JP2014231937A (en) * 2013-05-28 2014-12-11 株式会社大気社 Method and device for measuring moisture content of air in ice saturation or above below freezing point
JP2017040473A (en) * 2015-08-17 2017-02-23 浜松ホトニクス株式会社 Measurement device

Also Published As

Publication number Publication date
JP2783393B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
JP4499332B2 (en) Method for inspecting and locating leaks and apparatus suitable for carrying out the method
US2947166A (en) Vapour leak detector
US3824157A (en) Method of equilibrating and calibrating a partial pressure gas sensor
JP5194016B2 (en) Method and apparatus for measuring liquid absorbency
CA2134085A1 (en) Aerosol testing method
EP1370844B1 (en) Method and device at testing for leaks and leakage finding
US5520048A (en) Automated flow measuring device including wet and dry bulb moisture analyzer
US4484823A (en) Method of determining the boiling point of a liquid
JPH0526828A (en) Method and device for measuring liquid water content in air
EP0006256A1 (en) Method and apparatus for determining the hydrogen content of a gas
US20020080848A1 (en) Automatic humidity step control thermal analysis apparatus
US3280619A (en) Leak detection
US2492768A (en) Cloud moisture meter
GB2335275A (en) Correcting for mouthpiece temperature in breath sampling apparatus
JP4391682B2 (en) Leakage gas measuring device and leak gas measuring device evaluation device
US2507321A (en) Leak testing device
US4212194A (en) Measurement of equilibrium relative humidity
CN111183344B (en) Device and method for distinguishing test gas escaping from a leak from interfering gas
US7059173B2 (en) System for conducting the on-site measurement of the density or thermal resistance of a material
JPH01182746A (en) Humidity detecting device
SU842476A1 (en) Capillary flaw detector
SU593127A1 (en) Gas moisture measuring method
CN213875367U (en) Moisture-permeable instrument for cosmetic detection
US20050268697A1 (en) On-site measurement of the density or thermal resistance of a material
SU126638A1 (en) The method of determining the diameters of meteorological balloons, including at the time of their rupture