JP2014231937A - Method and device for measuring moisture content of air in ice saturation or above below freezing point - Google Patents

Method and device for measuring moisture content of air in ice saturation or above below freezing point Download PDF

Info

Publication number
JP2014231937A
JP2014231937A JP2013112379A JP2013112379A JP2014231937A JP 2014231937 A JP2014231937 A JP 2014231937A JP 2013112379 A JP2013112379 A JP 2013112379A JP 2013112379 A JP2013112379 A JP 2013112379A JP 2014231937 A JP2014231937 A JP 2014231937A
Authority
JP
Japan
Prior art keywords
air
heating
body surface
measured
surface temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013112379A
Other languages
Japanese (ja)
Other versions
JP6151567B2 (en
Inventor
暢規 伊藤
Nobuki Ito
暢規 伊藤
日野原 昌信
Masanobu Hinohara
昌信 日野原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to JP2013112379A priority Critical patent/JP6151567B2/en
Publication of JP2014231937A publication Critical patent/JP2014231937A/en
Application granted granted Critical
Publication of JP6151567B2 publication Critical patent/JP6151567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for accurately measuring a moisture content of air in ice saturation or above below the freezing point.SOLUTION: In a method for measuring a moisture content of air in ice saturation or above below the freezing point, a fixed quantity of air is sucked in from a space 2 including measurement object air; the air sucked in is heated by a heating part 3 and turned into air in the ice saturation or below; humidity of the air in the ice saturation or below is measured by a humidity measuring part 6; and the moisture content of the measurement object air is determined from a measured value of the measured humidity.

Description

本発明は、空気の含水量の計測方法および計測装置に関し、特に、氷点下で氷飽和以上の空気の含水量の計測方法および計測装置に関する。   The present invention relates to a method and an apparatus for measuring the moisture content of air, and more particularly, to a method and an instrument for measuring the moisture content of air that is below freezing point and above ice saturation.

結晶型の人工雪を製造する人工降雪装置は、含水量の多い低温空気の中で結晶雪を生成させ、成長させる。このような降雪装置に好適な空気は、より具体的には、低温でかつ氷飽和以上、またはそれを更に超えた水飽和以上の水分量を含有し、過飽和蒸気、過冷却水滴、およびそれが氷結した氷結粒が、単独または複数混合した状態の空気である。また、降雪装置で製造する結晶雪の量や結晶形状は、用いる空気の含水量に影響を受ける。例えば、非特許文献1には、結晶型人工雪を造る方法が開示されており、また、雪の結晶形状が、結晶が成長している場所の気温と空気の過飽和度との組み合わせによって変化することを示した図(ナカヤ・ダイヤグラム)が記載されている。従って、結晶雪を生成させる降雪装置には、特定含水量の空気を供給することが望まれる。   An artificial snowfall device that produces crystal-type artificial snow generates and grows crystal snow in low-temperature air with a high water content. Air suitable for such a snowfall device, more specifically, contains a water content at a low temperature and above water saturation or above water saturation, and more than supersaturated steam, supercooled water droplets, and The frozen icing is air in a single or mixed state. Further, the amount and crystal shape of crystal snow produced by the snowfall device are affected by the moisture content of the air used. For example, Non-Patent Document 1 discloses a method for producing crystal-type artificial snow, and the crystal shape of snow changes depending on the combination of the temperature of the place where the crystal is growing and the supersaturation degree of air. A diagram (Nakaya diagram) showing this is described. Therefore, it is desirable to supply air with a specific water content to a snowfall device that generates crystal snow.

しかし、飛散している水滴や氷結粒を含む空気の含水量は、例えば、その空気中に従来の湿度計や露点計を単独で設置しても、正確に測定することが困難である。例えば、特許文献1は、人工結晶雪製造装置が開示されており、この装置が氷飽和以上の飽和雰囲気をつくり出す加湿装置を備えていることが記載されている。しかし、この装置は、その氷飽和以上の飽和雰囲気の含水量を測定する手段を備えていない。   However, it is difficult to accurately measure the water content of air including water droplets and ice particles that are scattered, even if a conventional hygrometer or dew point meter is installed alone in the air. For example, Patent Document 1 discloses an artificial crystal snow manufacturing apparatus, which describes that this apparatus includes a humidifier that creates a saturated atmosphere that is equal to or higher than ice saturation. However, this apparatus does not include a means for measuring the water content of a saturated atmosphere that is above the ice saturation.

特開平9−329380号公報JP-A-9-329380

中谷宇吉郎著、「雪」岩波書店、1994年10月17日、p.176By Ukichiro Nakatani, “Yuki” Iwanami Shoten, October 17, 1994, p. 176

通常の湿度計や露点計は、氷飽和以下の湿度を測定するセンサを備えた計測器である。言い換えれば、通常の湿度計や露点計は、湿度が100%未満で、水滴や氷結粒を含まない空気だけを測定できるものである。従って、前述のような、水滴や氷結粒が存在し、低温でかつ氷飽和以上の空気の測定は、それらの計測器の計測仕様から外れるものである。このような空気を、そのまま通常の湿度計や露点計で測定すると、センサ表面には、空気中の氷結粒や過冷却水滴が付着したり、過飽和蒸気の影響で霜が形成したりする。そのため、湿度計ではレンジオーバー(測定不能)と表示される。また、露点計が示す露点温度の値は、その空気の正確な露点温度でなく、それに基づいて求められた湿度の値も正確でない。   A normal hygrometer or dew point meter is a measuring instrument equipped with a sensor for measuring humidity below ice saturation. In other words, a normal hygrometer or dew point meter can measure only air that has a humidity of less than 100% and does not contain water droplets or icing. Therefore, the measurement of air at the low temperature and above the ice saturation is out of the measurement specifications of those measuring instruments as described above. When such air is directly measured with a normal hygrometer or dew point meter, icing particles or supercooled water droplets in the air adhere to the sensor surface, or frost is formed due to the influence of supersaturated steam. Therefore, the hygrometer indicates that the range is over (impossible to measure). Further, the dew point temperature value indicated by the dew point meter is not the exact dew point temperature of the air, and the humidity value obtained based on the dew point temperature is not accurate.

特許文献1に記載の人工結晶雪製造装置が氷飽和以上の飽和雰囲気の含水量を測定する手段を備えていないのは、その値を正確に測定できないためと考えられる。特許文献1には、供給する空気を氷飽和以上の空気湿度にするために、流路全体に少しずつ加湿するように加湿パンを多段に設けると記載されている。特許文献1では、供給する空気が氷飽和以上の空気湿度であることは、パンへの水の投入量や降雪量から推定していると考えられる。このような、供給する空気の含水量をパンへ投入する水の量から推定する手法は、あくまでも予測であり、供給する空気そのものを測るものではない。しかし、所望の形状や量の結晶雪を安定的に得るためには、供給する空気の含水量を計測し、その計測値から、パンへ投入する水の量や温度を調整することが好ましい。   The reason why the artificial crystal snow manufacturing apparatus described in Patent Document 1 does not include means for measuring the water content of a saturated atmosphere that is equal to or higher than ice saturation is because the value cannot be accurately measured. In Patent Document 1, it is described that humidification pans are provided in multiple stages so as to humidify the entire flow path little by little in order to make the supplied air an air humidity higher than ice saturation. In Patent Document 1, it is considered that the supplied air has an air humidity higher than or equal to ice saturation, which is estimated from the amount of water input to the pan and the amount of snowfall. Such a method of estimating the water content of the supplied air from the amount of water to be introduced into the pan is merely a prediction, and does not measure the supplied air itself. However, in order to stably obtain crystal snow having a desired shape and amount, it is preferable to measure the water content of the supplied air and adjust the amount and temperature of water to be poured into the pan from the measured value.

また、供給する空気の含水量を降雪量から推定する手法は、供給する空気の含水量の現在値を得る方法ではなく、降雪結果から求めた過去の値を得る方法である。このような手法では、所望の形状の結晶雪を安定的に得るまでに、水の投入量の調整と雪の分析を繰り返す必要があり、長期間を要することになる。特に、外気の水分を利用するために外気と冷気を混合させて降雪用の空気を作製するような降雪装置の場合、供給する空気の含水量に基づいて冷気の混合量を調整する必要がある場合もあり、このような手法では、タイムラグが大きく、所望の降雪用空気を作製することが困難である。   The method of estimating the water content of the supplied air from the amount of snowfall is not a method of obtaining the current value of the water content of the supplied air, but a method of obtaining a past value obtained from the snowfall result. In such a method, it is necessary to repeat the adjustment of the amount of water input and the analysis of the snow until a crystal snow having a desired shape is stably obtained, which requires a long time. In particular, in the case of a snowfall device that produces air for snowfall by mixing outside air and cold air in order to use the moisture of the outside air, it is necessary to adjust the amount of cold air mixed based on the moisture content of the supplied air In some cases, such a method has a large time lag and it is difficult to produce desired air for snowfall.

このように、例えば結晶型人工降雪の結晶雪を生成させる装置では、前述の状態にある空気を供給する必要があり、氷点下で氷飽和以上の空気の含水量を正確に連続的に計測することは、その装置で安定的に品質良く降雪させるために重要である。本発明は、かかる点に鑑みてなされたものであり、その課題は、正確な氷点下で氷飽和以上の空気の含水量計測方法および装置を提供することにある。   Thus, for example, in an apparatus for generating crystal snow of crystal type artificial snowfall, it is necessary to supply air in the above-described state, and the water content of air above ice saturation is accurately and continuously measured below freezing point. Is important to ensure stable and high quality snowfall with the equipment. This invention is made | formed in view of this point, The subject is providing the moisture content measuring method and apparatus of the air more than ice saturation under exact freezing point.

本発明は前記課題を解決するため以下の態様を含む。
(1)氷点下で氷飽和以上の空気の含水量計測方法であって、計測対象空気を含む空間から一定量の空気を吸入し、吸入した空気を加熱部によって加熱して氷飽和以下の空気にし、前記の氷飽和以下の空気の湿度を測定し、前記の測定した湿度の測定値から、計測対象空気の含水量を求める、氷点下で氷飽和以上の空気の含水量計測方法。
(2)前記計測対象空気は、過冷却水滴および/または氷結粒が飛散しており、前記の吸入した空気の加熱は、過冷却水滴および/または氷結粒の全量を気化させ、かつ氷飽和以下の空気にする、前記(1)に記載の氷飽和以上の空気の含水量計測方法。
(3)前記加熱部の、前記の吸入した空気が接する加熱体表面の温度を測定し、前記加熱体表面温度の測定値に基づいて、前記加熱体表面温度の測定値が、前記計測対象空気に含まれる水分の全量を水蒸気にすることができる加熱体表面温度設定値Ts以上になるように前記加熱体表面温度を制御し、前記制御は、前記加熱体表面温度の測定値が加熱体表面温度設定値Ts未満の場合は、加熱部に供給するエネルギー量を増やし、前記加熱体表面温度の測定値が加熱体表面温度設定値Ts以上の場合は、加熱部に供給するエネルギー量を維持する、前記(1)または(2)に記載の氷飽和以上の空気の含水量計測方法。
(4)前記の加熱後空気の湿度の測定値が設定値Hsより大きいときは、加熱体表面温度設定値Tsを上げ、前記湿度の測定値が設定値Hs以下のときは、加熱体表面温度の測定値を加熱体表面温度設定値Tsに維持するように制御する、前記(3)に記載の氷飽和以上の空気の含水量計測方法。
(5)更に、前記の加熱した空気の温度を測定し、加熱後空気の温度測定値が氷点下のときは、加熱体表面温度設定値Tsを上げ、加熱後空気の温度測定値が氷点より高いときは、加熱体表面温度の測定値を加熱体表面温度設定値Tsに維持するように制御する、前記(4)に記載の氷飽和以上の空気の含水量計測方法。
(6)前記の温度および/または湿度を測定した加熱後空気の一部または全部を、前記計測対象空気を含む空間に循環させる、前記(1)〜(5)のいずれか1つに記載の氷飽和以上の空気の含水量計測方法。
(7)前記(1)〜(6)のいずれか1つに記載の氷飽和以上の空気の含水量計測方法により計測した計測対象空気から結晶雪を生成させることを含む、結晶型人工降雪方法。
(8)測定対象の空気を吸入するための吸入口と、吸入した空気を加熱するための加熱体を備える加熱部と、前記加熱体の、吸入した空気が接触する表面の温度を測定するための加熱体表面温度測定部と、加熱した空気の湿度を測定するための湿度測定部と、前記加熱体表面温度の測定値を入力し、演算処理し、測定対象空気の含水量の値を出力し、加熱部に供給するエネルギー量を調節して加熱体表面温度を制御するための演算部と、測定した空気を排出するための排出口と、を備え、前記制御は、加熱体表面温度の測定値が設定値Ts未満であるときは加熱部に供給するエネルギー量を増やし、加熱体表面温度の測定値が設定値Ts以上であるときは加熱部に供給するエネルギー量を維持する、氷点下で氷飽和以上の空気の含水量計測装置。
(9)更に前記制御は、前記湿度測定部による測定値が設定値Hsより大きいときは加熱体表面温度の設定値Tsを上げ、前記湿度測定部による測定値が設定値Hs以下のときは加熱体表面温度の設定値Tsを維持する、前記(8)に記載の氷飽和以上の空気の含水量計測装置。
(10)更に、加熱後の空気の温度を測定するための加熱後空気温度測定部を備え、前記制御は、加熱後空気温度測定部による測定値が氷点下であるときは加熱体表面温度の設定値Tsを上げ、加熱後空気温度測定部による測定値が氷点より高いときは加熱体表面温度の設定値Tsを維持する、前記(9)に記載の氷飽和以上の空気の含水量計測装置。
(11)前記(8)〜(10)のいずれか1つに記載の氷飽和以上の空気の含水量計測装置を備える結晶型人工降雪装置。
The present invention includes the following aspects in order to solve the above problems.
(1) A method for measuring the moisture content of air that is below freezing and above ice saturation, inhaling a certain amount of air from the space containing the air to be measured, and heating the inhaled air to a temperature below ice saturation by the heating unit. The method for measuring the moisture content of air above the ice saturation below freezing point, wherein the humidity of the air below the ice saturation is measured, and the moisture content of the measurement target air is determined from the measured humidity value.
(2) The measurement target air is sprinkled with supercooled water droplets and / or ice particles, and heating of the inhaled air vaporizes the total amount of supercooled water droplets and / or ice particles and is below ice saturation. The method for measuring the water content of air that is not less than ice-saturated as described in (1) above.
(3) The temperature of the heating body surface that is in contact with the inhaled air of the heating unit is measured, and the measured value of the heating body surface temperature is calculated based on the measured value of the heating body surface temperature. The heating body surface temperature is controlled to be equal to or higher than the heating body surface temperature setting value Ts at which the total amount of moisture contained in the steam can be converted to water vapor, and the control is such that the measured value of the heating body surface temperature is the heating body surface When the temperature is less than the temperature setting value Ts, the amount of energy supplied to the heating unit is increased. When the measured value of the heating body surface temperature is equal to or higher than the heating body surface temperature setting value Ts, the amount of energy supplied to the heating unit is maintained. The method for measuring the water content of air above ice saturation as described in (1) or (2) above.
(4) When the measured value of the humidity of the air after heating is larger than the set value Hs, the heated body surface temperature set value Ts is increased, and when the measured value of the humidity is less than the set value Hs, the heated body surface temperature The method for measuring the moisture content of air above ice saturation as described in (3) above, wherein the measured value is controlled to be maintained at the heating body surface temperature set value Ts.
(5) Further, the temperature of the heated air is measured, and when the measured temperature value of the heated air is below freezing point, the heating body surface temperature set value Ts is increased, and the measured temperature value of the heated air is higher than the freezing point. The method for measuring the moisture content of air above ice saturation as described in (4) above, wherein the measured value of the heating body surface temperature is controlled to be maintained at the heating body surface temperature set value Ts.
(6) A part or all of the heated air whose temperature and / or humidity is measured is circulated in a space including the measurement target air, according to any one of (1) to (5). A method for measuring the moisture content of air above ice saturation.
(7) Crystal-type artificial snowfall method including generating crystal snow from measurement target air measured by the method for measuring water content of air above ice saturation according to any one of (1) to (6) .
(8) In order to measure the temperature of the surface of the heating body that comes into contact with the sucked air, and the heating section that includes a suction port for sucking the air to be measured, the heating body for heating the sucked air The heating body surface temperature measurement section, the humidity measurement section for measuring the humidity of the heated air, and the measured value of the heating body surface temperature are input, processed, and the moisture content value of the measurement target air is output. And an arithmetic unit for adjusting the amount of energy supplied to the heating unit to control the surface temperature of the heating body, and a discharge port for discharging the measured air. When the measured value is less than the set value Ts, the amount of energy supplied to the heating unit is increased, and when the measured value of the heating body surface temperature is equal to or greater than the set value Ts, the amount of energy supplied to the heating unit is maintained below freezing point. Equipment for measuring water content of air above ice saturation .
(9) Further, the control increases the set value Ts of the heating body surface temperature when the measured value by the humidity measuring unit is larger than the set value Hs, and heats when the measured value by the humidity measuring unit is less than the set value Hs. The water content measuring apparatus for air above ice saturation described in (8), which maintains the set value Ts of the body surface temperature.
(10) Further, a post-heating air temperature measurement unit for measuring the temperature of air after heating is provided, and the control sets the heating body surface temperature when the measured value by the post-heating air temperature measurement unit is below freezing point. The apparatus for measuring the moisture content of air above ice saturation as described in (9) above, wherein the value Ts is increased and the set value Ts of the heating body surface temperature is maintained when the measured value by the air temperature measuring unit after heating is higher than the freezing point.
(11) A crystal-type artificial snowfall device comprising the device for measuring water content of air above ice saturation according to any one of (8) to (10).

前記構成の含水量計測方法および装置によれば、正確に、場合により水滴や氷結粒を含むような氷点下で氷飽和以上の空気の含水量を計測する方法およびその装置を提供することが可能となる。また、湿度計・露点計で測定する空気を、必ず氷飽和以下の測定器仕様に合致した空気状態にできるので、通常の湿度計・露点計を用いて測定した値に基づいて、氷点下で氷飽和以上の空気の含水量を正確に計測できる。また、連続的に計測対象の空気の一部を吸入して現在値の含水量を計測できるので、降雪装置の制御等に組み込んで使用すると降雪品質の確保のための制御機構に寄与できる。   According to the moisture content measuring method and apparatus having the above-described configuration, it is possible to provide a method and apparatus for accurately measuring the moisture content of air above ice saturation under freezing point, which may include water droplets and ice flocculation. Become. In addition, since the air measured with a hygrometer / dew point meter can always be in an air condition that meets the specifications of the measuring instrument below ice saturation, the ice temperature is below the freezing point based on the value measured with a normal hygrometer / dew point meter. The water content of air above saturation can be accurately measured. In addition, since the water content of the current value can be measured by continuously inhaling part of the air to be measured, it can contribute to a control mechanism for ensuring snowfall quality when used in the control of a snowfall device.

本発明に係る含水量計測装置の一態様を示すブロック図である。It is a block diagram which shows the one aspect | mode of the moisture content measuring device which concerns on this invention. 本発明に係る加熱部の制御処理の一態様を示すフローチャートである。It is a flowchart which shows the one aspect | mode of the control process of the heating part which concerns on this invention. 本発明に係る加熱部の制御処理の別の態様を示すフローチャートである。It is a flowchart which shows another aspect of the control process of the heating part which concerns on this invention. 本発明に係る加熱部の制御処理の別の態様を示すフローチャートである。It is a flowchart which shows another aspect of the control process of the heating part which concerns on this invention.

本発明の氷点下で氷飽和以上の空気の含水量計測方法は、氷点下で氷飽和以上の空気(以下、「計測対象空気」と記載することがある。)を含む空間から一定量の空気を吸入し、吸入した空気を加熱部によって加熱して氷飽和以下の空気にし、その氷飽和以下の空気の湿度を測定し、測定した湿度の測定値から、計測対象空気の含水量を求める。   The method for measuring the moisture content of air below freezing point below the freezing point of the present invention draws a certain amount of air from a space containing air below freezing point and above freezing point (hereinafter sometimes referred to as “measurement target air”). Then, the inhaled air is heated by the heating unit to become air below ice saturation, the humidity of the air below ice saturation is measured, and the moisture content of the measurement target air is obtained from the measured humidity value.

本発明の含水量計測方法の計測対象である空気は、氷点下で氷飽和以上の空気である。氷点下で氷飽和以上の空気とは、温度が氷点下であり、かつ氷飽和以上の過飽和蒸気を含むもの、若しくは、温度が氷点下であり、かつ氷飽和蒸気または氷飽和以上の過飽和蒸気、および飛散した過冷却水滴および/または氷結粒を含むものである。ここで、氷点下とは、常圧で0℃以下をいう。   The air to be measured by the water content measuring method of the present invention is air that is below freezing point and above ice saturation. Air that is below freezing and above ice saturation is one that has a temperature below freezing and that contains supersaturated vapor that is above freezing, or that has a temperature below freezing and that is above ice saturated or above ice saturation, and has scattered. It contains supercooled water droplets and / or icing. Here, below freezing refers to 0 ° C. or less at normal pressure.

この計測対象空気は、例えば、水飽和以下の空気と、その空気より低温の空気とを混合して冷却することによって、または、引用文献1に記載されているように、40℃以下の温度の水を入れたパンに氷点下の空気を送風することによって、得られるものである。具体的に前者の方法では、例えば、温度20℃、相対湿度65%(絶対湿度0.01kg/kg(DA))の空気を、−20℃の空気と混合することによって冷却していくと、8℃程度で水飽和状態の空気となる。ここで、kg(DA)は、乾き空気の質量を示す。更に冷却すると、水飽和蒸気または水過飽和蒸気を含み、場合により水滴が飛散している水飽和以上の空気という過渡的な状態の空気になる。更に冷却して氷点下になると、水滴は過冷却状態または氷結粒となり、氷飽和蒸気または氷過飽和蒸気を含む、過渡的な状態である氷点下で氷飽和以上の空気が得られる。より具体的には、氷点下で氷飽和以上の空気は、例えば、温度が−16℃で、水分が質量1kgの乾き空気中に0.0015kg含まれる空気である。   This measurement target air is, for example, mixed with air that is lower than water saturation and air that is lower than that air and cooled, or, as described in Cited Document 1, at a temperature of 40 ° C. or lower. It is obtained by blowing below-freezing air into a pan containing water. Specifically, in the former method, for example, when air at a temperature of 20 ° C. and a relative humidity of 65% (absolute humidity 0.01 kg / kg (DA)) is cooled by mixing with air at −20 ° C., It becomes air saturated with water at about 8 ° C. Here, kg (DA) indicates the mass of dry air. Further cooling results in a transient state of air that contains water saturated steam or water supersaturated steam and possibly water saturation or higher air in which water droplets are scattered. When further cooled to below freezing point, the water droplets become supercooled or frozen, and air above ice saturation is obtained below freezing point, which is a transitional state including ice saturated vapor or ice supersaturated vapor. More specifically, the air that is above the freezing point below freezing point is, for example, 0.0015 kg of dry air having a temperature of −16 ° C. and moisture of 1 kg.

本発明の氷点下で氷飽和以上の空気の含水量計測方法を、図を参照しながら更に説明する。図1は、本発明の含水量計測方法に用いられる装置の一態様を示すブロック図である。図1に示す含水量計測装置は、測定対象の空気を吸入するための吸入口5と、吸入した空気を加熱するための加熱体を備える加熱部3と、前記加熱体の、吸入した空気が接触する表面の温度を測定するための加熱体表面温度測定部8と、加熱した空気の湿度を測定するための湿度測定部6と、前記加熱体表面温度の測定値を入力し、演算処理し、測定対象空気の含水量の値を出力し、加熱部に供給するエネルギー量を調節して加熱体表面温度を制御するための演算部9と、測定した空気を排出するための排出口10とを備える。   The method for measuring the water content of air below the freezing point below the freezing point of the present invention will be further described with reference to the drawings. FIG. 1 is a block diagram showing an aspect of an apparatus used in the water content measuring method of the present invention. The moisture content measuring apparatus shown in FIG. 1 includes an inlet 5 for inhaling air to be measured, a heating unit 3 having a heating body for heating the inhaled air, and the inhaled air of the heating body. A heating body surface temperature measuring unit 8 for measuring the temperature of the contacting surface, a humidity measuring unit 6 for measuring the humidity of the heated air, and a measured value of the heating body surface temperature are input and processed. The calculation unit 9 for outputting the moisture content value of the air to be measured, adjusting the amount of energy supplied to the heating unit to control the surface temperature of the heating body, and the discharge port 10 for discharging the measured air Is provided.

本発明の氷点下で氷飽和以上の空気の含水量計測方法では、まず、計測対象である氷点下で氷飽和以上の空気を含む空間2から吸入口5を通して一定量の空気を含水量計測装置1内に吸入する。吸入手段は特に限定されないが、通常、ファン4などを用いて、含水量計測装置1内の気圧を、計測対象空気を含む空間より負圧にして、吸入口5からその一部を吸入する。単位時間当たりの吸入量は、ファン4の出力並びにダンパ10およびダンパ11の開度を変えて調整できる。ファン4は、測定対象空気が加熱部3で加熱される前に、衝撃などによって、過飽和状態が解除されたり、過冷却水滴が過冷却解除されたり、水滴が壁面に付着したりしないように、加熱部3より下流側に設けることが好ましい。   In the method for measuring the moisture content of air below freezing point below the freezing point of the present invention, first, a constant amount of air is passed through the suction port 5 from the space 2 containing air above freezing point below the freezing point to be measured. Inhale to. Although the suction means is not particularly limited, usually, the fan 4 or the like is used to make the air pressure in the water content measuring device 1 negative from the space including the measurement target air, and a part thereof is sucked from the suction port 5. The amount of suction per unit time can be adjusted by changing the output of the fan 4 and the opening degree of the damper 10 and the damper 11. Before the air to be measured is heated by the heating unit 3, the fan 4 is prevented from being oversaturated by an impact or the like, from being overcooled by a supercooled water droplet, or from being attached to a wall surface. It is preferable to provide on the downstream side of the heating unit 3.

次に、吸入した測定対象空気を、加熱部3によって加熱して湿度が氷飽和以下の空気にする。測定対象空気に、水滴および/または氷結粒が飛散している場合には、加熱部3によって、その水滴および/または氷結粒の全量を気化させる。加熱部3は、氷点下で氷飽和以上の空気を湿度が氷飽和以下の空気にすることができるものであれば特に限定されず、例えば、電気ヒーター、熱交換器(蒸気コイルなど)が挙げられる。特に、加熱部は、加熱部が備える加熱体の表面であって、測定対象空気が接する部分の温度を温度測定部8で測定して、その表面温度測定値に基づいて、加熱部に供給するエネルギー量を調整して、加熱体表面温度を制御できることが好ましい。   Next, the inhaled measurement target air is heated by the heating unit 3 so that the humidity is equal to or lower than ice saturation. When water droplets and / or ice particles are scattered in the measurement target air, the heating unit 3 vaporizes the entire amount of the water droplets and / or ice particles. The heating unit 3 is not particularly limited as long as it can change the air above the ice saturation below the freezing point to an air whose humidity is below the ice saturation, and examples thereof include an electric heater and a heat exchanger (steam coil, etc.). . In particular, the heating unit measures the temperature of the surface of the heating body included in the heating unit, and the temperature measurement unit 8 contacts the measurement target air, and supplies the temperature to the heating unit based on the surface temperature measurement value. It is preferable that the surface temperature of the heating body can be controlled by adjusting the amount of energy.

加熱体表面温度を測定する温度測定部8としては、特に限定されないが、例えば、測温抵抗体、熱電対、サーミスタなどの接触式温度センサや、赤外線センサなどの非接触式温度センサを用いることができる。温度測定部8は、加熱体表面温度を測定して温度信号を出力できるセンサであることが好ましい。接触式温度センサは、加熱体表面に半田付けなどにより固定して測定できる。   Although it does not specifically limit as the temperature measurement part 8 which measures a heating body surface temperature, For example, using non-contact-type temperature sensors, such as contact temperature sensors, such as a resistance temperature detector, a thermocouple, and a thermistor, and an infrared sensor. Can do. The temperature measuring unit 8 is preferably a sensor that can measure the surface temperature of the heating body and output a temperature signal. The contact-type temperature sensor can be measured by being fixed to the surface of the heating body by soldering or the like.

次に、加熱部3の下流に設けた湿度測定部6を用いて、加熱部3によって加熱されて氷飽和以下となった空気の湿度を測定する。湿度測定部6は、特に限定されないが、乾湿計、伸縮式湿度計、電気式湿度計、露点計、高分子湿度センサなどを用いることができる。中でも、湿度を測定して湿度信号を出力できる湿度センサが好ましい。   Next, the humidity of the air heated by the heating unit 3 and below ice saturation is measured using the humidity measuring unit 6 provided downstream of the heating unit 3. Although the humidity measuring unit 6 is not particularly limited, a moisture meter, a telescopic hygrometer, an electric hygrometer, a dew point meter, a polymer humidity sensor, or the like can be used. Among them, a humidity sensor that can measure humidity and output a humidity signal is preferable.

この様にして得られた湿度の測定値から、計測対象空気の含水量を求める。具体的には、湿度の測定値が絶対湿度x(kg/kg(DA))として得られる場合、計測対象空気の含水量は、乾き空気1(kg)に対してx(kg)である。また、湿度の測定値が相対湿度φ(%RH)で得られる場合、例えば、「空気調和・衛生工学便覧第13版」空気調和・衛生工学会、丸善出版、2001年11月、第1巻、p.76−80に記載された関係式により、その相対湿度φとその湿度を測定した空気の温度T(K)から絶対湿度x(kg/kg(DA))を演算して求めることができ、計測対象空気の含水量は、乾き空気1(kg)に対してx(kg)である。
具体的には、温度T(K)とウェクスラー・ハイランド(Wexler−Hyland)の式(1)により、その温度における水の飽和蒸気圧P(kPa)を得、
液体の水と接する場合(0.01℃以上):ln(10)=−0.58002206×10/T+0.13914993×10−0.48640239×10−1T+0.41764768×10−4−0.14452093×10−7+0.65459673×10×lnT、氷と接する場合(0.01℃以下):ln(10)=−0.56745359×10/T+0.63925247×10−0.96778430×10−2T+0.62215701×10−6+0.20747825×10−8−0.94840240×10−12+0.41635019×10×lnT ・・・式(1)
前記Pと式(2)により、その温度Tにおける飽和空気の水蒸気分圧pws(kPa)を得、
ws=P ・・・式(2)
前記pwsおよび相対湿度φと式(3)により、水蒸気分圧p(kPa)を得、
φ=100p/pws ・・・式(3)
海抜Z(m)および標準大気圧P(=101.325(kPa))と式(4)により、大気圧P(kPa)を得、
P=P(1−2.2558×10−5Z)5.2559 ・・・式(4)
前記p、前記P、乾き空気の平均分子量M(=28.9645(g/mol))、および水蒸気の分子量M(=18.0153(g/mol))と式(5)により、絶対湿度x(kg/kg(DA))を得ることができ、計測対象空気の含水量は、乾き空気1(kg)に対してx(kg)である。
x=M/M×p/(P−p) ・・・式(5)
The moisture content of the air to be measured is determined from the humidity measurement value obtained in this way. Specifically, when the measured value of humidity is obtained as absolute humidity x (kg / kg (DA)), the water content of the measurement target air is x (kg) with respect to 1 (kg) of dry air. Moreover, when the measured value of humidity is obtained at relative humidity φ (% RH), for example, “Air Conditioning and Sanitary Engineering Handbook 13th Edition”, Air Conditioning and Sanitary Engineering Association, Maruzen Publishing, November 2001, Volume 1 , P. The absolute humidity x (kg / kg (DA)) can be calculated from the relative humidity φ and the air temperature T (K) at which the humidity is measured by the relational expression described in 76-80. The water content of the target air is x (kg) with respect to 1 (kg) of dry air.
Specifically, the saturated vapor pressure P s (kPa) of water at that temperature is obtained from the temperature T (K) and the Wexler-Hyland equation (1),
When in contact with liquid water (0.01 ° C. or higher): ln (10 3 P s ) = − 0.58002206 × 10 4 /T+0.139149993×10−0.48640239×10 −1 T + 0.417676868 × 10 −4 T 2 −0.14452093 × 10 −7 T 3 + 0.654595973 × 10 × lnT, in contact with ice (below 0.01 ° C.): ln (10 3 P s ) = − 0.567745359 × 10 4 / T + 0. 63925247 × 10−0.96778430 × 10 −2 T + 0.6221215701 × 10 −6 T 2 + 0.20747825 × 10 −8 T 3 −0.94840 240 × 10 −12 T 4 + 0.416335019 × 10 × lnT Formula (1)
By the P s and the equation (2), the water vapor partial pressure p ws (kPa) of saturated air at the temperature T is obtained,
p ws = P s (2)
The water vapor partial pressure p w (kPa) is obtained from the p ws and the relative humidity φ and the equation (3),
φ = 100 p w / p ws Formula (3)
From the sea level Z (m) and the standard atmospheric pressure P 0 (= 101.325 (kPa)) and the equation (4), the atmospheric pressure P (kPa) is obtained,
P = P 0 (1-2.558 × 10 −5 Z) 5.2559 Expression (4)
The p w , the P, the average molecular weight M a of dry air (= 28.9645 (g / mol)), the molecular weight M w of water vapor (= 18.0153 (g / mol)) and the formula (5), Absolute humidity x (kg / kg (DA)) can be obtained, and the water content of the measurement target air is x (kg) with respect to 1 (kg) of dry air.
x = M w / M a × p w / (P-p w) ··· (5)

加熱後の空気の温度は、特に限定されないが、氷点以上であると好ましい。氷点以上であると、計測装置の躯体による冷却などによって加熱後の空気の温度が下がる場合であっても、水蒸気が水滴や氷結粒になることを防ぐことができる。加熱後の空気の温度は、加熱部の下流側に設けた温度測定部7で測定できる。温度測定部7としては、特に限定されないが、例えば、測温抵抗体、熱電対、サーミスタなどの接触式温度センサや、赤外線センサなどの非接触式温度センサを用いることができる。温度測定部7は、加熱体表面温度を測定して温度信号を出力できるセンサであることが好ましい。   The temperature of the air after heating is not particularly limited, but is preferably a freezing point or higher. When the temperature is above the freezing point, it is possible to prevent water vapor from becoming water droplets or icing, even when the temperature of the heated air is lowered due to cooling by the housing of the measuring device. The temperature of the air after heating can be measured by the temperature measuring unit 7 provided on the downstream side of the heating unit. Although it does not specifically limit as the temperature measurement part 7, For example, non-contact-type temperature sensors, such as contact-type temperature sensors, such as a resistance thermometer, a thermocouple, a thermistor, and an infrared sensor can be used. The temperature measuring unit 7 is preferably a sensor that can measure the surface temperature of the heating body and output a temperature signal.

本発明の計測方法では、図2に示すように、加熱部の加熱体表面の温度を温度測定部8で測定し、温度測定部8が出力する温度信号を演算部9に入力し、その加熱体表面温度測定値に基づいて、加熱体表面温度の測定値が、計測対象空気に含まれる水分の全量を水蒸気にすることができる加熱体表面温度設定値Ts以上になるように制御することが好ましい。ここで、加熱体表面温度設定値Tsは、吸入する計測対象空気の量、含水量、温度により異なるが、例えば、50℃以上、好ましくは80℃以上、より好ましくは100℃またはそれ以上の温度である。この制御は、例えば、加熱体表面温度の測定値が加熱体表面温度設定値Ts未満の場合は、加熱部3に供給するエネルギー量を増やし、加熱体表面温度の測定値が設定値Ts以上の場合は、加熱部に供給するエネルギー量を維持または減らすことによりおこなう。加熱体へ供給するエネルギー量は、例えば、加熱体が電気ヒーターなどの場合には電流を、加熱体が熱交換器などの場合は水蒸気の温度や流量を調節して、増減させることができる。   In the measuring method of the present invention, as shown in FIG. 2, the temperature of the heating body surface of the heating unit is measured by the temperature measuring unit 8, the temperature signal output from the temperature measuring unit 8 is input to the calculating unit 9, and the heating is performed. Based on the body surface temperature measurement value, the measurement value of the heating body surface temperature is controlled to be equal to or higher than the heating body surface temperature setting value Ts that can change the total amount of moisture contained in the measurement target air to water vapor. preferable. Here, the heating body surface temperature set value Ts varies depending on the amount of measurement target air to be sucked in, the water content, and the temperature. For example, the temperature is 50 ° C. or higher, preferably 80 ° C. or higher, more preferably 100 ° C. or higher. It is. In this control, for example, when the measured value of the heating body surface temperature is less than the heating body surface temperature set value Ts, the amount of energy supplied to the heating unit 3 is increased, and the measured value of the heating body surface temperature is greater than or equal to the set value Ts. In this case, the amount of energy supplied to the heating unit is maintained or reduced. The amount of energy supplied to the heating element can be increased or decreased, for example, by adjusting the current when the heating element is an electric heater or the like, and adjusting the temperature or flow rate of water vapor when the heating element is a heat exchanger or the like.

加熱体表面温度の初期測定値は、例えば、常温である。また、加熱体表面温度は、計測対象空気を吸入する前に、設定値Tsまで昇温しておくこともでき、計測対象空気を吸入しながら設定値Tsまで昇温することもできる。   The initial measured value of the heating body surface temperature is, for example, room temperature. The heating body surface temperature can be raised to the set value Ts before inhaling the measurement target air, or can be raised to the set value Ts while inhaling the measurement target air.

計測対象空気を吸入すると、加熱体表面に計測対象空気が接触する。加熱体へ供給するエネルギー量が一定の場合、顕熱や潜熱により加熱体表面温度は低下して設定値Ts未満となる。加熱体表面温度を測定し、加熱体表面温度測定値が設定値Ts未満の場合、演算部9により加熱体へ供給するエネルギー量を増やす。この処理を繰り返し、加熱体表面温度測定値が設定値Ts以上になったら、加熱体へ供給するエネルギー量をその値に維持または減らし、その後継続して加熱体表面温度測定値を監視して、一定値を維持するように、加熱部の加熱体へ供給するエネルギー量を制御する。このように、加熱体表面温度の測定値に基づいて、加熱体へ供給するエネルギー量を徐々に増やして加熱体表面温度を設定値Tsにすると、計測対象空気に含まれる水分の全量を水蒸気にするために必要な、加熱体へ供給するエネルギー量を最低限にすることができる。従って、このような制御によれば、例えば、加熱体へ供給するエネルギー量を、計測対象空気を吸入しない状態で加熱体表面の温度が250℃程度になるような値に固定する場合に比べて、少なくて済むので省エネである。また、水分量や風量に対して加熱量が足りなくなる場合や、経路外からの熱のリーク等によって、水滴や氷結粒の気化が不十分となることが防げるので、含水量を正確に計測できる。   When the measurement target air is inhaled, the measurement target air comes into contact with the surface of the heating body. When the amount of energy supplied to the heating body is constant, the surface temperature of the heating body decreases due to sensible heat or latent heat and becomes less than the set value Ts. The heating body surface temperature is measured, and when the heating body surface temperature measurement value is less than the set value Ts, the amount of energy supplied to the heating body is increased by the calculation unit 9. When this process is repeated and the heating body surface temperature measurement value is equal to or higher than the set value Ts, the amount of energy supplied to the heating body is maintained or reduced to that value, and then the heating body surface temperature measurement value is continuously monitored, The amount of energy supplied to the heating element of the heating unit is controlled so as to maintain a constant value. Thus, based on the measured value of the heating body surface temperature, when the amount of energy supplied to the heating body is gradually increased and the heating body surface temperature is set to the set value Ts, the total amount of moisture contained in the measurement target air is changed to water vapor. It is possible to minimize the amount of energy supplied to the heating body that is necessary for the purpose. Therefore, according to such control, for example, the amount of energy supplied to the heating body is fixed to a value such that the temperature of the heating body surface is about 250 ° C. without inhaling the measurement target air. Because it is less, it is energy saving. In addition, water content can be accurately measured because it is possible to prevent the amount of heat and air flow from becoming insufficient, or from insufficient vaporization of water droplets and icing due to heat leakage from outside the path. .

更に、本発明の計測方法では、図3に示すように、湿度測定部6で測定した加熱後空気の湿度の測定値が設定値Hsより大きいときは、加熱体表面温度設定値Tsを上げ、湿度の測定値が設定値Hs以下のときは、加熱体表面温度の測定値を加熱体表面温度設定値Tsに維持するように演算部9で制御することが好ましい。設定値Hsは、例えば、飽和湿度である相対湿度100%や、それに準ずる高湿度(例えば、相対湿度90%)である。加熱後空気の湿度の測定値が高湿度を示す場合、加熱部による加熱が不十分で、水滴などが全量蒸発していないおそれや、湿度の測定精度が低下するおそれがあるが、前述の制御を行うことにより、氷点下で氷飽和以上の空気中に含まれる水滴や氷結粒の全量が蒸発することを保証し、湿度の測定精度を向上させることができる。また、前述の制御により、湿度測定値に基づいて加熱体表面温度設定値Tsを徐々に上げると、最低限のエネルギー量で含水量を正確に計測できる状態にすることができるので、省エネである。   Furthermore, in the measuring method of the present invention, as shown in FIG. 3, when the measured value of the humidity of the heated air measured by the humidity measuring unit 6 is larger than the set value Hs, the heating body surface temperature set value Ts is increased, When the measured value of humidity is equal to or lower than the set value Hs, it is preferable that the calculation unit 9 controls the measured value of the heated body surface temperature to be maintained at the heated body surface temperature set value Ts. The set value Hs is, for example, a relative humidity of 100%, which is a saturated humidity, or a high humidity equivalent thereto (for example, a relative humidity of 90%). If the measured value of the humidity of the air after heating indicates high humidity, heating by the heating unit may be insufficient and water droplets may not evaporate completely, or the humidity measurement accuracy may be reduced. By performing the above, it is possible to ensure that the entire amount of water droplets and ice particles contained in the air that is above the ice saturation below the freezing point evaporates, and the humidity measurement accuracy can be improved. In addition, when the heating body surface temperature setting value Ts is gradually increased based on the humidity measurement value by the above-described control, the water content can be accurately measured with the minimum energy amount, which is energy saving. .

更に、本発明の計測方法では、図4に示すように、加熱部下流に設けた温度測定部7で、加熱後空気の温度を測定し、加熱後空気の温度測定値が氷点下のときは、加熱体表面温度設定値Tsを上げ、加熱後空気の温度測定値が氷点より高いときは、加熱体表面温度の測定値が設定値Tsを維持するように制御することが好ましい。このような制御を行うことにより、水分量や風量に対して加熱量が足りない場合や、経路外からの熱のリーク等により、加熱部下流で蒸気が再凝縮して水滴になることや、その水滴の凍結を防ぎ、水分量を正確に計測できる。また、このように、加熱後空気の温度測定値が氷点より高くなるまで徐々に加熱体表面温度設定値Tsを上げる制御を行うことにより、最低限のエネルギー量で含水量を正確に計測でき、省エネである。   Furthermore, in the measurement method of the present invention, as shown in FIG. 4, the temperature measurement unit 7 provided downstream of the heating unit measures the temperature of the heated air, and when the measured temperature value of the heated air is below freezing point, When the heating body surface temperature set value Ts is increased and the measured temperature value of the air after heating is higher than the freezing point, it is preferable to control the measured value of the heating body surface temperature to maintain the set value Ts. By performing such control, when the heating amount is insufficient with respect to the moisture amount and the air amount, or due to heat leakage from the outside of the path, the steam is recondensed into water droplets downstream of the heating unit, The water droplets can be prevented from freezing and the amount of water can be measured accurately. In addition, the water content can be accurately measured with the minimum amount of energy by performing control to gradually increase the heating body surface temperature setting value Ts until the temperature measurement value of the air after heating becomes higher than the freezing point, It is energy saving.

本発明の含水量計測方法に用いて加熱された空気は、本発明に係る含水量計測装置1に備えられたダンパ10を介して、外部に排出する。また、図1に示すように、含水量計測装置1に備えられたダンパ11を介して、計測対象空気を含む空間2に戻して循環させることができる。本発明の含水量計測方法は、計測対象空気の一部を、正確に含水量を計測できる最低限のエネルギー量で加熱しているので、その加熱した空気を、計測対象空気に戻す際に特に優れている。循環させる場合には、必要によりファン12で、氷飽和以上の空気を作製する装置13を通して、冷却や加湿をして氷飽和以上の空気にしてから、計測対象空気を含む空間2に戻すことができる。氷飽和以上の空気を作製する装置13は、湿度測定部6で測定した湿度測定値を制御値として使用することができる。計測対象空気を含む空間2は、例えば、結晶型人工降雪装置が備える降雪用空気を含む空間とすることができる。   The air heated using the moisture content measuring method of the present invention is discharged to the outside through the damper 10 provided in the moisture content measuring device 1 according to the present invention. Moreover, as shown in FIG. 1, it can return and circulate to the space 2 containing measurement object air via the damper 11 with which the moisture content measuring device 1 was equipped. In the water content measurement method of the present invention, a part of the measurement target air is heated with a minimum amount of energy that can accurately measure the water content, and therefore when the heated air is returned to the measurement target air. Are better. In the case of circulation, if necessary, the fan 12 can be cooled or humidified through the device 13 for producing air above ice saturation to be air above ice saturation and then returned to the space 2 containing the measurement target air. it can. The device 13 that produces air that is above ice saturation can use the humidity measurement value measured by the humidity measurement unit 6 as a control value. The space 2 including the measurement target air can be, for example, a space including snowfall air included in the crystal type artificial snowfall device.

本発明の含水量計測方法で測定した、氷点下で氷飽和以上の空気を用い、その空気から結晶雪を生成させて降雪させることができる。この結晶型人工降雪方法によれば、温度と含水量が特定の値であることを正確にかつ連続的に計測して確認した、氷点下で氷飽和以上の空気を用いることができるので、結晶形状が均一で品質の優れた人工降雪を得ることができる。   It is possible to generate snow by making crystal snow from the air measured by the water content measuring method of the present invention and above the freezing point and above the ice saturation. According to this crystal-type artificial snowfall method, it is possible to use air above ice saturation below freezing point, which has been confirmed by accurately and continuously measuring that the temperature and water content are specific values. It is possible to obtain artificial snowfall with uniform and excellent quality.

本発明の含水量計測方法および装置は、降雪装置における降雪用空気の含水量の計測に適しているが、その測定対象によって限定されず、氷飽和以上の過飽和蒸気、過冷却水滴、またはそれが氷結した状態が単独または複数混合した状態の空気を測定する全ての場合、例えば、気球などに搭載して雲の中の空気の測定に用いたり、自然降雪中の雪を含む空気の測定に用いることもできる。   The water content measuring method and apparatus of the present invention are suitable for measuring the water content of snowing air in a snowfall device, but are not limited by the measurement target, and are not limited to supersaturated steam, supercooled water droplets above ice saturation, or In all cases where air is frozen or mixed in a mixed state, for example, it is mounted on a balloon and used to measure air in clouds, or it is used to measure air containing snow in natural snowfall. You can also.

1 含水量計測装置
2 氷飽和以上の空気(測定対象空気)を含む空間
3 加熱部
4、12 ファン
5 吸入口
6 湿度測定部
7、8 温度測定部
9 演算部
10、11 ダンパ(排出口)
13 氷飽和以上の空気を作製する装置
DESCRIPTION OF SYMBOLS 1 Water content measuring apparatus 2 Space containing air more than ice saturation (measurement target air) 3 Heating unit 4, 12 Fan 5 Suction port 6 Humidity measuring unit 7, 8 Temperature measuring unit 9 Arithmetic unit 10, 11 Damper (exhaust port)
13 Equipment for producing air that is above ice saturation

Claims (11)

氷点下で氷飽和以上の空気の含水量計測方法であって、
計測対象空気を含む空間から一定量の空気を吸入し、
吸入した空気を加熱部によって加熱して氷飽和以下の空気にし、
前記の氷飽和以下の空気の湿度を測定し、
前記の測定した湿度の測定値から、計測対象空気の含水量を求める、氷点下で氷飽和以上の空気の含水量計測方法。
A method for measuring the water content of air that is below freezing and above ice saturation,
Inhale a certain amount of air from the space containing the air to be measured,
The inhaled air is heated by the heating unit to make the air below ice saturation,
Measure the humidity of air below the ice saturation,
A method for measuring the moisture content of air that is below freezing point and above ice saturation, wherein the moisture content of the air to be measured is obtained from the measured humidity value.
前記計測対象空気は、過冷却水滴および/または氷結粒が飛散しており、
前記の吸入した空気の加熱は、過冷却水滴および/または氷結粒の全量を気化させ、かつ氷飽和以下の空気にする、請求項1に記載の氷飽和以上の空気の含水量計測方法。
In the measurement target air, supercooled water droplets and / or ice particles are scattered,
The method for measuring the moisture content of air above ice saturation according to claim 1, wherein the heating of the sucked air vaporizes the entire amount of supercooled water droplets and / or ice particles and makes the air below ice saturation.
前記加熱部の、前記の吸入した空気が接する加熱体表面の温度を測定し、
前記加熱体表面温度の測定値に基づいて、前記加熱体表面温度の測定値が、前記計測対象空気に含まれる水分の全量を水蒸気にすることができる加熱体表面温度設定値Ts以上になるように前記加熱体表面温度を制御し、
前記制御は、前記加熱体表面温度の測定値が加熱体表面温度設定値Ts未満の場合は、加熱部に供給するエネルギー量を増やし、
前記加熱体表面温度の測定値が加熱体表面温度設定値Ts以上の場合は、加熱部に供給するエネルギー量を維持する、請求項1または2に記載の氷飽和以上の空気の含水量計測方法。
Measure the temperature of the heating body surface of the heating unit that is in contact with the inhaled air,
Based on the measured value of the heating body surface temperature, the measured value of the heating body surface temperature is equal to or higher than the heating body surface temperature setting value Ts that can change the total amount of moisture contained in the measurement target air to water vapor. The heating body surface temperature is controlled,
When the measured value of the heating body surface temperature is less than the heating body surface temperature setting value Ts, the control increases the amount of energy supplied to the heating unit,
The method for measuring the moisture content of air exceeding ice saturation according to claim 1 or 2, wherein the amount of energy supplied to the heating unit is maintained when the measured value of the heating body surface temperature is equal to or higher than the heating body surface temperature set value Ts. .
前記の加熱後空気の湿度の測定値が設定値Hsより大きいときは、加熱体表面温度設定値Tsを上げ、
前記湿度の測定値が設定値Hs以下のときは、加熱体表面温度の測定値を加熱体表面温度設定値Tsに維持するように制御する、請求項3に記載の氷飽和以上の空気の含水量計測方法。
When the measured value of the humidity of the air after heating is larger than the set value Hs, the heating body surface temperature set value Ts is increased,
When the measured value of the humidity is equal to or lower than the set value Hs, the measured value of the heated body surface temperature is controlled to be maintained at the set temperature of the heated body surface Ts. Water volume measurement method.
更に、前記の加熱した空気の温度を測定し、
加熱後空気の温度測定値が氷点下のときは、加熱体表面温度設定値Tsを上げ、
加熱後空気の温度測定値が氷点より高いときは、加熱体表面温度の測定値を加熱体表面温度設定値Tsに維持するように制御する、請求項4に記載の氷飽和以上の空気の含水量計測方法。
Furthermore, the temperature of the heated air is measured,
When the temperature measurement value of the air after heating is below freezing point, the heating body surface temperature setting value Ts is increased,
5. When the measured temperature value of air after heating is higher than the freezing point, the measured value of the heated body surface temperature is controlled so as to be maintained at the heated body surface temperature set value Ts. Water volume measurement method.
前記の温度および/または湿度を測定した加熱後空気の一部または全部を、前記計測対象空気を含む空間に循環させる、請求項1〜5のいずれか1項に記載の氷飽和以上の空気の含水量計測方法。   The part of or the whole of the heated air whose temperature and / or humidity is measured is circulated in a space including the measurement target air. Water content measurement method. 請求項1〜6のいずれか1項に記載の氷飽和以上の空気の含水量計測方法により計測した計測対象空気から結晶雪を生成させることを含む、結晶型人工降雪方法。   A crystal-type artificial snowfall method comprising generating crystal snow from measurement target air measured by the water content measurement method for air above ice saturation according to any one of claims 1 to 6. 計測対象の空気を吸入するための吸入口と、
吸入した空気を加熱するための加熱体を備える加熱部と、
前記加熱体の、吸入した空気が接触する表面の温度を測定するための加熱体表面温度測定部と、
加熱した空気の湿度を測定するための湿度測定部と、
前記加熱体表面温度の測定値を入力し、演算処理し、測定対象空気の含水量の値を出力し、加熱部に供給するエネルギー量を調節して加熱体表面温度を制御するための演算部と、
測定した空気を排出するための排出口と、
を備え、前記制御は、
加熱体表面温度の測定値が設定値Ts未満であるときは加熱部に供給するエネルギー量を増やし、
加熱体表面温度の測定値が設定値Ts以上であるときは加熱部に供給するエネルギー量を維持する、
氷点下で氷飽和以上の空気の含水量計測装置。
An inlet for inhaling air to be measured;
A heating unit comprising a heating element for heating the inhaled air;
A heating body surface temperature measurement unit for measuring the temperature of the surface of the heating body that is in contact with the inhaled air; and
A humidity measuring unit for measuring the humidity of the heated air;
Calculation unit for controlling the heating body surface temperature by inputting the measured value of the heating body surface temperature, calculating and processing, outputting the moisture content value of the air to be measured, and adjusting the amount of energy supplied to the heating unit When,
An outlet for discharging the measured air;
The control includes
When the measured value of the heating body surface temperature is less than the set value Ts, increase the amount of energy supplied to the heating unit,
When the measured value of the heating body surface temperature is equal to or higher than the set value Ts, the amount of energy supplied to the heating unit is maintained.
A device for measuring the water content of air below freezing point below freezing point.
更に前記制御は、
前記湿度測定部による測定値が設定値Hsより大きいときは加熱体表面温度の設定値Tsを上げ、
前記湿度測定部による測定値が設定値Hs以下のときは加熱体表面温度の設定値Tsを維持する、
請求項8に記載の氷飽和以上の空気の含水量計測装置。
Furthermore, the control
When the measured value by the humidity measuring unit is larger than the set value Hs, the set value Ts of the heating body surface temperature is increased,
When the measured value by the humidity measuring unit is equal to or lower than the set value Hs, the set value Ts of the heating body surface temperature is maintained.
The water content measuring device of air more than ice saturation according to claim 8.
更に、加熱後の空気の温度を測定するための加熱後空気温度測定部を備え、
前記制御は、
加熱後空気温度測定部による測定値が氷点下であるときは加熱体表面温度の設定値Tsを上げ、
加熱後空気温度測定部による測定値が氷点より高いときは加熱体表面温度の設定値Tsを維持する、
請求項9に記載の氷飽和以上の空気の含水量計測装置。
Furthermore, a post-heating air temperature measuring unit for measuring the temperature of air after heating is provided,
The control is
When the measured value by the air temperature measuring unit after heating is below freezing point, increase the set value Ts of the heating body surface temperature,
When the measured value by the air temperature measuring unit after heating is higher than the freezing point, the set value Ts of the heating body surface temperature is maintained.
The water content measuring device of air more than ice saturation according to claim 9.
請求項8〜10のいずれか1項に記載の氷飽和以上の空気の含水量計測装置を備える結晶型人工降雪装置。   A crystal-type artificial snowfall device comprising the device for measuring the water content of air above ice saturation according to any one of claims 8 to 10.
JP2013112379A 2013-05-28 2013-05-28 Method and apparatus for measuring water content of air below freezing point below freezing point Active JP6151567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013112379A JP6151567B2 (en) 2013-05-28 2013-05-28 Method and apparatus for measuring water content of air below freezing point below freezing point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013112379A JP6151567B2 (en) 2013-05-28 2013-05-28 Method and apparatus for measuring water content of air below freezing point below freezing point

Publications (2)

Publication Number Publication Date
JP2014231937A true JP2014231937A (en) 2014-12-11
JP6151567B2 JP6151567B2 (en) 2017-06-21

Family

ID=52125430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013112379A Active JP6151567B2 (en) 2013-05-28 2013-05-28 Method and apparatus for measuring water content of air below freezing point below freezing point

Country Status (1)

Country Link
JP (1) JP6151567B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3415958A1 (en) * 2017-06-14 2018-12-19 E+E Elektronik Ges.M.B.H. Method for operating a sensor arrangement and appropriate sensor arrangement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526828A (en) * 1991-07-19 1993-02-02 Fuji Electric Co Ltd Method and device for measuring liquid water content in air
JPH09329380A (en) * 1996-06-07 1997-12-22 Toyo Eng Works Ltd Artificial crystal snow making device
JP2008298330A (en) * 2007-05-30 2008-12-11 Toyo Eng Works Ltd Method of measuring air temperature in atmosphere higher than ice saturation and snowing device using the same
JP2011022015A (en) * 2009-07-16 2011-02-03 Espec Corp Environmental test method and environmental testing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526828A (en) * 1991-07-19 1993-02-02 Fuji Electric Co Ltd Method and device for measuring liquid water content in air
JPH09329380A (en) * 1996-06-07 1997-12-22 Toyo Eng Works Ltd Artificial crystal snow making device
JP2008298330A (en) * 2007-05-30 2008-12-11 Toyo Eng Works Ltd Method of measuring air temperature in atmosphere higher than ice saturation and snowing device using the same
JP2011022015A (en) * 2009-07-16 2011-02-03 Espec Corp Environmental test method and environmental testing device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
遠藤辰雄、小西啓之、若浜五郎: ""マイクロコンピュータを用いた雲や霧の含水量の連続測定システム"", 低温科学 物理篇, vol. 第41巻, JPN6017007939, 22 March 1982 (1982-03-22), JP, pages 117 - 128 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3415958A1 (en) * 2017-06-14 2018-12-19 E+E Elektronik Ges.M.B.H. Method for operating a sensor arrangement and appropriate sensor arrangement
US11262477B2 (en) 2017-06-14 2022-03-01 E+E Elektronik Ges.M.B.H. Method for operating a sensor assembly and sensor assembly suitable therefor

Also Published As

Publication number Publication date
JP6151567B2 (en) 2017-06-21

Similar Documents

Publication Publication Date Title
JP4160289B2 (en) Apparatus and method for controlling the supply of water spray to a gas turbine compressor
JP2011521705A5 (en)
JP5097852B1 (en) Air conditioning method and air conditioning apparatus
TW200921020A (en) Humidity control equipment, environment test equipment and temperature/humidity controller
CN105607680B (en) Grain storage Ventilation Control experimental system and its control method
US20220249788A1 (en) Humidification of respiratory gases
ES2948011T3 (en) Test chamber and air conditioning procedure
JP6151567B2 (en) Method and apparatus for measuring water content of air below freezing point below freezing point
JP2004028421A (en) Industrial air conditioner
CN104019903B (en) The blackbody cavity structure of blackbody radiation source
Verta et al. Mathematical model and minimal measurement system for optimal control of heated humidifiers in neonatal ventilation
JP7055345B2 (en) Humidity generator
US20110094292A1 (en) Apparatus for air property measurement
WO2013064503A1 (en) Smoking article test chamber with adjustable climate
JP6730863B2 (en) Humidifier
Hassan et al. The effect of air velocity on the performance of the direct evaporative cooling system
JP3608655B2 (en) Refrigeration capacity test method and apparatus
CN203705378U (en) Gas isobaric heat capacity measurer
JP2020176739A (en) Air conditioner
WO2010125998A1 (en) Vapor measurement device
JP7304429B2 (en) Dew point sensor system, method for adjusting heater plate of humidifier and humidifier/medical device comprising said system
CN206410958U (en) A kind of nitrogen saturated vapor pressure based on Engineering Thermodynamics determines device
JP2004044867A (en) Method and device for conditioning gas humidity
JP6335969B2 (en) Next generation high analysis human calorimeter
RU2393976C1 (en) Device to reveal icing availability and intensity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170525

R150 Certificate of patent or registration of utility model

Ref document number: 6151567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250