JPH05268167A - Optical repeater - Google Patents
Optical repeaterInfo
- Publication number
- JPH05268167A JPH05268167A JP4063229A JP6322992A JPH05268167A JP H05268167 A JPH05268167 A JP H05268167A JP 4063229 A JP4063229 A JP 4063229A JP 6322992 A JP6322992 A JP 6322992A JP H05268167 A JPH05268167 A JP H05268167A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- optical repeater
- circuit
- current
- relay
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Optical Communication System (AREA)
- Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、光ファイバ伝送系に
おいて光信号の中継を行う光中継装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical repeater for repeating an optical signal in an optical fiber transmission system.
【0002】[0002]
【従来の技術】従来用いられている光ファイバ中継伝送
系の構成図を図6に示す。同図において、1a、1b、
1cは光中継装置、2a、2b、2c、2dは給電線、
3a、3b、3c、3d及び4a、4b、4c、4dは
光ファイバ、5は定電流電源、24a、24bは光伝送
端局装置である。送信端並びに受信端に設置された光伝
送端局装置24a、24bの間を結ぶ上記3a、4a等
で表される光ファイバ伝送路3、4中には、上記1a等
で表される多数の光中継装置1が直列に挿入される。こ
こで、各光中継装置1に対する電源の供給は、通常、送
信端又は受信端に設置された定電流電源5により直流定
電流を供給する、定電流給電方式により行われることが
多い。2. Description of the Related Art FIG. 6 is a block diagram of a conventional optical fiber relay transmission system. In the figure, 1a, 1b,
1c is an optical repeater, 2a, 2b, 2c and 2d are feeders,
3a, 3b, 3c, 3d and 4a, 4b, 4c, 4d are optical fibers, 5 is a constant current power source, and 24a, 24b are optical transmission terminal devices. In the optical fiber transmission lines 3 and 4 represented by the above 3a and 4a connecting the optical transmission terminal station devices 24a and 24b installed at the transmission end and the reception end, a large number of the above described 1a and the like are provided. The optical repeater 1 is inserted in series. Here, the power supply to each optical repeater 1 is usually performed by a constant current power supply method in which a direct current is supplied from a constant current power supply 5 installed at a transmitting end or a receiving end.
【0003】図5は、従来の光中継装置の構成を示す構
成図である。この図は『Undersea Light
wave Communications(IEEE
press、1986年刊)、384頁、Fig.5』
に示されたもので、図において、1は光中継装置、2
a、2bは給電線、3a、3b、4a、4bは光ファイ
バ、6a、6bは光中継回路、7は定電圧ダイオードで
ある。なお、図5においては理解を助けるために補足並
びに簡略化を行っている。FIG. 5 is a block diagram showing the configuration of a conventional optical repeater. This figure shows "Undersea Light"
wave Communications (IEEE
press, 1986), page 384, FIG. 5 ”
In the figure, 1 is an optical repeater, 2
Reference numerals a and 2b are feeder lines, 3a, 3b, 4a and 4b are optical fibers, 6a and 6b are optical relay circuits, and 7 is a constant voltage diode. In addition, in FIG. 5, a supplement and a simplification are performed to facilitate understanding.
【0004】次に動作について説明する。光中継装置1
は、上り回線用光中継回路6aと、下り回線用光中継回
路6bと、定電圧ダイオード7とから構成される。光フ
ァイバ3aにより入力される上り回線光信号は、光中継
回路6aにより、再生中継又は光増幅中継され、光ファ
イバ3bに出力される。また、光ファイバ4aにより入
力される下り回線光信号は、光中継回路6bにより再生
中継又は光増幅中継され、光ファイバ4bに出力され
る。一方、光中継回路6aと光中継回路6bは、定電圧
ダイオード7に互いに並列に接続される。上記定電圧ダ
イオード7は、給電線2aより入力される直流定電流に
より所定の定電圧を発生し、上記光中継回路6a、6b
に供給する。なお、光中継回路6の詳細は、図5(b)
に示すように励起光源13とトランジスタ15が直列接
続されている。この形式は標準ではあるが、直列接続で
励起するために正規の電圧を常に印加する必要があっ
た。Next, the operation will be described. Optical repeater 1
Is composed of an upstream optical repeater circuit 6a, a downstream optical repeater circuit 6b, and a constant voltage diode 7. The upstream optical signal input through the optical fiber 3a is regeneratively relayed or optically amplified by the optical relay circuit 6a and output to the optical fiber 3b. Further, the downlink optical signal input through the optical fiber 4a is regeneratively relayed or optically amplified by the optical relay circuit 6b and output to the optical fiber 4b. On the other hand, the optical repeater circuit 6a and the optical repeater circuit 6b are connected to the constant voltage diode 7 in parallel with each other. The constant voltage diode 7 generates a predetermined constant voltage by the DC constant current input from the power supply line 2a, and the optical repeater circuits 6a and 6b.
Supply to. The details of the optical repeater circuit 6 are shown in FIG.
As shown in, the pumping light source 13 and the transistor 15 are connected in series. Although this form is standard, it was necessary to always apply a regular voltage to excite it in series connection.
【0005】[0005]
【発明が解決しようとする課題】従来の光中継装置は以
上のように構成されており、各光中継回路が定電圧発生
用の定電圧ダイオードに互いに並列に接続されているた
めに、まず、上記光中継回路の数、この場合は上り下り
の2回路で、2倍の給電電流が必要である。また、各光
中継回路に使用されるレーザダイオード(LD)に供給
するバイアス電流が温度により大きく変化するために、
上記定電圧ダイオードの発生電圧が変動するという課題
があった。The conventional optical repeater is constructed as described above, and since each optical repeater circuit is connected in parallel to the constant voltage diode for generating the constant voltage, first of all, The number of the above optical repeater circuits, in this case, two circuits, that is, the upstream and downstream circuits, require twice the supply current. Further, since the bias current supplied to the laser diode (LD) used in each optical repeater circuit largely changes with temperature,
There is a problem that the voltage generated by the constant voltage diode varies.
【0006】特に、各光中継回路を希土類ドープ光ファ
イバを用いたファイバ形光増幅器で構成した場合は、上
記希土類ドープ光ファイバを高出力の励起用光源(通
常、高出力LDが用いられる)で励起する必要があるた
めに、消費電流が大きく、それに起因した電源電圧変動
も大きかった。したがって、安定した性能の光中継シス
テムを経済的に実現するためには、これらを大幅に低減
する必要があった。In particular, when each optical repeater circuit is composed of a fiber type optical amplifier using a rare earth-doped optical fiber, the rare earth-doped optical fiber is used as a high-power pumping light source (usually a high-power LD is used). Since it had to be excited, the current consumption was large, and the power supply voltage fluctuation due to it was also large. Therefore, in order to economically realize an optical repeater system with stable performance, it was necessary to greatly reduce these.
【0007】この発明は上記のような課題を解決するた
めになされたもので、消費電流が少なく、しかも負荷と
なる各光中継回路の電流が変動しても安定動作が実現で
きる光中継装置を得ることを目的とする。The present invention has been made to solve the above problems, and provides an optical repeater which consumes less current and can realize stable operation even if the current of each optical repeater circuit as a load fluctuates. The purpose is to get.
【0008】[0008]
【課題を解決するための手段】この発明に係る光中継装
置は、入力光信号を励起する光中継回路と、その光中継
回路の励起による給電電流の変動を吸収する側流回路を
まず並列接続して一組とし、この一組を直列接続して定
電流源に接続して光中継装置とした。さらに具体的に
は、光ファイバによる入力信号を励起する光中継回路
と、その光中継回路の励起光源の一部を受ける受光素子
の受光量で上記励起光源用の給電電流の変化を吸収する
側流電流制御素子とをまず並列接続して一組とし、更に
光中継回路に過電圧が印加された時は、この側流電流制
御素子を全導通させる保護素子を備え、上記並列接続し
た一組を複数組直列接続して、定電流電源に接続して光
中継装置とした。In an optical repeater according to the present invention, an optical repeater circuit that excites an input optical signal and a sidestream circuit that absorbs fluctuations in a power supply current due to excitation of the optical repeater circuit are first connected in parallel. Then, one set was connected in series and connected to a constant current source to form an optical repeater. More specifically, an optical repeater circuit that excites an input signal by an optical fiber, and a side that absorbs a change in the supply current for the excitation light source by the amount of light received by a light receiving element that receives a part of the excitation light source of the optical repeater circuit. The flow current control element is first connected in parallel to form a set, and when an overvoltage is further applied to the optical repeater circuit, a protection element for fully conducting this side current control element is provided, and the set connected in parallel is set. Multiple sets were connected in series and connected to a constant current power source to form an optical repeater.
【0009】[0009]
【作用】この発明における光中継装置は、光中継回路の
給電電流の変動が、並列接続された側流電流制御素子に
より直接吸収されて分流し、それらが直列接続されて、
定電流となって光中継装置を流れる。また光中継回路の
印加電圧がある電圧以上になると保護素子が導通し、こ
れが側流電流制御素子を導通させて電流が流れる。In the optical repeater according to the present invention, fluctuations in the feeding current of the optical repeater circuit are directly absorbed and shunted by the side-current control elements connected in parallel, and they are connected in series.
It becomes a constant current and flows through the optical repeater. When the voltage applied to the optical repeater circuit exceeds a certain voltage, the protection element becomes conductive, which makes the side-current control element conductive and a current flows.
【0010】[0010]
【実施例】実施例1.以下、この発明の一実施例を図1
〜図4を用いて説明する。図1はこの発明の一実施例を
示す構成図であり、図中、1、2a、2b、3a、3
b、4a、4b、6a、6b、7は図5と同一のもので
ある。8a、8bは側流回路、9は定電流源である。EXAMPLES Example 1. An embodiment of the present invention will be described below with reference to FIG.
~ It demonstrates using FIG. FIG. 1 is a block diagram showing an embodiment of the present invention, in which 1, 2, 2a, 2b, 3a, 3 are shown.
b, 4a, 4b, 6a, 6b and 7 are the same as those in FIG. Reference numerals 8a and 8b are sidestream circuits, and 9 is a constant current source.
【0011】次に動作について説明する。光ファイバ3
aにより入力される上り回線光信号は、光中継回路6a
により、再生中継又は光増幅中継され、光ファイバ3b
に出力される。また、光ファイバ4aにより入力される
下り回線光信号は、光中継回路6bにより再生中継又は
光増幅中継され、光ファイバ4bに出力される。一方、
光中継回路6aと光中継回路6bは互いに直列に接続さ
れ、各光中継回路6a(又は6b)には、給電される電
流の一部または全部を側流する側流回路8a(又は8
b)がそれぞれ並列に接続されている。上記2組の光中
継回路6a(又は6b)/側流回路8a(又は8b)対
に、さらに直列に定電流源9が接続され、これらが定電
圧ダイオード7に対して負荷回路として並列に接続され
ている。Next, the operation will be described. Optical fiber 3
The upstream optical signal input by a is the optical repeater circuit 6a.
Regenerative repeater or optical amplifying repeater by the optical fiber 3b
Is output to. Further, the downlink optical signal input through the optical fiber 4a is regeneratively relayed or optically amplified by the optical relay circuit 6b and output to the optical fiber 4b. on the other hand,
The optical repeater circuit 6a and the optical repeater circuit 6b are connected in series with each other, and each optical repeater circuit 6a (or 6b) has a sidestream circuit 8a (or 8) that bypasses a part or all of the supplied current.
b) are respectively connected in parallel. A constant current source 9 is further connected in series to the two pairs of the optical relay circuit 6a (or 6b) / sidestream circuit 8a (or 8b), and these are connected in parallel as a load circuit to the constant voltage diode 7. Has been done.
【0012】上記のように、光中継回路6aと光中継回
路6bとは互いに直列に接続されているために、給電線
2aより入力される直流定電流は光中継回路の数に依ら
ず、つまり2回路分ではなくて一回路分の電流で済む。
また、各光中継回路6a(又は6b)と側流回路8a
(又は8b)への供給電流の和は定電流源9により常に
一定に保たれるために、光中継回路6a(又は6b)の
消費電流変動が大きい場合でも上記定電圧ダイオード7
に流れる電流は一定となる。したがって、定電圧ダイオ
ード7より上記光中継回路6a、6b及び側流回路8a
(又は8b)に供給される電圧も一定となるために、安
定な動作が実現できる。As described above, since the optical repeater circuit 6a and the optical repeater circuit 6b are connected in series with each other, the DC constant current input from the feeder line 2a does not depend on the number of optical repeater circuits, that is, Only one circuit of current is needed instead of two circuits.
In addition, each optical repeater circuit 6a (or 6b) and the sidestream circuit 8a
Since the sum of the currents supplied to (or 8b) is always kept constant by the constant current source 9, the constant voltage diode 7 can be used even when the current consumption variation of the optical repeater circuit 6a (or 6b) is large.
The current flowing through is constant. Therefore, from the constant voltage diode 7, the optical repeater circuits 6a and 6b and the side current circuit 8a are connected.
Since the voltage supplied to (or 8b) is also constant, stable operation can be realized.
【0013】図2は、図1の一実施例に示した光中継装
置の詳細構成の一例として、希土類ドープ光ファイバを
用いた光増幅中継方式による場合に適用した一実施例を
示す構成図である。図中、1、2a、2b、3a、3
b、4a、4b、6a、6b、7、8a、8b、9は図
1と同一のものである。10a、10bは希土類ドープ
光ファイバ、11a、11bは光カプラ、12a、12
bは光方向性結合器13a、14aは励起光源、14
a、14bは受光素子、15a、15b側流電流制御素
子であるトランジスタ、16a、16bは電流制御回路
である。ここで、光中継回路6aは希土類ドープ光ファ
イバ10a、光カプラ11a、光方向性結合器12a、
励起光源13aで構成されており、光中継回路6bは希
土類ドープ光ファイバ10b、光カプラ11b、光方向
性結合器12b、励起光源13bとから構成される。ま
た、側流回路8aは受光素子14a、トランジスタ15
a、電流制御回路16aで構成されており、側流回路8
bは受光素子14b、トランジスタ15b、電流制御回
路16bとから構成される。従来例と比べると、励起光
源14aと側流電流制御素子であるドランジスタ15a
が並列に接続されている差異が大きい。このことにより
相対的に小さな印加電圧に対しても励起光源14aが動
作可能となっている。FIG. 2 is a block diagram showing an example of a detailed configuration of the optical repeater shown in the example of FIG. 1 applied to a case of an optical amplification repeater system using a rare-earth-doped optical fiber. is there. In the figure, 1, 2a, 2b, 3a, 3
b, 4a, 4b, 6a, 6b, 7, 8a, 8b and 9 are the same as those in FIG. 10a and 10b are rare earth-doped optical fibers, 11a and 11b are optical couplers, and 12a and 12
b is an optical directional coupler 13a, 14a is an excitation light source, 14
Reference numerals a and 14b are light receiving elements, transistors 15a and 15b are side current control elements, and 16a and 16b are current control circuits. Here, the optical repeater circuit 6a includes a rare earth-doped optical fiber 10a, an optical coupler 11a, an optical directional coupler 12a,
The optical repeater circuit 6b is composed of a pumping light source 13a and a rare earth-doped optical fiber 10b, an optical coupler 11b, an optical directional coupler 12b, and a pumping light source 13b. Further, the sidestream circuit 8a includes a light receiving element 14a and a transistor 15
a and the current control circuit 16a, the side current circuit 8
b is composed of a light receiving element 14b, a transistor 15b, and a current control circuit 16b. Compared with the conventional example, the pumping light source 14a and the drain transistor 15a which is a side current control element
Is connected in parallel. As a result, the pumping light source 14a can operate even with a relatively small applied voltage.
【0014】次に動作について説明する。以下では上り
回線用の光中継回路6a並びに側流回路8aについて説
明するが、下り回線用の光中継回路6b並びに側流回路
8bの動作も全く同一である。まず光中継回路6aの動
作について示す。希土類ドープ光ファイバ10aは例え
ば希土類元素であるエルビウムを長さ数m〜数十m程度
のシングルモード光ファイバにドープしたものである。
希土類ドープ光ファイバ10aには光カプラ11aが接
続されている。励起光源13aは例えば波長1.48μ
mの半導体レーザ(LD)であり、その出力光は光カプ
ラ11aにより希土類ドープ光ファイバ10aに入力さ
れる。上記励起光源13aの出力光が希土類ドープ光フ
ァイバ10aに入力されると、希土類ドープ光ファイバ
10aは反転分布状態となり、光ファイバ3aにより入
力された波長1.53μmもしくは1.55μmの上り
回線光信号は、誘導放出作用により増幅された後、光方
向性結合器12aを介して光ファイバ3bに出力され
る。Next, the operation will be described. Although the optical repeater circuit 6a for the upstream line and the sidestream circuit 8a will be described below, the operations of the optical repeater circuit 6b for the downstream line and the sidestream circuit 8b are exactly the same. First, the operation of the optical repeater circuit 6a will be described. The rare earth-doped optical fiber 10a is, for example, a single-mode optical fiber having a length of several meters to several tens of meters doped with erbium, which is a rare earth element.
An optical coupler 11a is connected to the rare earth-doped optical fiber 10a. The excitation light source 13a has a wavelength of 1.48 μ, for example.
m semiconductor laser (LD), and its output light is input to the rare earth-doped optical fiber 10a by the optical coupler 11a. When the output light of the pumping light source 13a is input to the rare earth-doped optical fiber 10a, the rare earth-doped optical fiber 10a is in a population inversion state, and the upstream optical signal having a wavelength of 1.53 μm or 1.55 μm input by the optical fiber 3a. Is amplified by the stimulated emission effect and then output to the optical fiber 3b via the optical directional coupler 12a.
【0015】次に側流回路8aの動作について示す。側
流用トランジスタ15aは、コレクタが上記励起用LD
13aのアノードに、エミッタが同カソードにそれぞれ
接続されており、上記励起用LD13aとトランジスタ
15aに流れる電流の和は電流源9により常に一定に保
たれる。また、励起用LD13aの出力の一部を受光す
る受光素子14aの受光電流を入力とし、受光量に応じ
て出力電流を制御する電流制御回路16aの出力がトラ
ンジスタ15aのベースに接続される。ここで、電流制
御回路16aは、上記受光素子14aの受光電流が常に
一定となるように該トランジスタ15aの電流を負帰還
制御することにより、励起用LD13aの光出力を常に
一定に保つ。このようにして、印加電圧最小で、しかも
励起電流の変動分のみをトランジスタ15aが受け持つ
ことにより、励起電流損失最小の動作が可能となる。Next, the operation of the sidestream circuit 8a will be described. The side-current transistor 15a has a collector for the excitation LD.
An emitter of the anode 13a is connected to an emitter of the cathode 13a, and the sum of currents flowing through the exciting LD 13a and the transistor 15a is constantly kept constant by the current source 9. The light receiving current of the light receiving element 14a that receives a part of the output of the exciting LD 13a is input, and the output of the current control circuit 16a that controls the output current according to the amount of received light is connected to the base of the transistor 15a. Here, the current control circuit 16a keeps the optical output of the exciting LD 13a always constant by performing negative feedback control of the current of the transistor 15a so that the light receiving current of the light receiving element 14a is always constant. In this way, since the transistor 15a takes charge of only the applied voltage and only the fluctuation of the excitation current, the operation of the excitation current loss can be minimized.
【0016】実施例2.図3は図2の一実施例に示した
電流制御回路16aの他の詳細構成の一例を示すもの
で、図中、7、13a、14a、15aは図2と同一の
ものである。17aは定電流源、18a、19aはダー
リントン接続されたトランジスタ、20aはトランジス
タ、21a、22aは抵抗、23aはN個(N≧1)の
直列接続されたダイオードから成る障害対策回路であ
る。Example 2. FIG. 3 shows an example of another detailed configuration of the current control circuit 16a shown in the embodiment of FIG. 2, and 7, 13a, 14a and 15a are the same as those in FIG. Reference numeral 17a is a constant current source, 18a and 19a are Darlington-connected transistors, 20a is a transistor, 21a and 22a are resistors, and 23a is a fault countermeasure circuit composed of N (N ≧ 1) diodes connected in series.
【0017】次に接続構成を以下に示す。励起用LD1
3aの出力光の一部を受光する受光素子14aは、アノ
ードがトランジスタ15aのコレクタに、カソードがト
ランジスタ18aのベースに接続された抵抗21aの一
端に接続されている。トランジスタ18aのベースに
は、上記抵抗21aと、負極端子が定電圧ダイオード7
のアノードに接続された基準電流発生用の定電流源17
aの正極端子が接続されている。また、トランジスタ1
8aのコレクタには定電圧ダイオード7のカソードに接
続された抵抗22aの一端が接続されている。また、ト
ランジスタ20aは、ベースがトランジスタ19aのコ
レクタに、エミッタが定電圧ダイオード7のカソード
に、コレクタがトランジスタ15aのベース及び障害対
策回路23aの一端に接続されている。さらに、障害対
策回路23aの他端は定電圧ダイオ−ド7に接続されて
いる。なお、電流制御回路16bも全く同様の構成で実
現できる。ここで、図3はトランジスタ15aにNPN
トランジスタを用いた場合の構成例であるが、PNPト
ランジスタを用いた場合には、トランジスタ19aのコ
レクタをトランジスタ15aのベースにPNPトランジ
スタ20aを介さず直接に接続すればよい。Next, the connection structure is shown below. LD1 for excitation
The light receiving element 14a that receives a part of the output light of 3a has an anode connected to the collector of the transistor 15a and a cathode connected to one end of a resistor 21a connected to the base of the transistor 18a. At the base of the transistor 18a, the resistor 21a and the negative terminal of the constant voltage diode 7 are provided.
Constant current source 17 for generating a reference current connected to the anode of the
The positive electrode terminal of a is connected. Also, the transistor 1
One end of a resistor 22a connected to the cathode of the constant voltage diode 7 is connected to the collector of 8a. The base of the transistor 20a is connected to the collector of the transistor 19a, the emitter is connected to the cathode of the constant voltage diode 7, and the collector is connected to the base of the transistor 15a and one end of the fault countermeasure circuit 23a. Further, the other end of the fault countermeasure circuit 23a is connected to the constant voltage diode 7. The current control circuit 16b can also be realized with a completely similar configuration. Here, in FIG. 3, the transistor 15a has an NPN.
This is a configuration example using a transistor, but when using a PNP transistor, the collector of the transistor 19a may be directly connected to the base of the transistor 15a without the PNP transistor 20a.
【0018】次に動作を数式を用いて説明する。ここ
で、各変数を以下の様に定義する。 Pout :励起光源用LDD3aの光出力レベル Iref :基準電流発生用定電流源17aの基準電流 α :受光素子14aの受光感度 β1 :ダーリントントランジスタ18a、19a
の電流増幅率 β2 :トランジスタ20aの電流増幅率 β3 :トランジスタ15aの電流増幅率 η :励起光源用LD13aの微分量子効率 Ild :励起光源用LD13aの直流バイアス電流 Ith :励起光源用LD13aの閾値電流 Ip :受光素子14aの受光電流 Itr :トランジスタ15aのコレクタ電流 Ib :障害対策回路23aの電流 It :定電流源9の電流Next, the operation will be described using mathematical expressions. Here, each variable is defined as follows. Pout: Light output level of LDD 3a for excitation light source Iref: Reference current of constant current source 17a for generating reference current α: Photosensitivity of photodetector 14a β1: Darlington transistors 18a, 19a
Current amplification factor of the transistor 20a β3: current amplification factor of the transistor 15a β3: current amplification factor of the transistor 15a η: differential quantum efficiency of the LD 13a for the excitation light source Ild: DC bias current of the LD 13a for the excitation light source Ith: threshold current of the LD 13a for the excitation light source Ip : Light receiving current of the light receiving element 14a Itr: Collector current of the transistor 15a Ib: Current of the fault countermeasure circuit 23a It: Current of the constant current source 9
【0019】図3より次式が成り立つ。 It=Itr+Ild (1) pout=η・(Ild−Ith) (2) Itr=β1・β2・β3・(Ip+Iref)+β3・Ib (3) Ip=α・Pout (4) 上記(1)式〜(4)式より、励起光源用LD13aの
正常動作時の光出力Poutは次式で表される。 Pout=[Iref+ (It−Ith)/β1・β2・β3−Ib/β1・β2)] /[α・{1+1/(α・β1・β2・β3・η)}] (5) 励起光源用LD13aが正常動作時には障害対策回路2
3aに流れる電流Ibは漏電流程度であり、ほとんど無
視できる。The following equation holds from FIG. It = Itr + Ild (1) pout = η · (Ild−Ith) (2) Itr = β1 · β2 · β3 · (Ip + Iref) + β3 · Ib (3) Ip = α · Pout (4) Expressions (1) to (1) From the equation (4), the optical output Pout during normal operation of the pump light source LD 13a is expressed by the following equation. Pout = [Iref + (It-Ith) / β1 ・ β2 ・ β3-Ib / β1 ・ β2)] / [α ・ {1 + 1 / (α ・ β1 ・ β2 ・ β3 ・ η)}] (5) LD13a for pumping light source Failure circuit 2 during normal operation
The current Ib flowing through 3a is about a leakage current and can be almost ignored.
【0020】ここで、ダ−リントン接続により、β1を
充分大きな値となるように設計すると、次の(6)、
(7)式が成立する。 α・β1・β2・β3・η>>1 (6) β1・β2>>1 (7) その結果、(5)式は次の(8)式で近似できる。 Pout=Iref/α (8) 上式より、励起光源用LD13aの光出力Poutは、
受光素子14aの受光感度αの変動を抑えるように設計
すれば、上記励起光源用LD13aの微分量子効率η及
びしきい値電流1thの温度変化による光出力の変動は
抑圧され、基準電流Irefによって定まる所定の一定
値に制御できることが分かる。Here, by designing so that β1 has a sufficiently large value by Darlington connection, the following (6),
Expression (7) is established. α ・ β1 ・ β2 ・ β3 ・ η >> 1 (6) β1 ・ β2 >> 1 (7) As a result, the equation (5) can be approximated by the following equation (8). Pout = Iref / α (8) From the above formula, the optical output Pout of the pump light source LD 13a is
By designing to suppress the fluctuation of the light receiving sensitivity α of the light receiving element 14a, the fluctuation of the optical output due to the temperature change of the differential quantum efficiency η and the threshold current 1th of the excitation light source LD 13a is suppressed and is determined by the reference current Iref. It can be seen that it can be controlled to a predetermined constant value.
【0021】なお、励起光源用LD13aのアノード−
カソード端子間でオープン故障を起こした時に、障害対
策回路23aを構成するN個(N≧1)の直列接続され
たダイオードがONするように設計すると、この時、ト
ランジスタ15aのコレクタ電流Itrは飽和し、次の
(9)式で表される。 Itr=β3・Ib=It (9) すなわち、励起光源用LD13aがオープン故障を起こ
した場合にも、定電流源9で規定される全電流Itをト
ランジスタ15aに側流することができ、他方の光中継
回路16bの光出力が断になるのを防ぐことができる。The anode of the LD 13a for the excitation light source-
When an open failure occurs between the cathode terminals, the N (N ≧ 1) series-connected diodes that constitute the failure countermeasure circuit 23a are designed to be turned on. At this time, the collector current Itr of the transistor 15a is saturated. Is expressed by the following equation (9). Itr = β3 · Ib = It (9) That is, even when the pump light source LD 13a has an open failure, the total current It defined by the constant current source 9 can be shunted to the transistor 15a, and the other It is possible to prevent the optical output of the optical repeater circuit 16b from being interrupted.
【0022】上記構成による光中継装置の基準電流Ir
efと励起光源用LDの平均光出力電力Poutとの関
係の実測例を図4に示す。ここで、P1、P2は側流回
路8a内の基準電流発生用定電流源17aの電流Ire
fを変化したときの励起光源用LD13a、13bの光
出力をそれぞれ示す。図4より、励起光源用LD13a
の光出力P1は基準電流Irefに比例して変化し、か
つ、いかなる値のときでも、他方の励起光源用LD13
bの光出力には影響を与えないことが分かる。Reference current Ir of the optical repeater having the above structure
FIG. 4 shows an actual measurement example of the relationship between ef and the average optical output power Pout of the LD for the excitation light source. Here, P1 and P2 are the current Ire of the constant current source 17a for generating the reference current in the side current circuit 8a.
The light outputs of the excitation light source LDs 13a and 13b when f is changed are shown. From FIG. 4, LD13a for excitation light source
Optical output P1 of the other pumping light source LD13 changes in proportion to the reference current Iref and has any value.
It can be seen that it does not affect the light output of b.
【0023】なお、上記実施例では光中継回路が上り、
下り用計2個の場合について説明したが、予備用を考慮
した場合などさらに個数が増えた場合についても同様の
構成で同等の機能を実現することができる。また、希土
類ドープ光ファイバに入力される励起光の励起方向が信
号光と逆方向である場合について説明したが、同一方向
である場合にも全く同様の効果を奏する。In the above embodiment, the optical repeater circuit goes up,
Although the case of a total of two downlink devices has been described, the same function can be realized with the same configuration even when the number of devices is further increased, such as in the case of considering a backup device. Moreover, although the case where the pumping direction of the pumping light input to the rare earth-doped optical fiber is opposite to the signal light has been described, the same effect is obtained even when the pumping light is in the same direction.
【0024】[0024]
【発明の効果】以上のようにこの発明によれば、光中継
回路と、その光中継回路の励起による給電電流の変動を
吸収する側流回路をまず並列接続して一組とし、さらに
これらの組を複数接続して定電流源に接続するように構
成したので、光中継回路が複数の場合でも一回路の場合
と同一の消費電流で済み、かつ各光中継回路と側流回路
への供給電流の和が一定に保たれるために、全体の消費
電力が少なく、かつ、光中継回路の消費電流変動があっ
ても安定な動作が実現できるという効果がある。As described above, according to the present invention, the optical repeater circuit and the side-current circuit that absorbs the fluctuation of the feeding current due to the excitation of the optical repeater circuit are first connected in parallel to form a set, and these Since it is configured to connect multiple sets to a constant current source, the same current consumption as in the case of one optical repeater circuit is required even if there are multiple optical repeater circuits, and supply to each optical repeater circuit and side-current circuit is possible. Since the sum of the currents is kept constant, there is an effect that the total power consumption is small and a stable operation can be realized even if the current consumption of the optical repeater circuit fluctuates.
【図1】この発明の一実施例による光中継装置を示す構
成図である。FIG. 1 is a configuration diagram showing an optical repeater according to an embodiment of the present invention.
【図2】この発明の一実施例による光中継装置の光中継
回路並びに側流回路の詳細構成例を示す構成図である。FIG. 2 is a configuration diagram showing a detailed configuration example of an optical repeater circuit and a sidestream circuit of an optical repeater according to an embodiment of the present invention.
【図3】この発明の一実施例による光中継装置の電流制
御回路の詳細構成例を示す構成図である。FIG. 3 is a configuration diagram showing a detailed configuration example of a current control circuit of an optical repeater according to an embodiment of the present invention.
【図4】この発明の一実施例による光中継装置の基準電
流と励起光源の平均光出力電力との関係を示す特性図で
ある。FIG. 4 is a characteristic diagram showing the relationship between the reference current of the optical repeater and the average optical output power of the pumping light source according to the embodiment of the present invention.
【図5】従来の光中継装置を示す構成図である。FIG. 5 is a configuration diagram showing a conventional optical repeater.
【図6】従来の光中継装置のシステムにおける適用形態
例を示す構成図である。FIG. 6 is a configuration diagram showing an example of application in a conventional optical repeater system.
1a、1b、1c 光中継装置 2a、2b、2c、2d 給電線 3a、3b、3c、3d 光ファイバ 4a、4b、4c、4d 光ファイバ 5 定電流電源 6a、6b 光中継回路 7 定電圧ダイオード 8a、8b 側流回路 9 定電流源 10a、10b 希土類ドープ光ファイバ 11a、11b 光カプラ 12a、12b 光方向性結合器 13a、14a 励起光源 14a、14b 受光素子 15a、15b トランジスタ 16a、16b 電流制御回路 17a 定電流源 18a、19a ダーリントン接続されたトラ
ンジスタ 20a トランジスタ 21a、22a 抵抗 23a 障害対策回路 24a、24b 光伝送端局装置1a, 1b, 1c Optical repeater 2a, 2b, 2c, 2d Feed line 3a, 3b, 3c, 3d Optical fiber 4a, 4b, 4c, 4d Optical fiber 5 Constant current power source 6a, 6b Optical repeater circuit 7 Constant voltage diode 8a , 8b Side current circuit 9 Constant current source 10a, 10b Rare earth doped optical fiber 11a, 11b Optical coupler 12a, 12b Optical directional coupler 13a, 14a Excitation light source 14a, 14b Photodetector 15a, 15b Transistor 16a, 16b Current control circuit 17a Constant current source 18a, 19a Darlington connected transistor 20a Transistor 21a, 22a Resistor 23a Fault countermeasure circuit 24a, 24b Optical transmission terminal device
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H04B 3/44 9199−5K (72)発明者 後藤 光司 東京都新宿区西新宿2丁目3番2号 国際 電信電話株式会社内 (72)発明者 松下 究 鎌倉市大船五丁目1番1号 三菱電機株式 会社通信システム研究所内 (72)発明者 北山 忠善 鎌倉市大船五丁目1番1号 三菱電機株式 会社通信システム研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display location H04B 3/44 9199-5K (72) Inventor Koji Goto 2-3-2 Nishishinjuku, Shinjuku-ku, Tokyo No. International Telegraph and Telephone Corporation (72) Inventor Ken Matsushita 5-1-1 Ofuna, Kamakura-shi Mitsubishi Electric Corp. Communication Systems Research Laboratories (72) Inventor Tadanori Kitayama 5-1-1 Ofuna, Kamakura-shi Mitsubishi Electric Corporation Company Communication Systems Laboratory
Claims (3)
継する光中継回路と上記光中継回路の給電電流の変動を
吸収する側流回路を並列接続して一組とし、 上記光中継回路と側流回路の一組を複数組直列接続して
光中継装置とし、 上記光中継装置に定電流源を接続した光中継装置。1. An optical repeater circuit that excites an input optical signal to reproduce or amplify and repeat it and a sidestream circuit that absorbs fluctuations in a feeding current of the optical repeater circuit are connected in parallel to form a set, and the optical repeater circuit and the optical repeater circuit are combined. An optical repeater in which a plurality of sets of sidestream circuits are connected in series to form an optical repeater, and a constant current source is connected to the optical repeater.
生または増幅中継する光中継回路と、上記光中継回路の
励起光源の一部を受ける受光素子の受光量で上記励起用
の給電電流の変化を吸収する側流電流制御素子とを並列
接続して一組とし、 上記光中継回路と側流電流制御素子の一組を複数組直列
接続して光中継装置とし、 上記光中継装置に定電流源を接続した光中継装置。2. An optical repeater circuit for exciting and regenerating or amplifying and repeating an input signal by an optical fiber, and a change in the power supply current for excitation by the amount of light received by a light receiving element that receives a part of an excitation light source of the optical repeater circuit. And a side current control element that absorbs the current are connected in parallel to form one set, and a plurality of the optical repeater circuit and one set of the side current control element are connected in series to form an optical repeater. Optical repeater with source connected.
生または増幅中継する光中継回路と、後述の側流電流制
御素子を並列接続して一組とし、 上記光中継回路の励起光源の一部を受ける受光素子の受
光量で上記励起用の給電電流の変化を吸収する側流電流
制御素子を制御し、上記励起する光中継回路に過電圧が
印加された時には上記側流電流制御素子を導通させる保
護素子を備えて側流制御回路とし、 上記光中継回路と側流電流制御素子の一組を複数組直列
接続して光中継装置とし、 上記光中継装置に定電流源を接続した光中継装置。3. An optical repeater circuit for exciting and reproducing or amplifying and repeating an input signal from an optical fiber, and a side current control element described later are connected in parallel to form a set, and a part of an excitation light source of the optical repeater circuit. The side flow current control element that absorbs the change in the power supply current for excitation is controlled by the amount of light received by the receiving light receiving element, and the side flow current control element is made conductive when an overvoltage is applied to the exciting optical relay circuit. An optical repeater in which a protection element is provided as a side-current control circuit, a plurality of sets of the optical repeater circuit and a side-current control element are connected in series to form an optical repeater, and a constant current source is connected to the optical repeater. ..
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4063229A JP2941550B2 (en) | 1992-03-19 | 1992-03-19 | Optical repeater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4063229A JP2941550B2 (en) | 1992-03-19 | 1992-03-19 | Optical repeater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05268167A true JPH05268167A (en) | 1993-10-15 |
JP2941550B2 JP2941550B2 (en) | 1999-08-25 |
Family
ID=13223176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4063229A Expired - Lifetime JP2941550B2 (en) | 1992-03-19 | 1992-03-19 | Optical repeater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2941550B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000059126A1 (en) * | 1999-03-31 | 2000-10-05 | Mitsubishi Denki Kabushiki Kaisha | Optical amplifier |
WO2014141684A1 (en) * | 2013-03-15 | 2014-09-18 | 日本電気株式会社 | Optical amplifier and method for controlling same |
JP2015023404A (en) * | 2013-07-18 | 2015-02-02 | 日本電気株式会社 | Optical repeater and drive control method therefor |
JP2019041317A (en) * | 2017-08-28 | 2019-03-14 | 住友電気工業株式会社 | Optical transmitter |
JP2021517399A (en) * | 2018-03-06 | 2021-07-15 | ネプチューン サブシー アイピー リミテッド | Improved repeater power supply |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56116343A (en) * | 1980-02-19 | 1981-09-12 | Fujitsu Ltd | Power supply voltage regulating circuit for optical relay device |
JPS57129548A (en) * | 1981-02-04 | 1982-08-11 | Fujitsu Ltd | Constant current load circuit |
JPH0475036A (en) * | 1990-07-18 | 1992-03-10 | Nippon Telegr & Teleph Corp <Ntt> | Optical amplification device |
-
1992
- 1992-03-19 JP JP4063229A patent/JP2941550B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56116343A (en) * | 1980-02-19 | 1981-09-12 | Fujitsu Ltd | Power supply voltage regulating circuit for optical relay device |
JPS57129548A (en) * | 1981-02-04 | 1982-08-11 | Fujitsu Ltd | Constant current load circuit |
JPH0475036A (en) * | 1990-07-18 | 1992-03-10 | Nippon Telegr & Teleph Corp <Ntt> | Optical amplification device |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000059126A1 (en) * | 1999-03-31 | 2000-10-05 | Mitsubishi Denki Kabushiki Kaisha | Optical amplifier |
EP1083676A1 (en) * | 1999-03-31 | 2001-03-14 | Mitsubishi Denki Kabushiki Kaisha | Optical amplifier |
US6614588B1 (en) | 1999-03-31 | 2003-09-02 | Mitsubishi Denki Kabushiki Kaisha | Optical amplifier having various control circuitry |
US6867908B2 (en) | 1999-03-31 | 2005-03-15 | Mitsubishi Denki Kabushiki Kaisha | Optical amplifier having various control circuitry |
EP1083676A4 (en) * | 1999-03-31 | 2006-06-07 | Mitsubishi Electric Corp | Optical amplifier |
WO2014141684A1 (en) * | 2013-03-15 | 2014-09-18 | 日本電気株式会社 | Optical amplifier and method for controlling same |
US9496676B2 (en) | 2013-03-15 | 2016-11-15 | Nec Corporation | Optical amplifier and control method thereof |
JPWO2014141684A1 (en) * | 2013-03-15 | 2017-02-16 | 日本電気株式会社 | Optical amplifier and control method thereof |
JP2015023404A (en) * | 2013-07-18 | 2015-02-02 | 日本電気株式会社 | Optical repeater and drive control method therefor |
JP2019041317A (en) * | 2017-08-28 | 2019-03-14 | 住友電気工業株式会社 | Optical transmitter |
JP2021517399A (en) * | 2018-03-06 | 2021-07-15 | ネプチューン サブシー アイピー リミテッド | Improved repeater power supply |
Also Published As
Publication number | Publication date |
---|---|
JP2941550B2 (en) | 1999-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3478853B2 (en) | Pump laser control circuit for optical transmission system | |
JP2991893B2 (en) | Driving circuit for light emitting element and optical amplification repeater using the same | |
JP3522509B2 (en) | Optical transmission device and optical communication system | |
JPH1187822A (en) | Optical fiber amplifier provided with high small signal gain | |
JPH0613689A (en) | Optical limiting amplifier | |
JP2941550B2 (en) | Optical repeater | |
JP4204693B2 (en) | Optical amplifier | |
JP4983804B2 (en) | Optical submarine cable optical repeater and optical submarine cable system including the optical repeater | |
JPH05267757A (en) | Fiber type light amplifier | |
US6711359B1 (en) | Optical fiber communication system employing doped optical fiber and Raman amplification | |
US20050180546A1 (en) | Terrestrial optical communication system having remotely powered nodes | |
US6501873B1 (en) | Apparatus for generating L-band light source using optical fiber, and optical amplifier | |
JP2003258738A (en) | Optical communication system for raman amplification system | |
JP3991418B2 (en) | Optical amplifier with gain control function | |
US7158289B1 (en) | Method and apparatus for implementing optical supervisory channel using broadband noise modulation | |
JP2001015842A (en) | L-band optical fiber amplifier using seed beam | |
JPH03219686A (en) | Fiber-type light amplifier | |
JP2755147B2 (en) | Automatic optical output reduction circuit of optical amplifier | |
JPH0541624A (en) | Fiber type optical amplifier | |
JP3132464B2 (en) | Optical repeater | |
CN1265475A (en) | Gain control optical amplifier | |
CN114243437B (en) | PON system based on centralized Raman fiber amplifier and optical amplification method | |
JP2856295B2 (en) | Optical amplification repeater transmission system | |
US7039283B2 (en) | Optical amplification producing wider total gain bandwidth | |
JP3082409B2 (en) | Optical fiber amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080618 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080618 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080618 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080618 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090618 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100618 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100618 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110618 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120618 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120618 Year of fee payment: 13 |