JP2669483B2 - Optical amplifier repeater circuit - Google Patents

Optical amplifier repeater circuit

Info

Publication number
JP2669483B2
JP2669483B2 JP4062617A JP6261792A JP2669483B2 JP 2669483 B2 JP2669483 B2 JP 2669483B2 JP 4062617 A JP4062617 A JP 4062617A JP 6261792 A JP6261792 A JP 6261792A JP 2669483 B2 JP2669483 B2 JP 2669483B2
Authority
JP
Japan
Prior art keywords
optical
circuit
light sources
pumping light
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4062617A
Other languages
Japanese (ja)
Other versions
JPH05268166A (en
Inventor
博晴 若林
重幸 秋葉
周 山本
光司 後藤
Original Assignee
国際電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国際電信電話株式会社 filed Critical 国際電信電話株式会社
Priority to JP4062617A priority Critical patent/JP2669483B2/en
Publication of JPH05268166A publication Critical patent/JPH05268166A/en
Application granted granted Critical
Publication of JP2669483B2 publication Critical patent/JP2669483B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバ通信システ
ム、特に大洋を横断する光海底ケーブルを始めとする長
距離光ファイバ通信システムに供され、光を直接増幅し
て中継を行なう光増幅中継回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to an optical fiber communication system, and particularly to a long-distance optical fiber communication system including an optical submarine cable that crosses the ocean, and an optical amplification repeater for directly amplifying and repeating light. Circuit.

【0002】[0002]

【従来の技術】従来、光ファイバ通信システムの中継方
式は、伝送されてきた光信号を一旦電気信号に変換し、
電気的に信号を一旦再生した後、再生された電気信号を
光信号に戻して次の伝送区間に伝送するという、いわゆ
る再生中継方式がとられていた。一方、近年の光直接増
幅技術の進展により、光中継伝送の分野に於いても光増
幅中継の機運が高まっている。
2. Description of the Related Art Conventionally, a relay system of an optical fiber communication system temporarily converts an optical signal transmitted into an electric signal,
A so-called regenerative relay method has been adopted in which a signal is reproduced once, and then the reproduced electric signal is returned to an optical signal and transmitted to the next transmission section. On the other hand, the progress of optical direct amplification technology in recent years has increased the momentum of optical amplification relay in the field of optical relay transmission.

【0003】従来から用いられている光増幅回路及びそ
れを利用した光増幅中継回路を、図2乃至図4に示す。
図2及び図3は従来の光増幅回路の基本的構成を示すブ
ロックダイアグラム、図4は図3の光増幅回路を用いて
構成された従来の光増幅中継回路である。
2 to 4 show a conventional optical amplifier circuit and an optical amplifier repeater circuit using the same.
2 and 3 are block diagrams showing the basic configuration of a conventional optical amplifier circuit, and FIG. 4 is a conventional optical amplifier repeater circuit using the optical amplifier circuit of FIG.

【0004】図2は光直接増幅の基本的な回路Aの構成
を示している。光増幅回路Aでは、増幅媒体として希土
類元素(ランタノイドやアクチノイド)をドープしたフ
ァイバ、あるいは半導体レ−ザ増幅器がよく用いられ
る。ここではエルビウム(Er)をドープしたファイバ
(以下、Erドープファイバとする)1を用いた例を示
している。
FIG. 2 shows the configuration of a basic circuit A for optical direct amplification. In the optical amplification circuit A, a fiber doped with a rare earth element (lanthanoid or actinoid) or a semiconductor laser amplifier is often used as an amplification medium. Here, an example is shown in which an erbium (Er) -doped fiber (hereinafter referred to as Er-doped fiber) 1 is used.

【0005】2はErドープファイバ1を励起するため
の励起光源、3は励起光源2を制御する制御回路、4は
制御回路3に電力を供給する電源回路である。励起光源
2は高出力半導体レ−ザで、発振波長約1475nmの
InGaAsP/InPレ−ザ、あるいは発振波長98
0nmのInGaAs/GaAsレ−ザが多く用いられ
る。
[0005] Reference numeral 2 denotes an excitation light source for exciting the Er-doped fiber 1, reference numeral 3 denotes a control circuit for controlling the excitation light source 2, and reference numeral 4 denotes a power supply circuit for supplying power to the control circuit 3. The pumping light source 2 is a high-power semiconductor laser, an InGaAsP / InP laser with an oscillation wavelength of about 1475 nm, or an oscillation wavelength of 98.
A 0 nm InGaAs / GaAs laser is often used.

【0006】励起光源2の出力光Laは光ファイバaに
集光された後、波長分割合分波器5を経てErドープフ
ァイバ1に導入される。Erドープファイバ1内にドー
プされているエルビウムは光ファイバaからの励起光源
2の出力光Laによって励起状態になり、1520〜1
570nmの光に対して増幅作用を有するようになる。
After the output light La of the pumping light source 2 is converged on the optical fiber a, it is introduced into the Er-doped fiber 1 through the wavelength division ratio demultiplexer 5. Erbium doped in the Er-doped fiber 1 becomes excited by the output light La of the pumping light source 2 from the optical fiber a, and
It has an amplifying effect on the light of 570 nm.

【0007】この例では波長1558nmの入力信号光
L1は矢印の方向に光ファイバで伝送され、Erドープ
ファイバ1に導入される。Erドープファイバ1内で増
幅された後、入力信号光L1は波長分割合分波器5を経
てアイソレータ6、光フィルタ7を通過して増幅された
出力信号光L1′となる。アイソレータ6と光フィルタ
7は存在しない場合もある。
In this example, the input signal light L1 having a wavelength of 1558 nm is transmitted by an optical fiber in the direction of the arrow and introduced into the Er-doped fiber 1. After being amplified in the Er-doped fiber 1, the input signal light L1 passes through the isolator 6 and the optical filter 7 via the wavelength division ratio demultiplexer 5, and becomes the amplified output signal light L1 '. The isolator 6 and the optical filter 7 may not exist.

【0008】図3は図2の波長分割合分波器5の代わり
に波長分割合分波ファイバカプラ8を用いた光増幅回路
Bを示す図である。図2に用いた波長分割合分波器5と
図3に用いた波長分割合分波ファイバカプラ8は基本的
な機能においては同じであり、波長の異なる光に対して
異なる通過特性を示す光部品である。図2の光増幅回路
Aに用いている波長分割合分波器5は、基本的には多層
膜ビームスプリッターであり、励起光源2の出力光La
は45°に反射し、入力信号光L1はまっすぐ通過す
る。波長分割合分波ファイバカプラ8はこれをファイバ
カプラで実現した光部品である。
FIG. 3 is a diagram showing an optical amplifying circuit B using a wavelength division ratio demultiplexing fiber coupler 8 instead of the wavelength division ratio division demultiplexer 5 of FIG. The wavelength division ratio demultiplexer 5 used in FIG. 2 and the wavelength division ratio demultiplexing fiber coupler 8 used in FIG. 3 have the same basic function, and light having different transmission characteristics with respect to light of different wavelengths. Parts. The wavelength division ratio demultiplexer 5 used in the optical amplification circuit A of FIG. 2 is basically a multilayer beam splitter, and outputs the output light La of the pumping light source 2.
Is reflected at 45 °, and the input signal light L1 passes straight through. The wavelength demultiplexing / demultiplexing fiber coupler 8 is an optical component realized by the fiber coupler.

【0009】図4は図3の光増幅基本回路B,B′を一
対用いて構成された従来の光増幅中継回路αを示す図で
ある。光増幅中継回路αは第1の方向(以下、上り方向
と称する)に伝送される入力信号光L1と第1の方向と
逆の第2の方向(以下、下り方向と称する)に伝送され
る入力信号光L2を励起光源2,2′の出力光La,L
a′により増幅中継して出力信号光L1′,L2′とす
るもので、上り方向に対応した光部品が下り方向にも同
様に配置されている。
FIG. 4 is a diagram showing a conventional optical amplification repeater circuit .alpha. Constructed by using a pair of the optical amplification basic circuits B and B'of FIG. The optical amplifier repeater α is transmitted in the second direction (hereinafter, referred to as “downward direction”) opposite to the first direction with the input signal light L1 transmitted in the first direction (hereinafter, referred to as “upward direction”). The input signal light L2 is output light La, L of the pumping light sources 2 and 2 '.
The output signal lights L1 'and L2' are amplified and relayed by a ', and optical components corresponding to the upstream direction are similarly arranged in the downstream direction.

【0010】すなわち、Erドープファイバ1′、励起
光源2′、制御回路3′、アイソレータ6′、光フィル
タ7′、波長分割合分波ファイバカプラ8′が下り方向
にも配置されている。電源回路4は上下両方向の制御回
路3,3′に電力を供給しており、給電線9を通して電
流Iが電源回路4に流れている。図4のような光増幅中
継回路αは、再生中継回路に比べると構成が単純な上、
高速の電子回路を用いることなくギガビット台の伝送速
度にも容易に対応できるため、次世代の光中継回路とし
て開発が進められようとしている。
That is, an Er-doped fiber 1 ', an excitation light source 2', a control circuit 3 ', an isolator 6', an optical filter 7 ', and a wavelength division ratio demultiplexing fiber coupler 8' are also arranged in the downstream direction. The power supply circuit 4 supplies electric power to the control circuits 3 and 3 ′ in both upper and lower directions, and a current I flows through the power supply line 9 to the power supply circuit 4. The optical amplification repeater circuit α as shown in FIG. 4 has a simpler structure than the regenerative repeater circuit.
Because it can easily cope with transmission speeds of the gigabit level without using high-speed electronic circuits, development is being advanced as a next-generation optical repeater circuit.

【0011】[0011]

【発明が解決しようとする課題】然るに、図4に示した
ような従来の光増幅中継回路αは励起光源2,2′の信
頼性に関連する次のような問題点を有していた。すなわ
ち、図4の従来の光増幅中継回路αでは例えば励起光源
2が故障した場合、励起光源2の出力光Laが得られな
いErドープファイバ1は励起されず、光信号L1が逆
に吸収されるので上り信号は不通となる。すなわちシス
テム障害となる。
However, the conventional optical amplifier repeater α shown in FIG. 4 has the following problems related to the reliability of the pumping light sources 2 and 2 '. That is, in the conventional optical amplification relay circuit α of FIG. 4, for example, when the pumping light source 2 fails, the Er-doped fiber 1 from which the output light La of the pumping light source 2 cannot be obtained is not pumped, and the optical signal L1 is absorbed in reverse. Therefore, the upstream signal is interrupted. That is, a system failure occurs.

【0012】これを避けるためには励起光源2,2′の
信頼性を数フィットのオーダーまで著しく上げなければ
ならない。励起光源2,2′を冗長構成とすることも考
えられるが、励起光源2,2′の数が2倍になるうえ、
劣化判別機能や冗長切替機能等の様々な追加機能が必要
となり、単純構成が特徴である光増幅中継回路αのメリ
ットが薄れる。
In order to avoid this, the reliability of the pump light sources 2 and 2'must be significantly increased to the order of several fits. It is possible to make the pumping light sources 2 and 2 ′ redundant, but in addition to doubling the number of pumping light sources 2 and 2 ′,
Various additional functions such as a deterioration determination function and a redundancy switching function are required, and the merit of the optical amplification relay circuit α, which is characterized by a simple configuration, is diminished.

【0013】このように従来の光増幅中継回路αは、本
来、構成が単純でギガビット台の光信号L1,L2の中
継も容易に達成できるという長所を持っているが、高信
頼度が要求される大洋横断などの長距離中継には適用が
極めて難しいという問題点があった。こゝにおいて、本
発明は前記従来の光増幅中継回路の欠点に鑑みなされた
もので、長距離光増幅中継システムに適用可能な光増幅
中継回路を提供せんとするものである。
As described above, the conventional optical amplification relay circuit α originally has the advantages that the configuration is simple and the relay of the optical signals L1 and L2 on the order of gigabits can be easily achieved, but high reliability is required. There is a problem that it is extremely difficult to apply it to long-distance relay such as transoceanic. The present invention has been made in view of the drawbacks of the conventional optical amplification repeater circuit, and an object of the present invention is to provide an optical amplification repeater circuit applicable to a long-distance optical amplification repeater system.

【0014】[0014]

【課題を解決するための手段】前記従来の課題の解決
は、本発明が次の新規な特徴的構成手段を採用する事に
より達成される。即ち、本発明の第1の特徴は、第1の
方向及び当該第1の方向とは逆の第2の方向の光信号を
それぞれ増幅する2線双方向光通信の光増幅中継回路に
おいて、当該第1の方向及び第2の方向にそれぞれ伝搬
する信号光を各々増幅する第1及び第2の光増幅用ファ
イバと、第1及び第2の励起光源と、当該第1及び第2
の励起光源の各出力光を合波した後、前記第1及び第2
の光増幅用ファイバにそれぞれ送られる第1及び第2の
励起光に分波する一つの光合分波器と、当該2つの励起
光源の出力を統括制御するための単一共通の制御回路
と、当該制御回路に電力を供給するための電源回路を備
え、前記2つの第1及び第2励起光源は前記制御回路に
より常時動作状態となるよう制御されて、前記分波され
た第1及び第2励起光が第1及び第2光増幅ファイバそ
れぞれを増幅してなる光増幅中継回路である。
The above-mentioned conventional problems can be solved by the present invention by adopting the following novel characteristic constitution means. That is, a first feature of the present invention is an optical amplification repeater circuit of two-wire bidirectional optical communication for amplifying optical signals in a first direction and a second direction opposite to the first direction, respectively. First and second optical amplification fibers for amplifying signal light propagating in the first and second directions, respectively, first and second pump light sources, and the first and second pump light sources;
After combining the respective output lights of the pumping light source of
A single optical multiplexer / demultiplexer for demultiplexing into the first and second pumping lights respectively sent to the optical amplifying fiber, and a single common control circuit for integrally controlling the outputs of the two pumping light sources, A power supply circuit for supplying electric power to the control circuit is provided, and the two first and second pumping light sources are controlled by the control circuit so as to always be in an operating state, and the demultiplexed first and second demultiplexed light sources are provided. It is an optical amplification repeater circuit in which the pumping light amplifies each of the first and second optical amplification fibers.

【0015】本発明の第2の特徴は、本発明の第1の特
徴における第1及び第2の励起光源が、単一共通の制御
回路と電気的に直列に接続してなる光増幅中継回路であ
る。
A second feature of the present invention is an optical amplification repeater circuit in which the first and second pumping light sources in the first feature of the present invention are electrically connected in series with a single common control circuit. It is.

【0016】本発明の第3の特徴は、本発明の第1の特
徴における第1及び第2の励起光源が、単一共通の制御
回路と電気的に並列に接続してなる光増幅中継回路であ
る。
According to a third feature of the present invention, there is provided an optical amplifying repeater circuit in which the first and second pumping light sources according to the first feature of the present invention are electrically connected in parallel to a single common control circuit. It is.

【0017】[0017]

【作用】本発明による光増幅中継回路は、前記のように
構成するので、前記第1の励起光源と第2の励起光源の
2つの光出力を光合分波器で合波を経て分波し、分波さ
れた2つの光出力で前記第1及び第2の増幅用光ファイ
バを励起することが可能となり、万が一、片方の励起光
源が故障したとしても、システム障害となることはな
い。
Since the optical amplification repeater circuit according to the present invention is configured as described above, the two optical outputs of the first pumping light source and the second pumping light source are demultiplexed by the optical multiplexer / demultiplexer. Thus, the first and second amplification optical fibers can be excited by the two split optical outputs, and even if one of the excitation light sources fails, the system does not become an obstacle.

【0018】[0018]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。図1は本実施例の構成を示すブロックダイアグラム
である。図中、βは本実施例の光増幅中継回路、b,
b′は合分波ファイバカプラに入力する光ファイバ、
3″は励起光源2,2′の制御に用いる制御回路、10
は合分波ファイバカプラの光合分波器である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of this embodiment. In the figure, β is the optical amplification repeater circuit of this embodiment, b,
b'is an optical fiber input to the demultiplexing fiber coupler,
3 ″ is a control circuit used for controlling the excitation light sources 2, 2 ′
Is an optical multiplexer / demultiplexer of a multiplexer / demultiplexer fiber coupler.

【0019】なお、前記従来例と同一の部品には、同一
の符号を付した。本実施例では第1の励起光源2と第2
の励起光源2′が電気的に直列に接続されており、一つ
の制御回路3″によって駆動・制御されている。
The same parts as those of the conventional example are designated by the same reference numerals. In this embodiment, the first excitation light source 2 and the second excitation light source 2
The pumping light source 2'is electrically connected in series and is driven and controlled by one control circuit 3 ".

【0020】本実施例の仕様は、このような具体的実施
態様であるから、励起光源2,2′である半導体レ−ザ
が直列に接続されているため、所要電流値としては一つ
分の500〜700mAで済むことになる。従って、励
起光源2,2′を並列接続する場合に比べて、給電電流
Iは最大でも1A以下には抑えられる。
Since the specifications of the present embodiment are such a concrete embodiment, since the semiconductor lasers which are the pumping light sources 2 and 2'are connected in series, the required current value is one. Of 500 to 700 mA will suffice. Therefore, as compared with the case where the pumping light sources 2 and 2'are connected in parallel, the feeding current I can be suppressed to 1 A or less at the maximum.

【0021】すなわち、光合分波器10で2つの励起光
源2,2′の出力光La,La′を合波・分波して、分
波された2つの励起光Lb,Lb′で第1及び第2のE
rドープファイバ1,1′を励起するものである。光合
分波器10は、通常「3dBカプラ」と称されており、
2つの入力ファイバb,b′から入った出力光La,L
a′が光合分波器10で合波されるとともに、均等に或
いは割合調整して2つに分波されて2つの出力ファイバ
a,a′から励起光Lb,Lb′として出て来る。
That is, the output lights La and La 'of the two pump light sources 2 and 2' are multiplexed and demultiplexed by the optical multiplexer / demultiplexer 10, and the first light is demultiplexed by the two demultiplexed pump lights Lb and Lb '. And the second E
It excites the r-doped fibers 1, 1 '. The optical multiplexer / demultiplexer 10 is usually called a "3 dB coupler",
Output light La, L entering from two input fibers b, b '
The a'is multiplexed by the optical multiplexer / demultiplexer 10 and is equally or ratio-adjusted to be split into two, which are emitted from the two output fibers a and a'as pump lights Lb and Lb '.

【0022】従って、仮に励起光源2が劣化などにより
故障しても、励起光源2′の出力光La′が光合分波器
10を経て励起光Lb,Lb′となって2つのErドー
プファイバ1,1′を励起するため、入力信号光L1及
びL2の増幅結果出力信号光L1′及びL2′の利得は
減少するが、従来例のように吸収されてシステム障害に
なるような事は無い。
Therefore, even if the pumping light source 2 fails due to deterioration or the like, the output light La 'of the pumping light source 2' passes through the optical multiplexer / demultiplexer 10 to become the pumping light Lb, Lb ', and the two Er-doped fibers 1 , 1 ', the gains of the output signal lights L1' and L2 'are reduced as a result of the amplification of the input signal lights L1 and L2, but they are not absorbed as in the conventional example to cause a system failure.

【0023】また、片方の励起光源2若しくは2′が故
障した場合、もう一方の励起光源2,2′の出力が増え
るように制御回路3″を設計すれば、利得の減少も防ぐ
ことができる。このように本実施例βでは、励起光源
2,2′が実質的に冗長構成となっているため、従来の
ように励起光源2,2′の信頼性を極端に上げる必要は
ない。
If one of the pumping light sources 2 or 2 'fails, the control circuit 3 "is designed to increase the output of the other pumping light source 2 or 2', thereby preventing a decrease in gain. As described above, in the present embodiment β, since the pumping light sources 2 and 2 ′ are substantially redundant, it is not necessary to significantly increase the reliability of the pumping light sources 2 and 2 ′ as in the conventional case.

【0024】なお、本実施例では2つの励起光源を直列
駆動する光増幅中継回路を示したが、給電能力が充分大
きければ並列駆動でもよい事はいうまでもない。あるい
は、将来、励起光源の所要電流の画期的な低減が達成さ
れた場合には、励起光源の並列的動作もほぼ問題ではな
くなるが、その場合でも本発明の構成手段は非常に有効
である。
In this embodiment, the optical amplification relay circuit for driving the two pumping light sources in series is shown, but it goes without saying that parallel driving may be used if the power feeding capacity is sufficiently large. Alternatively, if an epoch-making reduction in the required current of the pumping light source is achieved in the future, the parallel operation of the pumping light source will be almost no problem, but even in that case, the constituent means of the present invention is very effective. .

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば、
達成が極めて困難と考えられる非常に高い信頼性を励起
光源に要求することなく光増幅中継回路を実現すること
ができる。従って、光増幅中継システム、特に光海底ケ
ーブルなど長距離システムへの本発明の効果は極めて大
である。本発明は、励起光源を複数常時動作させて出力
光の信頼性を上げるとともに、出力光を分波した後にあ
る割合で分波を行うので、上りと下り方向で等しい増幅
利得を得ることが出来る
As described above, according to the present invention,
An optical amplification repeater circuit can be realized without requiring the pumping light source to have very high reliability, which is considered to be extremely difficult to achieve. Therefore, the effect of the present invention is extremely great for an optical amplification repeater system, especially for a long-distance system such as an optical submarine cable. The present invention increases the reliability of output light by operating a plurality of pump light sources at all times, and performs demultiplexing at a certain rate after demultiplexing output light, so that equal amplification gains can be obtained in the upstream and downstream directions.

【0026】また、冗長構成で従来行なわれている非動
作の別の励起光源を単に配置する方法では、所要光源数
が2倍になるだけでなく、冗長光源の切り替え機構など
も必要となり、回路が複雑化するが、本発明ではそのよ
うな弊害も無い等、優れた有用性を発揮する。
Further, the method of simply arranging another non-operating pump light source which has been conventionally performed in a redundant configuration not only doubles the required number of light sources but also requires a redundant light source switching mechanism and the like. However, the present invention exhibits excellent usefulness in that it does not have such an adverse effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光増幅中継回路の実施例を示すブロッ
クダイアグラムである。
FIG. 1 is a block diagram showing an embodiment of an optical amplification repeater circuit of the present invention.

【図2】従来から用いられている基本的な光増幅回路を
示すブロックダイアグラムである。
FIG. 2 is a block diagram showing a basic optical amplifier circuit used conventionally.

【図3】同上・光増幅回路の別の態様を示すブロックダ
イアグラムである。
FIG. 3 is a block diagram showing another embodiment of the same optical amplification circuit.

【図4】図3の光増幅回路を用いて構成された従来の光
増幅中継回路を示すブロックダイアグラムである。
FIG. 4 is a block diagram showing a conventional optical amplification relay circuit configured using the optical amplification circuit of FIG.

【符号の説明】[Explanation of symbols]

A,B,B′…光増幅回路 α,β…光増幅中継回路 a,a′,b,b′…光ファイバ 1,1′…Erドープファイバ 2,2′…励起光源 3,3′,3″…制御回路 4…電源回路 5…波長分割合分波器 6,6′…アイソレータ 7,7′…光フィルタ 8…波長分割合分波ファイバカプラ 9…給電線 10…光合分波器 L1,L1′,L2,L2′…伝送信号光 I…給電電流 La,La′…出力光 Lb,Lb′…励起光 A, B, B '... Optical amplification circuit α, β ... Optical amplification repeater circuit a, a', b, b '... Optical fiber 1, 1' ... Er-doped fiber 2, 2 '... Excitation light source 3, 3', 3 ″ ... Control circuit 4 ... Power supply circuit 5 ... Wavelength demultiplexing ratio demultiplexer 6, 6 '... Isolator 7, 7' ... Optical filter 8 ... Wavelength demultiplexing ratio demultiplexing fiber coupler 9 ... Feed line 10 ... Optical multiplexer / demultiplexer L1 , L1 ', L2, L2' ... transmission signal light I ... supply current La, La '... output light Lb, Lb' ... pumping light

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 光司 東京都新宿区西新宿2丁目3番2号 国 際電信電話株式会社内 (56)参考文献 特開 平4−23528(JP,A) 特開 平4−37729(JP,A) 特開 平4−92483(JP,A) 特開 平3−242053(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Goto 2-3-2 Nishishinjuku, Shinjuku-ku, Tokyo Inside Kokusai Telegraph and Telephone Corp. (56) Reference JP-A-4-23528 (JP, A) JP-A-4-37729 (JP, A) JP-A-4-92483 (JP, A) JP-A-3-242053 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1の方向及び当該第1の方向とは逆の第
2の方向の光信号をそれぞれ増幅する2線双方向光通信
の光増幅中継回路において、 当該第1の方向及び第2の方向にそれぞれ伝搬する信号
光を各々増幅する第1及び第2の光増幅用ファイバと、 第1及び第2の励起光源と、 当該第1及び第2の励起光源の各出力光を合波した後、
前記第1及び第2の光増幅用ファイバにそれぞれ送られ
る第1及び第2の励起光に分波する一つの光合分波器
と、 当該2つの励起光源の出力を統括制御するための単一共
通の制御回路と、 当該制御回路に電力を供給するための電源回路を備え、 前記2つの第1及び第2の励起光源は前記制御回路によ
り常時動作状態となるよう制御されて、前記分波された
第1及び第2励起光が第1及び第2光増幅ファイバそれ
ぞれを増幅してなる、 ことを特徴とする光増幅中継回路。
An optical amplifying and repeating circuit for two-wire bidirectional optical communication for amplifying optical signals in a first direction and a second direction opposite to the first direction, respectively. The first and second optical amplification fibers for amplifying the signal lights respectively propagating in the two directions, the first and second pumping light sources, and the respective output lights of the first and second pumping light sources are combined. After the wave
One optical multiplexer / demultiplexer for demultiplexing into the first and second pumping lights respectively sent to the first and second optical amplification fibers, and a single unit for integrally controlling the outputs of the two pumping light sources A common control circuit and a power supply circuit for supplying electric power to the control circuit are provided, and the two first and second pumping light sources are controlled by the control circuit so as to be in an always operating state, and the demultiplexing is performed. An optical amplification repeater circuit, characterized in that the generated first and second pumping lights are respectively amplified by the first and second optical amplification fibers.
【請求項2】第1及び第2の励起光源は、 単一共通の制御回路と電気的に直列に接続する、 ことを特徴とする請求項1に記載の光増幅中継回路。2. The optical amplification repeater circuit according to claim 1, wherein the first and second pump light sources are electrically connected in series with a single common control circuit. 【請求項3】第1及び第2の励起光源は、 単一共通の制御回路と電気的に並列に接続する、 ことを特徴とする請求項1に記載の光増幅中継回路。3. The optical amplifying repeater circuit according to claim 1, wherein the first and second pump light sources are electrically connected in parallel to a single common control circuit.
JP4062617A 1992-03-18 1992-03-18 Optical amplifier repeater circuit Expired - Fee Related JP2669483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4062617A JP2669483B2 (en) 1992-03-18 1992-03-18 Optical amplifier repeater circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4062617A JP2669483B2 (en) 1992-03-18 1992-03-18 Optical amplifier repeater circuit

Publications (2)

Publication Number Publication Date
JPH05268166A JPH05268166A (en) 1993-10-15
JP2669483B2 true JP2669483B2 (en) 1997-10-27

Family

ID=13205462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4062617A Expired - Fee Related JP2669483B2 (en) 1992-03-18 1992-03-18 Optical amplifier repeater circuit

Country Status (1)

Country Link
JP (1) JP2669483B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104473A (en) * 2002-09-10 2004-04-02 Mitsubishi Electric Corp Optical amplification repeater
WO2018168593A1 (en) * 2017-03-13 2018-09-20 日本電気株式会社 Optical amplification module and optical amplification method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012954A (en) 1996-06-26 1998-01-16 Fujitsu Ltd Optical amplifier
US6327077B1 (en) 1998-09-29 2001-12-04 Nec Corporation Optical direct amplifier device and bidirectionally pumped optical direct amplifier device
JP4626918B2 (en) 2001-03-02 2011-02-09 富士通株式会社 Raman optical repeater
JP4175051B2 (en) 2002-08-02 2008-11-05 日本電気株式会社 Optical transmission system and optical amplification method for optical transmission system
JP2008306081A (en) * 2007-06-11 2008-12-18 Miharu Communications Co Ltd OPTICAL AMPLIFYING METHOD AND OPTICAL AMPLIFIER USING MMPLDs
JP2009260372A (en) * 2009-07-27 2009-11-05 Miharu Communications Co Ltd Optical amplifying method using mmpld and optical amplifier
WO2013121744A1 (en) * 2012-02-14 2013-08-22 日本電気株式会社 Relay device, and excitation light supply device and excitation light supply method therefor
WO2014034073A1 (en) * 2012-08-28 2014-03-06 日本電気株式会社 Excitation light source for optical amplifier and method for controlling excitation light source for optical amplifier
EP2975705A4 (en) 2013-03-15 2016-11-16 Nec Corp Optical amplifier and method for controlling same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03242053A (en) * 1990-02-20 1991-10-29 Fujitsu Ltd Optical repeater using optical direct amplifier for processing monitor signal
JPH0423528A (en) * 1990-05-17 1992-01-27 Fujitsu Ltd Light amplification repeating system using light amplifying fiber
JP2626178B2 (en) * 1990-06-01 1997-07-02 日本電気株式会社 Optical amplification repeater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104473A (en) * 2002-09-10 2004-04-02 Mitsubishi Electric Corp Optical amplification repeater
WO2018168593A1 (en) * 2017-03-13 2018-09-20 日本電気株式会社 Optical amplification module and optical amplification method
CN110402523A (en) * 2017-03-13 2019-11-01 日本电气株式会社 Light amplification module and method of light amplification
JPWO2018168593A1 (en) * 2017-03-13 2020-01-09 日本電気株式会社 Optical amplification module and optical amplification method

Also Published As

Publication number Publication date
JPH05268166A (en) 1993-10-15

Similar Documents

Publication Publication Date Title
US6882466B1 (en) Optical amplifier
JP2928149B2 (en) Optical fiber amplifier
US5978130A (en) Dual-band fiber optic amplification system using a single pump source
US6104848A (en) WDM optical transmitter
JPH1012954A (en) Optical amplifier
US6426833B1 (en) Optical amplifier configuration including shared pumps
JP2669483B2 (en) Optical amplifier repeater circuit
US6480328B2 (en) Optical amplifier and optical amplification method for amplifying wavelength division multiplexed signal light
JP4798997B2 (en) Method and apparatus for distributing pump energy from a single pump device to optical fibers located in different pairs of fibers
JP2536288B2 (en) Optical amplifier
US6384965B2 (en) Wavelength division multiplexing optical fiber amplifier
JP4113761B2 (en) Optical amplifier
JPH05107573A (en) Optical amplifier
JP2546494B2 (en) Bidirectional pumping optical amplifier
JP3137391B2 (en) Fiber optical amplifier
JPH05110511A (en) Optical wavelength demultiplexing/multiplexing system
JP2003258738A (en) Optical communication system for raman amplification system
JP4095159B2 (en) Optical communication system and optical amplification system
US6901190B1 (en) Fault tolerant optical amplifier configuration using pump feedthrough
JPH1174595A (en) Optical fiber amplifier
US7158289B1 (en) Method and apparatus for implementing optical supervisory channel using broadband noise modulation
JPH06252486A (en) Optical fiber amplifier
JPH11186639A (en) Pumping light generator
JP2000114625A (en) Direct optical amplification device
JP2001230477A (en) Light amplifier

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees