JPH05107573A - Optical amplifier - Google Patents

Optical amplifier

Info

Publication number
JPH05107573A
JPH05107573A JP3269768A JP26976891A JPH05107573A JP H05107573 A JPH05107573 A JP H05107573A JP 3269768 A JP3269768 A JP 3269768A JP 26976891 A JP26976891 A JP 26976891A JP H05107573 A JPH05107573 A JP H05107573A
Authority
JP
Japan
Prior art keywords
medium
signal light
doped fiber
gain
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3269768A
Other languages
Japanese (ja)
Inventor
Susumu Kinoshita
進 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3269768A priority Critical patent/JPH05107573A/en
Publication of JPH05107573A publication Critical patent/JPH05107573A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To enable easy gain constant control over a wide signal light level range by eliminating the need for a photodetector and a complicate electric control circuit. CONSTITUTION:An epsilon rbium(Er)-doped fiber 11 as an optical amplifying medium and a saturable absorbing medium (e.g. epsilon rbium(Er)-doped fiber 12) are longitudinally connected. Input signal light and exciting light from an exciting light source 14 after being multiplexed by a multiplexing module 13 are inputted to the Er-doped fiber 11. The signal light which is amplified while traveling in the Er-doped fiber 11 is inputted to the Er-doped fiber 12 and then outputted while part of it is absorbed. The Er-doped fiber 12 is so constituted as to compensate the input signal light dependency of the gain characteristics of the Er-doped fiber 11, so the gain is controlled to a constant value over a wide signal light level range. Neither the photodetector nor the complicate electric control circuit is needed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】近年、光通信システムの研究開発
が精力的に進められ、光増幅技術を利用したブースター
アンプ、リピータ、プリアンプの重要性が明らかになっ
てきている。本発明は、これら光増幅器に係り、特に光
増幅媒体と可飽和吸収媒体とが縦列に接続されて、広い
信号光レベルにおいて利得一定制御が行われる光増幅器
に関する。
[Industrial application] In recent years, research and development of optical communication systems have been vigorously pursued, and the importance of booster amplifiers, repeaters, and preamplifiers using optical amplification technology has become clear. The present invention relates to these optical amplifiers, and more particularly, to an optical amplifier in which an optical amplification medium and a saturable absorption medium are connected in cascade so that constant gain control is performed at a wide signal light level.

【0002】[0002]

【従来の技術】光通信システムにおいて、光増幅器をブ
ースターアンプ、リピータ、プリアンプとして適用しよ
うとする場合には、光増幅器の制御が不可欠である。従
来の、例えば光増幅媒体としてエルビウム(Erbium、以
下Erで示す。)ドープファイバが用いられる光増幅器
に、図4に示すようなものがある。
2. Description of the Related Art In an optical communication system, when an optical amplifier is applied as a booster amplifier, a repeater or a preamplifier, control of the optical amplifier is indispensable. A conventional optical amplifier using an Erbium (hereinafter referred to as Er) doped fiber as an optical amplification medium is shown in FIG.

【0003】同図に示すように、入力信号光の一部は光
カプラ21で分岐され、残りの入力信号光は合波器22
で、制御回路23の制御を受けるレーザダイオード等の
励起光源24から出力される励起光と合波され、Erド
ープファイバ25に入力される。ここで、励起光源24
はErドープファイバ25中のErイオンにエネルギー
を与えて電子を励起するために設けられている。
As shown in the figure, a part of the input signal light is branched by the optical coupler 21, and the remaining input signal light is multiplexed by the multiplexer 22.
Then, it is multiplexed with the pumping light output from the pumping light source 24 such as a laser diode under the control of the control circuit 23, and is input to the Er-doped fiber 25. Here, the excitation light source 24
Is provided to energize the Er ions in the Er-doped fiber 25 to excite electrons.

【0004】Erドープファイバ25に入力され、該フ
ァイバ中を進行しつつ増幅作用を受けて出力された信号
光は、光カプラ26で一部が分岐されて残りが外部に出
力される。そして、光カプラ21,26で各々分岐され
た信号光は、フォトダイオード等の受光器27,28で
各々受光され、電気信号に変換されて制御回路23に出
力される。
A part of the signal light that is input to the Er-doped fiber 25 and is output by being amplified while traveling through the fiber is branched by the optical coupler 26 and the rest is output to the outside. The signal lights branched by the optical couplers 21 and 26 are respectively received by the photodetectors 27 and 28 such as photodiodes, converted into electric signals and output to the control circuit 23.

【0005】制御回路23は、入力信号パワーに対する
出力信号光パワー(即ち、利得)が一定となるように、
例えば励起光源24の駆動電流を変化させて励起光パワ
ーを制御し、利得一定制御(AGC)を行っていた。さ
らには、制御回路23により出力パワーを一定に保つ制
御(APC)を行っていた。
The control circuit 23 keeps the output signal light power (that is, the gain) relative to the input signal power constant.
For example, the drive current of the pumping light source 24 is changed to control the pumping light power to perform the constant gain control (AGC). Further, the control circuit 23 performs control (APC) for keeping the output power constant.

【0006】[0006]

【発明が解決しようとする課題】ところで、上記従来例
の如く、電気的な制御回路を用い光信号を電気信号に変
換した後光増幅器を制御するというような方式では、応
答が遅い、また制御系が複雑になってしまうという問題
があった。
By the way, as in the above-mentioned conventional example, in a system of controlling an optical amplifier after converting an optical signal into an electric signal by using an electric control circuit, the response is slow and the control is performed. There was a problem that the system became complicated.

【0007】本発明の課題は、受光器及び複雑な電気的
制御回路が不要となり、広い信号光レベルにおいて簡便
に利得一定制御ができるようにすることである。
An object of the present invention is to eliminate the need for a photodetector and a complicated electric control circuit, and to easily perform constant gain control at a wide signal light level.

【0008】[0008]

【課題を解決するための手段】本発明の光増幅器におい
ては、光増幅媒体1(図1の原理ブロック図参照、以下
同じ)と、可飽和吸収媒体2を縦列に接続することによ
り、広い信号光レベルにおいて利得一定制御が行われる
ことを特徴とする。
In the optical amplifier of the present invention, by connecting the optical amplification medium 1 (see the principle block diagram of FIG. 1, the same hereinafter) and the saturable absorption medium 2 in cascade, a wide signal can be obtained. It is characterized in that constant gain control is performed at the optical level.

【0009】[0009]

【作用】先ず、本発明の原理について説明する。光増幅
媒体として、例えばErドープファイバが用いられた場
合、光増幅媒体単体の利得対入力信号光パワー特性は、
図2(a)に示すようになる。同図に示すように、入力
信号光が大きくなるに従い、模式的にはある点P1 から
利得は急激に減少する(利得の飽和現象)。
First, the principle of the present invention will be described. When, for example, an Er-doped fiber is used as the optical amplification medium, the gain vs. input signal light power characteristic of the optical amplification medium alone is
It becomes as shown in FIG. As shown in the figure, as the input signal light becomes larger, the gain typically sharply decreases from a certain point P 1 (gain saturation phenomenon).

【0010】また、可飽和吸収媒体単体の損失対入力信
号光パワー特性は、図2(b)に示すようになる。同図
に示すように、ある程度までの入力信号光パワーに対し
て一定の損失特性を示すが、入力信号光をそれ以上に大
きくすると信号光を吸収する媒体の飽和が始まり、ある
点P2 から損失は急激に減少する。
The loss vs. input signal light power characteristic of the saturable absorbing medium alone is as shown in FIG. 2 (b). As shown in the figure, it shows a certain loss characteristic with respect to the input signal light power up to a certain degree, but when the input signal light is made larger than that, saturation of the medium that absorbs the signal light starts, and from a certain point P 2 Losses decrease sharply.

【0011】これは、可飽和吸収媒体は、光が入射して
吸収媒体中の電子が励起されて光の吸収が起こるのであ
って、大きな信号光が入力すると光の吸収に寄与する媒
体が有限なため、吸収媒体中の吸収に寄与する電子の全
てが励起されて上のエネルギー順位に上がってしまうこ
とで光を吸収するものがなくなってしまい、光の吸収特
性が飽和することによる(吸収の飽和現象)。
This is because in a saturable absorption medium, light is incident and electrons in the absorption medium are excited to cause light absorption. Therefore, when a large signal light is input, the medium that contributes to the absorption of light is finite. Therefore, all of the electrons that contribute to absorption in the absorption medium are excited and go up to the upper energy level, so there is nothing that absorbs light, and the absorption characteristics of light are saturated ( Saturation phenomenon).

【0012】従って、図2(a)に示す利得特性と図2
(b)に示す損失特性に基づき、ある入力信号光パワー
値に対してP1 点とP2 点とが一致するような特性を持
つように構成された光増幅媒体と可飽和吸収媒体が選択
され、これが縦列に接続されて組み合わされる光増幅器
の利得対入力信号光パワー特性は、図2(c)に示すよ
うになる。尚、この可飽和吸収媒体の特性は、媒体の温
度を変えること、あるいは利得を生じさせない程度に励
起しておくこと、さらに可飽和吸収媒体の信号光の伝搬
方向の長さ(ファイバ構造の場合はファイバ長)を調節
することで調整できる。
Therefore, the gain characteristic shown in FIG.
Based on the loss characteristics shown in (b), an optical amplification medium and a saturable absorption medium configured to have characteristics such that points P 1 and P 2 match for a certain input signal light power value are selected. The gain-to-input signal light power characteristics of the optical amplifiers connected in cascade and combined are as shown in FIG. The characteristics of this saturable absorbing medium are as follows: changing the temperature of the medium or exciting the medium so that gain is not generated, and the length of the saturable absorbing medium in the propagation direction of the signal light (in the case of a fiber structure). Can be adjusted by adjusting the fiber length).

【0013】この場合、図2(c)に実際で示すよう
に、利得そのものは光増幅媒体単体の場合(点線で示
す)と較べて低下するが、光増幅媒体単体の特性と比べ
て広い信号光レベルにおいて平坦な特性となり、利得が
一定もしくは利得の変動を抑えることが可能となる。す
なわち、光増幅媒体単体の利得対入力信号光パワー特性
に対し、この単体の利得の入力信号光依存性を補償する
特性を有する可飽和吸収媒体を縦列接続することで、広
い信号光レベルにおいて利得制御が実現される。
In this case, as actually shown in FIG. 2 (c), the gain itself is lower than that in the case of the optical amplification medium alone (shown by the dotted line), but a wider signal than the characteristics of the optical amplification medium alone. The characteristics become flat at the light level, and it is possible to keep the gain constant or suppress the gain fluctuation. That is, a saturable absorption medium having a characteristic of compensating the dependence of the gain of the single optical amplification medium on the input signal light power with respect to the gain of the single optical amplification medium is cascaded to obtain a gain at a wide signal light level. Control is realized.

【0014】本発明は、上記の原理に基づきなされたも
ので、図1に示すように、光増幅媒体1と可飽和吸収媒
体2とは縦続に接続されている。ここで、光増幅媒体1
の利得対入力信号光パワー特性と可飽和吸収媒体2の損
失対入力信号光パワー特性とは、各々の下降点P1 ,P
2 (図2(a),(b)参照)ができる限り一致するよ
うに構成されている。
The present invention is made on the basis of the above principle, and as shown in FIG. 1, the optical amplification medium 1 and the saturable absorption medium 2 are connected in cascade. Here, the optical amplification medium 1
Of the gain vs. input signal light power characteristic and the loss vs. input signal light power characteristic of the saturable absorbing medium 2 are the descending points P 1 , P respectively.
2 (see FIGS. 2A and 2B) are configured to match as much as possible.

【0015】光増幅媒体1は、入力される信号を増幅す
る状態におかれ、該光増幅媒体1を通過して増幅された
信号光は可飽和吸収媒体2を通過し、一部が吸収されて
出力される。そして、本発明の光増幅器の利得の総合特
性は図2(c)に示すようであり、広い信号光レベルに
わたって利得が一定となる。
The optical amplifying medium 1 is placed in a state of amplifying an input signal, and the signal light amplified by passing through the optical amplifying medium 1 passes through the saturable absorbing medium 2 and a part thereof is absorbed. Is output. The overall characteristic of the gain of the optical amplifier of the present invention is as shown in FIG. 2C, and the gain becomes constant over a wide signal light level.

【0016】この場合、上記如く、本発明の光増幅器に
おいては、フィードバックループは特に形成されること
がなく、また電気的な制御回路は不要となり、広い信号
光レベルにおいて簡便に利得一定制御が実現できる。
In this case, as described above, in the optical amplifier of the present invention, a feedback loop is not particularly formed, an electric control circuit is not required, and constant gain control can be easily realized at a wide signal light level. it can.

【0017】[0017]

【実施例】以下、一実施例を図面を参照しながら説明す
る。図3は、本発明の光増幅器の一実施例の構成を示す
ブロック図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment will be described below with reference to the drawings. FIG. 3 is a block diagram showing the configuration of an embodiment of the optical amplifier of the present invention.

【0018】同図に示すように、本実施例においては、
進行波型の光増幅媒体11と同じく進行波型の可飽和吸
収媒体12とは縦列に接続され、また両者ともにErド
ープファイバが用いられている。
As shown in the figure, in this embodiment,
The traveling wave type optical amplifying medium 11 and the traveling wave type saturable absorbing medium 12 are connected in cascade, and both are made of Er-doped fiber.

【0019】信号光送信側の図示しない光源から出力さ
れ、例えば“1”または“0”の明滅光情報が含まれて
いる波長1.55μmの入力信号光は、合波モジュール13
で、励起光源14から出力される波長0.98μm あるいは
1.48μmの励起光と合波された後、第1のアイソレータ
(ISO1 )15に出力される。
The input signal light having a wavelength of 1.55 μm, which is output from a light source (not shown) on the signal light transmitting side and contains, for example, blinking light information of “1” or “0”, is generated by the multiplexing module 13.
And the wavelength output from the pumping light source 14 is 0.98 μm or
After being multiplexed with the 1.48 μm excitation light, it is output to the first isolator (ISO 1 ) 15.

【0020】ここで、励起光源14は、例えばレーザダ
イオードから成り、光増幅媒体としてのErドープファ
イバ11中のErイオンに外からエネルギーを与えて電
子を励起し、入力される信号光を増幅する。
Here, the pumping light source 14 is composed of, for example, a laser diode, and externally applies energy to Er ions in the Er-doped fiber 11 serving as an optical amplification medium to pump electrons and amplify the input signal light. ..

【0021】Erドープファイバ11は、励起光源14
により励起されて入力信号光を増幅する状態にあり、ア
イソレータ(ISO1 )15を通過して入力された光は
Erドープファイバ11中を進行するに従い増幅作用を
受けて、第2のアイソレータ(ISO2 )16に出力さ
れる。そして、このErドープファイバ11は、利得対
入力信号光パワー特性は図2(a)に示すような特性を
有するように構成されている。即ち、入力信号光パワー
が大きくなると利得が減少する。
The Er-doped fiber 11 includes a pump light source 14
The light that is excited by the input signal light is amplified, and the light input through the isolator (ISO 1 ) 15 is amplified as it travels through the Er-doped fiber 11, and the second isolator (ISO 1 2 ) Output to 16. The Er-doped fiber 11 is configured so that the gain-to-input signal light power characteristic has a characteristic as shown in FIG. That is, the gain decreases as the input signal light power increases.

【0022】Erドープファイバ11を挟むように配設
されている各々のアイソレータ15,16は、光増幅器
が不安定動作しないように設けられている。即ち光路に
光増幅媒体がある場合、光学部材の品質,設計が良いも
のではなく両側に反射鏡が僅かにできてしまうと、意図
しないにもかかわらず反射光が現れ不安定な特性とな
る。この不具合を抑えるために設けられている。
The respective isolators 15 and 16 arranged so as to sandwich the Er-doped fiber 11 are provided so that the optical amplifier does not operate unstable. That is, when an optical amplification medium is provided in the optical path, the quality and design of the optical member are not good, and if a small number of reflecting mirrors are formed on both sides, reflected light will appear unintentionally, resulting in unstable characteristics. It is provided to suppress this problem.

【0023】さらに、アイソレータ(ISO2 )16を
通過した増幅された信号光は、さらに帯域通過フィルタ
(BPF)17を通されて所定の波長範囲の信号光とさ
れ、可飽和吸収媒体としてのErドープファイバ12に
入力され、一部が吸収される。このErドープファイバ
12は励起されておらず、図2(b)に示すような、損
失対入力信号光パワー特性即ち、一定の入力信号光に対
する吸収特性を示すように構成されている。即ち、ある
入力信号光パワーレベルまでは、ほぼ一定の損失特性を
示すが、それ以上に大きくしていくと信号光を吸収する
媒体の飽和が始まり、損失は減少する。
Further, the amplified signal light that has passed through the isolator (ISO 2 ) 16 is further passed through a band pass filter (BPF) 17 to be signal light in a predetermined wavelength range, and Er as a saturable absorbing medium is obtained. It is input to the doped fiber 12 and part of it is absorbed. The Er-doped fiber 12 is not pumped and is configured to exhibit a loss-to-input signal light power characteristic as shown in FIG. 2B, that is, an absorption characteristic for a constant input signal light. That is, up to a certain power level of the input signal light, the loss characteristic is substantially constant, but when the power level is further increased, saturation of the medium that absorbs the signal light starts and the loss decreases.

【0024】ここで、光増幅媒体としてのErドープフ
ァイバ11と可飽和吸収媒体としてのErドープファイ
バ12とは、模式的に説明したのと同様に利得対入力信
号光パワー特性の降下点P1 (図2(a)参照)と損失
対入力信号光パワー特性の降下点P2 (図2(b)参
照)とが合致するといった具合に媒体が選択されてい
る。尚、Erドープファイバの特性の調整方法について
は既述した通りである。
Here, the Er-doped fiber 11 as the optical amplifying medium and the Er-doped fiber 12 as the saturable absorbing medium have the gain-input signal optical power characteristic drop point P 1 in the same manner as described above. The medium is selected such that the loss (see FIG. 2A) and the drop point P 2 of the loss-to-input signal light power characteristic (see FIG. 2B) match. The method of adjusting the characteristics of the Er-doped fiber is as described above.

【0025】このように、光増幅媒体としてのErドー
プファイバ11の利得対入力信号光パワー特性に対し、
この利得の入力信号光依存性を補償する特性を有する可
飽和吸収媒体としてのErドープファイバ12が縦列接
続されている。従って、本実施例の光増幅器の利得の総
合特性は図2(c)に示すように光増幅媒体単体の特性
と比べるとより平坦となる。
As described above, with respect to the gain vs. input signal light power characteristic of the Er-doped fiber 11 as the optical amplification medium,
An Er-doped fiber 12 as a saturable absorbing medium having a characteristic of compensating the dependence of the gain on the input signal light is cascade-connected. Therefore, the overall characteristic of the gain of the optical amplifier of this embodiment is flatter than the characteristic of the optical amplifying medium alone as shown in FIG.

【0026】上記構成の作用を説明する。図3におい
て、図示しない光源から出力される入力信号光は、合波
モジュール13で、励起光源14から出力される励起光
と合波され、第1のアイソレータ(ISO1 )15を通
された後、励起光源14により励起されて入力信号光を
増幅する状態にあるErドープファイバ11に入力され
る。
The operation of the above configuration will be described. In FIG. 3, the input signal light output from the light source (not shown) is combined with the pump light output from the pump light source 14 in the multiplexing module 13, and is passed through the first isolator (ISO 1 ) 15. , Is input to the Er-doped fiber 11 in a state of being excited by the pumping light source 14 and amplifying the input signal light.

【0027】Erドープファイバ11を進行するに従
い、入力された信号光は増幅作用を受け、第2のアイソ
レータ(ISO2 )16に出力される。そして、信号光
は、帯域通過フィルタ(BPF)17により所定の波長
範囲の信号光およびその近傍の自然放出光のみが通過さ
れてErドープファイバ12に入力され、該Erドープ
ファイバ12で一部が吸収された後出力される。
The input signal light is amplified as it travels through the Er-doped fiber 11, and is output to the second isolator (ISO 2 ) 16. Then, the signal light passes through the band-pass filter (BPF) 17 only the signal light in a predetermined wavelength range and spontaneous emission light in the vicinity thereof and is input to the Er-doped fiber 12, and a part of the Er-doped fiber 12 is input. It is output after being absorbed.

【0028】Erドープファイバ12は、Erドープフ
ァイバ11の利得対入力信号光パワー特性における入力
信号光依存性を補償する特性を有しているから、Erド
ープファイバ12を通過して出力される信号光の利得対
入力信号光パワー特性は、図2(c)に示すように広い
信号光レベルにおいて一定となる。
Since the Er-doped fiber 12 has a characteristic of compensating the input signal light dependency in the gain-to-input signal light power characteristic of the Er-doped fiber 11, the signal output through the Er-doped fiber 12 is output. The optical gain vs. input signal light power characteristic is constant over a wide signal light level as shown in FIG.

【0029】本実施例は上記のように構成されているの
で、広い信号光レベルにわたって利得が一定となる。こ
の場合、光増幅媒体としてのErドープファイバ11と
可飽和吸収媒体としてのErドープファイバ12とは縦
列に接続されているだけであり、従来例のようにフィー
ドバックループが特に形成されることもなく、また受光
器や複雑な電気的制御回路が不要となり、広い信号光レ
ベルにおいて簡便に利得一定制御が実現できる。このこ
とから、光通信システムにおいて、多大な貢献をなすこ
とが期待できる。
Since this embodiment is constructed as described above, the gain is constant over a wide signal light level. In this case, the Er-doped fiber 11 as the optical amplification medium and the Er-doped fiber 12 as the saturable absorption medium are only connected in series, and a feedback loop is not particularly formed unlike the conventional example. In addition, a light receiver and a complicated electric control circuit are not required, and constant gain control can be easily realized in a wide signal light level. From this, it can be expected to make a great contribution to the optical communication system.

【0030】尚、上記実施例においては、光増幅媒体1
と可飽和吸収媒体2とを、Erドープファイバを例にと
り説明したが、必ずしもErがドープされた媒体に限ら
れることはない。ネオジム(Neodymium,Nd)あるいはプ
ラセオジム(Praseodymium,Pr )等の他の希土類元素が
ドープされた媒体であっても良い。
In the above embodiment, the optical amplification medium 1 is used.
The saturable absorbing medium 2 and the saturable absorbing medium 2 have been described by taking the Er-doped fiber as an example, but the medium is not necessarily limited to the Er-doped medium. The medium may be a medium doped with other rare earth elements such as neodymium (Nodymium, Nd) or praseodymium (Praseodymium, Pr).

【0031】また、光増幅媒体1及び可飽和吸収媒体2
は、希土類元素がドープされた媒体に限られることはな
く、入力光を増幅することが可能な特性さらに可飽和吸
収特性を有する半導体、例えばGaInAsP/InP
系あるいはGaAlAs/GaAs系等の半導体レーザ
の結晶材料が用いられた媒体とされても良い。
Further, the optical amplification medium 1 and the saturable absorption medium 2
Is not limited to a medium doped with a rare earth element, but a semiconductor having a characteristic capable of amplifying input light and a saturable absorption characteristic, for example, GaInAsP / InP.
A medium using a crystal material of a semiconductor laser such as a GaAlAs / GaAs system or a GaAlAs / GaAs system may be used.

【0032】さらに、上記実施例においては、光増幅媒
体1と可飽和吸収媒体2とをErドープファイバとして
両者が同質の媒体としたが、必ずしも同質の媒体とする
必要はない。光増幅媒体と可飽和吸収媒体とを、別種の
希土類元素がドープされた媒体から選択しても良いし、
また別種の結晶材料からなる半導体から選択しても良
い。そして、光増幅媒体を希土類元素がドープされた媒
体とし、可飽和吸収媒体を光を増幅することが可能な特
性を有する半導体として選択することも、あるいはこの
逆の配列としても良い。この場合、同質の媒体で構成で
きれば、それも1つのメリットとなる。
Further, in the above embodiment, the optical amplifying medium 1 and the saturable absorbing medium 2 were made of Er-doped fibers and both of them had the same quality, but they do not necessarily have to have the same quality. The optical amplifying medium and the saturable absorbing medium may be selected from a medium doped with another kind of rare earth element,
Further, it may be selected from semiconductors made of different kinds of crystalline materials. Then, the optical amplifying medium may be a medium doped with a rare earth element, and the saturable absorbing medium may be selected as a semiconductor having a property capable of amplifying light, or vice versa. In this case, if the medium can be composed of the same quality, that is also an advantage.

【0033】その上、上記実施例では、光増幅媒体1と
可飽和吸収媒体2とを、ファイバ構造の媒体として説明
したが、これに限られることはなくファイバ構造以外の
媒体としても良い。但し、両者ともファイバ構造とすれ
ば、両者の接続は容易となり且つ信号光の増幅及び吸収
といった作用も生じさせ易い。
Moreover, in the above embodiment, the optical amplifying medium 1 and the saturable absorbing medium 2 are described as media having a fiber structure, but the present invention is not limited to this, and media other than the fiber structure may be used. However, if both of them have a fiber structure, it is easy to connect the both, and it is easy to cause amplification and absorption of the signal light.

【0034】[0034]

【発明の効果】本発明によれば、受光器や複雑な電気的
制御回路は不要となり、広い信号光レベルにおいて簡便
に利得一定制御が実現できる。このことから、光通信シ
ステムにおいて、多大な貢献をなすことが期待できる。
According to the present invention, a photodetector and a complicated electric control circuit are unnecessary, and constant gain control can be easily realized at a wide signal light level. From this, it can be expected to make a great contribution to the optical communication system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理ブロック図である。FIG. 1 is a principle block diagram of the present invention.

【図2】本発明の原理説明図であり、(a)は光増幅媒
体単体の利得体入力信号光パワー特性、(b)は可飽和
吸収媒体単体の損失対入力信号光パワー特性、(c)は
(a)と(b)との縦列接続体の利得対入力信号光パワ
ー特性である。
FIG. 2 is a diagram for explaining the principle of the present invention, in which (a) is a gain body input signal light power characteristic of a single optical amplification medium, (b) is loss vs. input signal light power characteristic of a saturable absorption medium alone, and (c). ) Is a gain vs. input signal light power characteristic of the cascade connection of (a) and (b).

【図3】本発明の一実施例の構成を示す図である。FIG. 3 is a diagram showing a configuration of an exemplary embodiment of the present invention.

【図4】従来例の構成を示す図である。FIG. 4 is a diagram showing a configuration of a conventional example.

【符号の説明】[Explanation of symbols]

1 光増幅媒体 2 可飽和吸収媒体 1 Optical amplification medium 2 Saturable absorption medium

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光増幅媒体(1)と、可飽和吸収媒体
(2)とを縦列に接続することにより、広い信号光レベ
ルにおいて利得一定制御が行われることを特徴とする光
増幅器。
1. An optical amplifier, wherein a constant gain control is performed in a wide signal light level by connecting an optical amplification medium (1) and a saturable absorption medium (2) in cascade.
【請求項2】 前記光増幅媒体として、希土類元素がド
ープされた媒体が用いられることを特徴とする請求項1
記載の光増幅器。
2. A medium doped with a rare earth element is used as the optical amplification medium.
The optical amplifier described.
【請求項3】 前記光増幅媒体として、光を増幅するこ
とが可能な特性を有する半導体が用いられることを特徴
とする請求項1記載の光増幅器。
3. The optical amplifier according to claim 1, wherein a semiconductor having a characteristic capable of amplifying light is used as the optical amplification medium.
【請求項4】 前記可飽和吸収媒体として、希土類元素
がドープされた媒体が用いられることを特徴とする請求
項1記載の光増幅器。
4. The optical amplifier according to claim 1, wherein a medium doped with a rare earth element is used as the saturable absorbing medium.
【請求項5】 前記可飽和吸収媒体として、可飽和吸収
特性を有する半導体が用いられることを特徴とする請求
項1記載の光増幅器。
5. The optical amplifier according to claim 1, wherein a semiconductor having a saturable absorption characteristic is used as the saturable absorption medium.
【請求項6】 前記ドープされる希土類元素として、エ
ルビウム(Er)、ネオジム(Nd)及びプラセオジム
(Pr)の中から何れか1つが選択されることを特徴と
する請求項2または4記載の光増幅器。
6. The light according to claim 2, wherein any one of erbium (Er), neodymium (Nd) and praseodymium (Pr) is selected as the rare earth element to be doped. amplifier.
JP3269768A 1991-10-17 1991-10-17 Optical amplifier Withdrawn JPH05107573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3269768A JPH05107573A (en) 1991-10-17 1991-10-17 Optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3269768A JPH05107573A (en) 1991-10-17 1991-10-17 Optical amplifier

Publications (1)

Publication Number Publication Date
JPH05107573A true JPH05107573A (en) 1993-04-30

Family

ID=17476880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3269768A Withdrawn JPH05107573A (en) 1991-10-17 1991-10-17 Optical amplifier

Country Status (1)

Country Link
JP (1) JPH05107573A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2707442A1 (en) * 1993-07-06 1995-01-13 Pirio Francis Optical fiber transmission system with on-line distortion compensation.
US5664131A (en) * 1995-03-17 1997-09-02 Fujitsu Limited Light amplifier
FR2776083A1 (en) * 1998-03-13 1999-09-17 Nec Corp Optical switch command mechanism
EP0954071A1 (en) * 1998-04-27 1999-11-03 Oki Electric Industry Company, Limited Optical fiber amplifier and output power flattening method of optical fiber amplifier
US6055092A (en) * 1995-03-09 2000-04-25 Fujitsu Limited Multi-wavelength light amplifier
US6160659A (en) * 1995-12-07 2000-12-12 Fujitsu Limited Method and apparatus for monitoring the momental wavelength of light, and an optical amplifier and an optical communication system which incorporate the method and apparatus to adjust gain tilt
US6369938B1 (en) 1996-05-28 2002-04-09 Fujitsu Limited Multi-wavelength light amplifier
WO2009130894A1 (en) * 2008-04-25 2009-10-29 パナソニック株式会社 Pulsed fiber laser light source, wavelength conversion laser light source, two-dimensional image display device, liquid crystal display device, laser machining device and laser light source provided with fiber
US7924499B2 (en) 1998-03-19 2011-04-12 Fujitsu Limited Gain and signal level adjustments of cascaded optical amplifiers

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2707442A1 (en) * 1993-07-06 1995-01-13 Pirio Francis Optical fiber transmission system with on-line distortion compensation.
US5532861A (en) * 1993-07-06 1996-07-02 France Telecom Optical fiber transmission system with compensation for line distortions
US6055092A (en) * 1995-03-09 2000-04-25 Fujitsu Limited Multi-wavelength light amplifier
US5912760A (en) * 1995-03-17 1999-06-15 Fujitsu Limited Light amplifier
US5664131A (en) * 1995-03-17 1997-09-02 Fujitsu Limited Light amplifier
US6160659A (en) * 1995-12-07 2000-12-12 Fujitsu Limited Method and apparatus for monitoring the momental wavelength of light, and an optical amplifier and an optical communication system which incorporate the method and apparatus to adjust gain tilt
US8004752B2 (en) 1996-05-28 2011-08-23 Fujitsu Limited Multi-wavelength light amplifier
US7474459B2 (en) 1996-05-28 2009-01-06 Fujitsu Limited Multi-wavelength light amplifier
US8320040B2 (en) 1996-05-28 2012-11-27 Fujitsu Limited Multi-wavelength light amplifier
US8699126B2 (en) 1996-05-28 2014-04-15 Fujitsu Limited Multi-wavelength light amplifier
US6369938B1 (en) 1996-05-28 2002-04-09 Fujitsu Limited Multi-wavelength light amplifier
US6400499B2 (en) 1996-05-28 2002-06-04 Fujitsu Limited Multi-wavelength light amplifier
US6480329B2 (en) 1996-05-28 2002-11-12 Fujitsu Limited Multi-wavelength light amplifier
US7224517B2 (en) 1996-05-28 2007-05-29 Fujitsu Limited Multi-wavelength light amplifier
FR2776083A1 (en) * 1998-03-13 1999-09-17 Nec Corp Optical switch command mechanism
US6323983B1 (en) 1998-03-13 2001-11-27 Nec Corporation Optical switch
US7924499B2 (en) 1998-03-19 2011-04-12 Fujitsu Limited Gain and signal level adjustments of cascaded optical amplifiers
US7969648B2 (en) 1998-03-19 2011-06-28 Fujitsu Limited Gain and signal level adjustments of cascaded optical amplifiers
EP0954071A1 (en) * 1998-04-27 1999-11-03 Oki Electric Industry Company, Limited Optical fiber amplifier and output power flattening method of optical fiber amplifier
US6344924B1 (en) 1998-04-27 2002-02-05 Oki Electric Industry, Co., Ltd. Optical fiber amplifier and output power flattening method of optical fiber amplifier
WO2009130894A1 (en) * 2008-04-25 2009-10-29 パナソニック株式会社 Pulsed fiber laser light source, wavelength conversion laser light source, two-dimensional image display device, liquid crystal display device, laser machining device and laser light source provided with fiber

Similar Documents

Publication Publication Date Title
JP3442897B2 (en) Range-based gain control optical amplifier, range-based optical amplifier gain control method, optical receiver and optical repeater
EP0717478B1 (en) Optical amplifier
US7738165B2 (en) Amplified spontaneous emission reflector-based gain-clamped fiber amplifier
US11509110B2 (en) Broadband Ho-doped optical fiber amplifier
JP3295533B2 (en) Optical amplifier
JPH05241209A (en) Optical amplifier control system
JPH0645682A (en) Optical amplifier
US7133195B2 (en) Gain-clamped fiber amplifier
JPH05107573A (en) Optical amplifier
JP2669483B2 (en) Optical amplifier repeater circuit
US20210281036A1 (en) Broadband tm-doped optical fiber amplifier
KR100547868B1 (en) Gain Fixed Semiconductor Optical Amplifier Using Raman Amplification Principle
US11509108B2 (en) Tm-doped fiber amplifier utilizing wavelength conditioning for broadband performance
JP2619096B2 (en) Optical amplifier
JPH05136511A (en) Optical fiber amplifier
JPH10335722A (en) Light amplifier
JPH11168255A (en) Optical fiber amplifier
JP3740849B2 (en) Optical amplifier
JP2742133B2 (en) Optical amplifier
JP3428892B2 (en) Optical amplifier
JP3250473B2 (en) Optical amplifier
JPH11186642A (en) Optical amplifier
JPH11317560A (en) Optical amplifier and laser oscillator
JP2000261078A (en) Optical amplifier
JP2000223762A (en) Optical amplifier

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107