WO2009130894A1 - Pulsed fiber laser light source, wavelength conversion laser light source, two-dimensional image display device, liquid crystal display device, laser machining device and laser light source provided with fiber - Google Patents

Pulsed fiber laser light source, wavelength conversion laser light source, two-dimensional image display device, liquid crystal display device, laser machining device and laser light source provided with fiber Download PDF

Info

Publication number
WO2009130894A1
WO2009130894A1 PCT/JP2009/001826 JP2009001826W WO2009130894A1 WO 2009130894 A1 WO2009130894 A1 WO 2009130894A1 JP 2009001826 W JP2009001826 W JP 2009001826W WO 2009130894 A1 WO2009130894 A1 WO 2009130894A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
laser light
fiber
pulse
laser
Prior art date
Application number
PCT/JP2009/001826
Other languages
French (fr)
Japanese (ja)
Inventor
古屋博之
楠亀弘一
水島哲郎
水内公典
山本和久
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008115049A external-priority patent/JP2011134735A/en
Priority claimed from JP2008290534A external-priority patent/JP2011134736A/en
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2009130894A1 publication Critical patent/WO2009130894A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/383Non-linear optics for second-harmonic generation in an optical waveguide structure of the optical fibre type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094076Pulsed or modulated pumping

Definitions

  • the present invention relates to a pulse fiber laser light source having high photoelectric conversion efficiency capable of generating a light pulse having a high output peak value, a wavelength conversion laser light source using the same, a two-dimensional image display device, a liquid crystal display device, and laser processing.
  • the present invention relates to an apparatus and a laser light source with a fiber.
  • solid-state lasers such as Nd: YAG laser and Nd: YVO 4 laser have been mainly used as laser light sources for generating light in the 1 ⁇ m band, and laser processing machines using these lasers and these lights as fundamental waves.
  • Nd: YAG laser and Nd: YVO 4 laser have been mainly used as laser light sources for generating light in the 1 ⁇ m band, and laser processing machines using these lasers and these lights as fundamental waves.
  • a fiber laser light source capable of outputting W-class high-output light with a simple cooling mechanism has been attracting attention as a light source for welding and a fundamental wave light source of a wavelength conversion laser light source.
  • excitation light from an excitation laser light source enters from one end of the fiber.
  • the incident excitation light is absorbed by the laser active material contained in the fiber, and then the seed light of the fundamental wave is generated inside the fiber.
  • the seed light of the fundamental wave is reflected back and forth many times in a resonator having a pair of reflection mirrors, a fiber grating formed in a fiber and a fiber grating formed in another fiber.
  • the seed light is amplified by the gain of the laser active substance contained in the fiber, the light intensity increases, the wavelength is selected, and laser oscillation occurs.
  • the fiber and the fiber are connected by a connecting portion, and the laser light source is current-driven by an excitation laser current source.
  • the output light is converted into an electrical signal and used.
  • the output control unit adjusts the drive current of the laser light source with the excitation laser current source so that the intensity of the converted signal becomes an intensity at which a desired output can be obtained. Then, the intensity of the excitation light from the laser light source is adjusted, and the output intensity of the fundamental wave of the fiber laser light source is adjusted.
  • APC auto power control
  • the laser light source is a pulse light source having a high peak power, it can be applied to laser processing such as drilling and high-efficiency wavelength conversion. Is a continuous wave type, so its use is limited to laser welding. For example, in order to oscillate a light source using a fiber, a configuration in which a modulated seed light source is amplified by a fiber amplifier has become mainstream.
  • a method of generating pulsed fundamental wave light having a high peak power at the same average output is a continuous light. Since the conversion efficiency from the fundamental wave to the harmonic can be improved by the wavelength conversion method, the pulse oscillation of the fiber laser light source greatly contributes to the efficiency improvement.
  • Patent Document 1 describes a method of generating an optical pulse by matching beat phases of a resonator and a sub-resonator.
  • Patent Document 2 describes a method of inputting a high-intensity optical pulse into an optical fiber having anomalous dispersion characteristics and generating a narrow-band optical pulse by the frequency shift effect.
  • Patent Document 3 describes a method for providing a supersaturated absorption effect.
  • Patent Document 4 also describes a modulation method for an excitation LD that does not generate an unexpected optical surge pulse.
  • FIG. 30 is a schematic diagram showing an example of the configuration of the conventional pulse fiber laser light source as described above.
  • a pulse fiber laser light source 200 shown in FIG. 30 includes a pump LD 201, fiber gratings 202 and 204, a fiber 203, and a modulation mechanism 301.
  • the fiber 203 is composed of a double clad polarization maintaining fiber doped with Yb.
  • the pump LD 201 excites the fiber 203 and inserts the modulation mechanism 301 into a resonator composed of a pair of fiber gratings 202 and 204. , Generate a light pulse.
  • An object of the present invention is to provide a highly efficient pulse fiber laser light source with a simple configuration.
  • a pulsed fiber laser light source includes an excitation laser light source that emits excitation light, a fiber member that includes a laser active substance, and that receives excitation light from the excitation laser light source, and sandwiches the fiber member.
  • pulse oscillation can be performed without adding new expensive parts, so that a highly efficient pulse fiber laser light source can be realized with a simple configuration.
  • FIG. 17 shows the structure of the other wavelength conversion laser light source by the 2nd Embodiment of this invention. It is a figure which shows the waveform of the pulse current of an input electric current, and the waveform of the optical output from the pulse fiber laser light source driven by this pulse current. It is the schematic which shows the structure of the wavelength conversion laser light source in the 3rd Embodiment of this invention.
  • the output light waveform of the fiber amplifier of the wavelength conversion laser light source shown in FIG. 17, the seed light output waveform of the pulse fiber laser light source, the current waveform of the pump LD of the fiber amplifier, and the current waveform of the pump LD of the pulse fiber laser light source are shown.
  • FIG. 25 is a schematic diagram for explaining how the fundamental laser beam passes through the wavelength conversion laser light source shown in FIG. 24 while changing the incident angle to the wavelength conversion element.
  • FIG. 1 is a schematic diagram showing a configuration of a wavelength conversion laser light source according to the first embodiment of the present invention.
  • the wavelength conversion laser light source shown in FIG. 1 includes a pulse fiber laser light source 100, an optical polarization maintaining fiber 105, an SHG (Second Harmonic Generation) module 110, an LD power supply 401, and a pulse generator 402.
  • the pulse fiber laser light source 100 includes a pump.
  • LD (excitation laser light source) 101, fiber gratings 102 and 104, first fiber 103, second fiber 106, NA (aperture ratio) converter 107, and fiber 108 are provided.
  • the first fiber 103 is made of, for example, a double clad polarization maintaining fiber doped with Yb as a rare earth in the core portion, and the fiber length is 10 m.
  • the pump LD 101 excites the first fiber 103 and oscillates laser light in a laser resonator composed of the first fiber 103, the second fiber 106, and the pair of fiber gratings 102 and 104.
  • the first fiber 103 is a double-clad polarization maintaining fiber doped with Yb, and by manipulating the characteristics of the fiber gratings 102 and 104, the pulse fiber laser light source 100 can emit light of 1050 to 1170 nm. This laser active substance was selected because it can oscillate arbitrarily and can be applied to processing applications, wavelength conversion applications, and the like.
  • the fiber grating 102 is formed in a double clad polarization maintaining fiber in which germanium is added to the core portion, has improved sensitivity to ultraviolet light, and has characteristics of a center wavelength of 1064 nm, a reflection spectrum half width of 1 nm, and a reflectance of 98%. have.
  • the fiber grating 104 is formed in a common single-mode polarization maintaining fiber (core diameter 9 ⁇ m, clad outer shape 125 ⁇ m) in which germanium is similarly added to the core portion, the center wavelength is 1064 nm, the reflection spectrum half-value width is 0. It has the characteristics of 05 nm and reflectivity of 10 to 15%.
  • the half width of the reflection spectrum is The thickness is preferably 0.1 nm or less, and more preferably in the range of 0.01 to 0.06 nm.
  • the reflection band of the fiber grating 104 is 0.05 nm or less, pulse oscillation is more stably performed.
  • the mode field diameter of the rare earth-doped double clad fiber with respect to the oscillated laser beam is 8 to 13 ⁇ m, pulse oscillation is more likely to occur. This is because, even when the density of the rare earth ions that are laser active materials is the same, the amount of addition can be increased by an amount corresponding to an increase in the mode field diameter.
  • the pulse fiber laser light source 100 of the present embodiment is used with a single polarized light (linearly polarized light).
  • the reason why the linearly polarized light is used is that the wavelength conversion crystal in the SHG module 110 converts only one polarization component.
  • the optical pulse LP is introduced into the SHG module 110 by the optical polarization maintaining fiber 105 that propagates the oscillated light of around 1064 nm, and the SHG module 110 generates 532 nm light by the second harmonic generation.
  • the feature of the pulsed fiber laser light source 100 proposed in the present embodiment is that the Yb-doped fiber (first and second fibers 103 and 106) in the laser resonator is the second fiber that is not excited by the pumping light. 106 is present, and the NA converter 107 is inserted between the laser resonator and the pumping LD 101 which is an excitation light source.
  • the laser resonator can be oscillated in a pulsed manner, and has a high peak power.
  • An optical pulse LP can be obtained.
  • the laser resonator since the second fiber 106, which is a Yb-doped polarization maintaining fiber that is not excited, is inserted into the laser resonator, the laser resonator self-absorbs the light itself oscillated and oscillation is not caused. It becomes stable. As the oscillation becomes unstable, the output light is easily pulsed.
  • a giant pulse can be generated by the relaxation oscillation of the second fiber 106 which is a Yb-doped fiber.
  • the structure 106 can reach only 2% or less of the excitation light so as to be a region where the excitation light does not substantially reach.
  • a Yb-doped fiber (excitation light absorption: 1.8 dB / m) having a core diameter of 9 ⁇ m and a Yb ion concentration of 9 ⁇ 10 25 ions / m 3 is used.
  • the length of the first fiber 103 is 9.5 m, and the length of the second fiber 106 is 5 m. Since these lengths are values that vary depending on the core diameter of the fiber and the Yb ion concentration, they can be changed depending on the configuration. However, the length of the second fiber 106 is 98% of the excitation light of the first fiber 103. It is desirable that the length be about 0.5 times the fiber length that absorbs the above.
  • the NA converter 107 will be described.
  • the laser resonator described above light having a high peak power oscillates, so the oscillated light passes through the fiber grating 102 on the pump LD 101 side and returns to the pump LD 101, and this return light destroys the pump LD 101.
  • the NA converter 107 between the pump LD 101 and the fiber grating 102, it is possible to prevent destruction due to return light.
  • the mechanism of the NA converter 107 will be described below.
  • the NA of the fiber 108 that propagates light from the pump LD 101 is 0.22, and the NA of the excitation light in the first fiber 103 that is the incident side fiber used for the laser resonator is 0.46, and the NA of the oscillated light is 0.46.
  • NA is 0.1, and these lights propagate in the first fiber 103.
  • light propagating in a fiber is optically coupled with high coupling efficiency when propagating from a fiber having a small NA to a fiber having a large NA.
  • the coupling efficiency is small. Therefore, between the pump LD 101 and the laser resonator (fiber grating 102), NA 0.25 (more than NA of the fiber 108 of the pump LD 101) to NA 0.46 (excitation in the first fiber 103 constituting the laser resonator).
  • NA 0.25 more than NA of the fiber 108 of the pump LD 101
  • NA 0.46 excitation in the first fiber 103 constituting the laser resonator
  • the NA for the return light in the laser resonator is 0.1
  • the NA of the NA converter 107 is as large as 0.25 to 0.46.
  • the NA of light is about 0.3.
  • a “multi-mode combiner” used when pumping light input from a plurality of NA0.22 fibers, for example, 2 to 7 fibers, is combined into one NA0.46 fiber is used. You can also.
  • the multi-mode combiner in addition to the effect of reducing the return light to the pump LD 101 due to the difference in the NA of the fiber, the effect of reducing the return light due to the branching of the fiber can be obtained.
  • the NA of the plurality of fibers serving as the input port of the multimode combiner is equal to or greater than the NA of the fiber 108 on the pump LD 101 side, and the NA of one fiber serving as the output port of the multimode combiner is the laser resonance.
  • the input side fiber connected to the central portion of the output side fiber among the plurality of input side fibers connecting the LD 101 for the pump of the multimode combiner is greatly influenced by the return light. At least one of them is preferably not optically connected to the pump LD 101.
  • the LD power supply 401 is a power supply that can realize a rapid rise with a rise speed of 1 to 15 ns.
  • the LD power supply 401 forms a pulsed current waveform using the signal from the pulse generator 402 as a trigger. If the rising speed of the current applied to the pump LD 101 is as fast as about 100 ns, the laser resonator can be pulse-oscillated. For the sake of simplicity, a value of 1 to 15 ns is a necessary value.
  • the rising speed of the current for example, the time until the current reaches 0% to 100% (target value) can be used.
  • FIG. 2 is a diagram showing transient response characteristics of the optical pulse LP emitted from the pulse fiber laser light source 100 when a rectangular pulse current is supplied to the pump LD 101 as the input current IC. The change of the light pulse LP is shown.
  • the first peak P1 (light pulse LP) is output as an optical output after time T1.
  • the second peak P2 occurs after T2 time, and after the transient response peak occurs, the light output is the light output corresponding to the current value Is of the rectangular input current IC. It becomes a steady value Ps.
  • the pulse fiber laser light source 100 cuts off the input current IC so that the first peak P1 and the second peak P2 of the optical pulse LP are not formed, thereby providing the first peak P1 as the optical output. It is characterized by emitting an optical pulse LP having only a single peak. Specifically, the pulse fiber laser light source 100 starts from the rise of the input current IC, and after the first peak P1 is formed after the light pulse LP is emitted, the end point is reached before the second peak is formed. The excitation may be performed in the provided section, and then the input current IC may be cut off.
  • the pulse fiber laser light source 100 is excited in the section where the end point is provided from the start of the input current IC to the arrival of the first peak P1 after the light pulse LP is emitted.
  • the IC may be shut off.
  • the pulse fiber laser light source 100 may be cut off at the same time as the light pulse IP is emitted.
  • the first peak P1 of the light pulse IP is formed starting from the rise of the input current IC.
  • excitation may be performed in the section where the end point is provided, and then the input current IC may be cut off.
  • the peak output after the second peak is lower than that of the first peak, high wavelength conversion efficiency cannot be obtained when wavelength conversion is performed using a wavelength conversion element. For this reason, it is desirable that the input current amount after T2 time be 20% or less of the input current amount when the first peak P1 is generated. In this case, the generation of the second peak P2 is prevented and the peak output is high. Only the first peak P1 can be generated.
  • the LD power supply 401 repeats a plurality of optical pulses LP as output light by applying the input current IC again and further driving the pump LD 101 after the input current IC is cut off and a predetermined time elapses. It can also be operated as it is emitted. With such a configuration, it is possible to continuously generate an optical pulse LP having a high output peak value as a pulse train. Note that the timing at which the input current IC is cut off is determined in advance based on the examination results described later, and is stored in advance in a predetermined memory in the LD power source 401.
  • 3 to 6 are diagrams showing changes in the light output when the pulse width of the input current is changed in order to change the charge amount of the input.
  • a 10 A rectangular pulse current is applied to the pump LD 101 as an input current.
  • the fiber length of the pulse fiber laser light source 100 is, for example, 10 m, and the core diameter of the fiber is 9 ⁇ m.
  • FIG. 3 shows the waveforms of the input current and the optical output when the pulse fiber laser light source 100 is operated by driving the pump LD 101 using a pulse having a charge amount of 55 ⁇ C (pulse width 5.5 ⁇ s) as the input current.
  • the pulse fiber laser light source 100 since sufficient excitation light is not input, the pulse fiber laser light source 100 does not oscillate, and spontaneous emission light is slightly generated.
  • FIG. 4 shows the waveforms of the input current and the optical output when the pulse fiber laser light source 100 is operated by driving the pump LD 101 using a pulse having a charge amount of 65 ⁇ C (pulse width 6.5 ⁇ s) as the input current.
  • the pulse fiber laser light source 100 reaches laser oscillation, and a single optical pulse having the first peak P1 is generated.
  • the peak of the optical pulse P1 is the input current start time (input current rise time). 7 ⁇ s after.
  • FIG. 5 shows the waveforms of the input current and the optical output when the pulse fiber laser light source 100 is operated by driving the pump LD 101 using a pulse having a charge amount of 75 ⁇ C (pulse width 7.5 ⁇ s) as the input current.
  • a single optical pulse having a larger first peak P1 is generated as compared with the example of FIG.
  • FIG. 6 shows the waveforms of the input current and the optical output when the pulse fiber laser light source 100 is operated by driving the pump LD 101 using a pulse having an electric charge of 85 ⁇ C (pulse width 8.5 ⁇ s) as the input current.
  • FIG. 6 shows the waveforms of the input current and the optical output when the pulse fiber laser light source 100 is operated by driving the pump LD 101 using a pulse having an electric charge of 85 ⁇ C (pulse width 8.5 ⁇ s) as the input current.
  • FIG. In this case, an optical pulse with the second peak P2 in addition to the first peak P1 is generated, and the optical pulse has a waveform including a 2nd pulse.
  • a single light pulse having a high peak value can be obtained under the input current conditions shown in FIG. Further, when the input current is a rectangular pulse train, an optical pulse train can be obtained for the optical pulse.
  • Peak P2 As described above, depending on the fiber length, the output of the excitation laser light source, and the like, if a charge amount 1.1 times or more of the charge amount input until the first peak P1 is generated is input, Peak P2 will occur. For this reason, it is desirable to block the input current so that the charge amount of the input current after the first peak P1 is generated is 20% or less of the charge amount until the first peak P1 is generated.
  • the charge amount of the input current after the first peak P1 is generated is the same as that before the first peak P1 is generated. It is desirable to reduce the input current so that the charge amount is 20% or less. Also, since the peak output of the first peak P1 is proportional to the amount of input current when the first peak P1 occurs, it is most desirable to use an input current source having a small time constant and excellent time response. It is desirable to cut off the input current between the occurrence of the peak P1 and before the occurrence of the second peak P2.
  • FIG. 7 is a diagram showing an example of a single optical pulse generated by setting the pulse width and current value of a rectangular input current to predetermined values. From the above examination results, the input current IC after the first peak P1 is generated so that the charge amount is 20% or less of the charge amount until the first peak P1 of the light pulse LP is generated as shown in FIG. When the pulse width and current value of the current IC are set and the input current is cut off after the first peak P1 occurs and before the second peak occurs, the output peak value PL of the first peak P1 may be increased. it can.
  • FIG. 8 and FIG. 9 are diagrams showing that the optical output is obtained by driving the pulse fiber laser light source 100 by applying an input voltage composed of a plurality of pulse voltages with a predetermined cycle to the pump LD 101.
  • 8 is a diagram illustrating a case where the input voltage is biased with a positive DC voltage
  • FIG. 9 is a diagram illustrating a case where the input voltage is biased with a negative DC voltage.
  • the pump LD 101 is driven by an input voltage in which a positive DC voltage is superimposed on a pulse train having a period of 3 ⁇ s and a pulse width of 300 ns.
  • the optical output is an optical pulse having a half width of 50 ns as a pulse train.
  • FIG. 9 shows that an optical pulse is output as a pulse train by applying an input voltage in which a negative DC voltage is superimposed on a pulse voltage having the same period of 3 ⁇ s and a pulse width of 300 ns as in FIG.
  • the drive waveform is controlled so that the integrated charge amount in the section where the current is input is the same by increasing the peak value of the input current (charge). ing.
  • a constant negative DC voltage is applied, but the input current is cut off after the input current is applied to the pump LD 101, and at the same time, the pump LD 101 has a voltage of 0.1 V or more and 0 A reverse voltage of 5 V or less (negative DC voltage) may be applied.
  • the half-value width of the optical output can be reduced to 40 ns or less, and the pulse can be narrowed.
  • a high peak output is obtained as much as the pulse is narrowed, it is possible to increase the conversion efficiency when the wavelength of the laser beam generated by the pulse fiber laser light source 100 is converted as a fundamental wave.
  • the period is 3 ⁇ s here, the period may be 5 ⁇ s or more. Thereby, further narrowing of the pulse and higher peaking are possible. Similarly, the period may be 11 ⁇ s or more. Thus, in addition to narrowing the pulse and increasing the peak, the stability of the pulse output is improved, so that it can be used for an image display device that requires high output stability.
  • the excitation light for exciting the pulse fiber laser light source 100 can be stopped instantaneously. Therefore, in the present embodiment, it is possible to reliably generate a pulse train whose basic unit is an optical pulse having a single high output peak value not accompanied by a 2nd pulse. Furthermore, by appropriately setting the magnitude, waveform, period, etc. of the input current, it is also possible to generate optical pulses with a narrow pulse width as a pulse train, thereby realizing a wavelength conversion laser light source with higher wavelength conversion efficiency. Can do.
  • FIG. 10 shows the waveform of the light output generated from the pulse fiber laser light source 100 with respect to the waveform of the current applied to the pump LD 101.
  • the current waveform is modulated so that the rising speed is 5 ns, the pulse width is 300 ns, and the pulse interval is 5 ⁇ s.
  • the result of driving the pump LD 101 with this current waveform is the actual pulse waveform shown in FIG. From FIG. 11, it can be seen that a stable repetitive pulse waveform is obtained as an optical output waveform by the LD current waveform.
  • 1064 nm light with a peak power of about 500 W could be obtained in this embodiment.
  • This 1064 nm light is converted into green light having a peak power of about 200 W by wavelength conversion using a nonlinear optical crystal like the SHG module 110.
  • This pulse green laser beam has a peak power capable of performing laser marking or the like.
  • FIG. 12 is a schematic diagram showing a main configuration of another pulse fiber laser light source used in the wavelength conversion laser light source according to the present embodiment.
  • the difference between the pulse fiber laser light source 100a shown in FIG. 12 and the pulse fiber laser light source 100 shown in FIG. 1 is that the first fiber 103 and the second fiber 106 are made of a Yb-doped double clad polarization maintaining fiber. 103a and the second fiber 106a, and an excitation light absorption mechanism 302 that absorbs excitation light is provided between the first fiber 103a and the second fiber 106a.
  • the other points are shown in FIG. This is the same as the pulse fiber laser light source 100 shown.
  • an excitation light absorption mechanism 302 is inserted between the first fiber 103a and the second fiber 106a made of a Yb-doped double clad polarization maintaining fiber.
  • the excitation light After the excitation light propagates through the first fiber 103a, the excitation light is forcibly absorbed by the excitation light absorption mechanism 302. Therefore, the second fiber 106a can be made a region where the excitation light does not reach completely. . In this way, the same effect as described above can be obtained even when the excitation light is forcibly removed.
  • the polarization state of light generated from the pulse fiber laser light source 100 is linearly polarized light. Need to be.
  • a method of making this linearly polarized light a method using the difference in bending loss between the fast axis and the slow axis of the PANDA fiber, or by rotating the axial relationship between the fast axis and the slow axis of the fiber grating 102 and the fiber grating 104 by 90 °.
  • a method of fusing fibers or using the birefringence of a fiber can be used.
  • a configuration using a reflecting member such as a mirror instead of the fiber gratings 102 and 104 may be used.
  • the fiber exit end face reflects Fresnel by about 3% unless an antireflection film or the like is particularly formed, it can be used instead of the fiber grating.
  • FIG. 13 is a schematic diagram showing a configuration of a wavelength conversion laser light source according to the second embodiment of the present invention.
  • the wavelength conversion laser light source 1000 of the present embodiment detects that an optical pulse has been generated from the pulse fiber laser light source 100b, and stops supplying current.
  • the pulse fiber laser light source 100b includes a pump LD 101 that is an excitation laser light source that emits excitation light (not shown) and a laser active material, as in the first embodiment.
  • a first fiber 103 that includes excitation light, a second fiber 106 that is not excited by the excitation light, and a pair of fibers that are optically connected with the first and second fibers 103 and 106 interposed therebetween.
  • the detection unit 1003 is disposed in the vicinity of the output end of the output side fiber grating 104 of the pair of fiber gratings 102 and 104. A part of the optical pulse LP that is output light is branched by the half mirror 1002 and taken into the detection unit 1003.
  • the pump LD and the power source 1005 are connected by a predetermined wiring, and the detection unit 1003 and the power source 1005 are connected to the control unit 1004 by a predetermined wiring and controlled.
  • the light pulse LP is emitted, and at the same time, the output light LP is emitted by cutting off the input current IC that drives the pump LD 101.
  • the detection unit 1003 detects the optical output of the light pulse LP and outputs a detection signal DS to the control unit 1004.
  • the control unit 1004 controls the power supply 1005 so as to cut off the input current IC. That is, when the detection signal DS is received by the control unit 1004, the control unit 1004 cuts off the input current IC supplied from the power source 1005 to the pump LD 101, as will be described later, in accordance with the content of the detection signal DS. It will be.
  • the pulse fiber laser light source 100b with high photoelectric conversion efficiency capable of generating the optical pulse LP having a high output peak value as a pulse train can be realized with a simple configuration.
  • the wavelength conversion laser light source 1000 further includes an SHG module 110 including a wavelength conversion element that converts the fundamental wave into a harmonic wave using the output light LP from the pulse fiber laser light source 100b as a fundamental wave. Outputs harmonic light SP.
  • FIG. 14 is a flowchart for explaining the operation of the pulse fiber laser light source 100b when the optical pulse LP that is output light is emitted from the pulse fiber laser light source 100b shown in FIG. A specific operation of the pulse fiber laser light source 100b will be described with reference to FIGS.
  • the pump LD 101 is driven by a power source 1005, an input current IC is injected into the pump LD 101, and laser light (not shown) emitted from the pump LD 101 excites the pulse fiber laser light source 100b as excitation light.
  • a power source 1005 an input current IC is injected into the pump LD 101
  • laser light (not shown) emitted from the pump LD 101 excites the pulse fiber laser light source 100b as excitation light.
  • Step S1 for example, three single-emitter laser diodes having an oscillation wavelength of 975 nm are used as the pump LD 101 which is an excitation laser light source, and the maximum output of the pump LD 101 is 8 W.
  • the excitation light excites the laser active substance of the pulse fiber laser light source 100b (step S2).
  • the first fiber 103 and the second fiber 106 are fibers having a fiber length of 10 m in which the core portion is doped with, for example, Yb (ytterbium) as a rare earth element to form a laser active material.
  • a pair of fiber gratings 102 and 104 corresponding to the mirrors of the laser resonator are provided with the second fiber 106 interposed therebetween.
  • germanium is added to the core portion of the fiber grating 102 on the incident side of the pair of fiber gratings 102 and 104 to improve sensitivity to ultraviolet light so that the grating can be easily formed.
  • the fiber grating 102 is formed as a laser resonator mirror so as to have, for example, a center wavelength of 1064 nm, a reflection spectrum half width of 1 nm, and a reflectance of 98%.
  • germanium is similarly added to the core portion of the fiber grating 104 on the emission side, and the fiber grating 104 serves as a mirror of the laser resonator, with a center wavelength of 1064 nm, a reflection spectrum half width of 0.05 nm, and a reflectance. It is formed to have a characteristic of 10% or 15%.
  • the reflection of the fiber gratings 102 and 104 is considered in consideration of the wavelength conversion efficiency to the harmonics in the SHG module 110.
  • the spectral width is desirably 0.01 nm or more and 0.06 nm or less. It has been confirmed that the pulse fiber laser light source 100b stably oscillates within this range.
  • the optical pulse LP is emitted from the pulse fiber laser light source 100b configured as described above (step S3).
  • the laser active substance of the pulse fiber laser light source 100b is excited by the excitation light to an energy level corresponding to the wavelength for oscillating the fundamental wave, and an inversion distribution is generated.
  • stimulated emission occurs, and the fundamental wave reciprocates while being amplified in the first fiber 103 and the second fiber 106 using the pair of fiber gratings 102 and 104 as mirrors of the laser resonator, and the output side fiber grating.
  • the light pulse LP is emitted from 104.
  • the detection unit 1003 detects a part of the light pulse LP, and the control unit 1004 controls the power supply 1005 to cut off the input current IC supplied to the pump LD 101 (step S4). That is, a part of the optical pulse LP that is output light emitted from the pulse fiber laser light source 100 b is branched by the half mirror 1002 and detected by the detection unit 1003.
  • the detection signal DS of the detection unit 1003 is transmitted to the control unit 1004 via a predetermined wiring, whereby the control unit 1004 cuts off the power source 1005 that drives the pump LD 101 and cuts off the input current IC. If it does so, since the excitation light which injects into the 1st fiber 103 from the LD 101 for pumps will be interrupted
  • the light pulse LP is emitted as an optical pulse train instead of a single light pulse (step S5). In this way, a continuous optical pulse train having a predetermined cycle can be emitted.
  • the SHG module 110 includes, for example, MgO: LiNbO 3 (lithium niobate added with magnesium oxide), KTP (potassium titanyl phosphate), or MgO: LiTaO 3 (magnesium) having a periodically poled structure. For example, added lithium tantalate).
  • the optical pulse LP as a fundamental wave is wavelength-converted to an optical pulse SP as harmonic light.
  • the SHG module 110 performs wavelength conversion by the second-order nonlinear optical effect, the conversion efficiency improves as the spectrum width of the oscillation wavelength of the fundamental light pulse LP is narrower and the peak power is larger.
  • the wavelength conversion laser light source 1000 operates with low power consumption.
  • an optical pulse LP having a peak power of 200 W and an oscillation wavelength of 1064 nm is used as a fundamental wave
  • a green optical pulse SP having a peak power of 120 W and an oscillation wavelength of 532 nm is obtained as a harmonic. It has been.
  • the transient response characteristic of the optical output of the output light LP from the pulse fiber laser light source 100b when a rectangular pulse current is supplied as an input current to the pump LD 101 is a diagram used in the description of the first embodiment. 2 can be used in the same way as in the first embodiment, and the changes in the input current and the optical output with respect to the time axis at this time are the same as in FIG.
  • the first peak P1 of the light pulse LP is obtained as an optical output after T1 time.
  • the second peak P2 occurs after T2 time.
  • the light output indicates the steady value Ps of the light output corresponding to the current value Is of the rectangular input current IC.
  • the pulse fiber laser light source 100b of the present embodiment detects that the first peak P1 of the optical pulse LP of FIG. 2 has occurred by the detection unit 1003 and cuts off the input current IC, the first peak is used as the optical output.
  • An optical pulse LP having a single peak of only P1 can be emitted.
  • the detection unit 1003 detects the output peak value PL of the first peak P1 of the light pulse LP (see FIG. 7), and then the output value of the light pulse LP is 95% to 5% of the output peak value PL. It is preferable that the control unit 1004 cuts off the input current IC from the power supply 1005 at this time. With such a configuration, an optical pulse having a single high output peak value not accompanied by a 2nd pulse can be generated as the optical pulse LP, and a pulse train can also be generated.
  • the timing and setting for cutting off the input current IC can be facilitated, and wavelength conversion can be performed.
  • the operation of the laser light source 1000 can be simplified. Also, with such a configuration, the excitation light for exciting the pulse fiber laser light source 100b can be stopped instantaneously, so that the optical pulse LP is reliably supplied with a single high output peak value not accompanied by a 2nd pulse. Can be generated as a pulse train whose basic unit is an optical pulse having
  • FIG. 15 is a schematic diagram showing the configuration of another wavelength conversion laser light source according to the second embodiment of the present invention.
  • a wavelength conversion laser light source 1200 shown in FIG. 15 is different from the wavelength conversion laser light source 1000 shown in FIG. 13 in that a branch fiber 1202 is optically connected in the middle of the first fiber 103, and in addition to the detection unit 1003, a detection unit 1201. Is arranged in the vicinity of the branch fiber 1202. At this time, the detection unit 1201 extracts and detects a part of the fundamental wave of the pulse fiber laser light source 100c from a part of the branch fiber 1202, and the control unit 1004 receives the detection signal DD from the detection unit 1201, An input current IC output from 1005 to the pump LD 101 is controlled. In this case, the detection unit 1003 may be omitted.
  • the detection unit 1201 may be arranged by being incorporated in a part of the branch fiber 1202.
  • the wavelength conversion laser light source 1200 shown in FIG. 15 is different from the wavelength conversion laser light source 1000 shown in FIG. 13, and the pump LD 101 that is a laser light source is composed of a plurality of laser light sources 101 a, 101 b, 101 c, and a plurality of lasers.
  • One end of each of the light sources 101a, 101b, and 101c is connected to one end of a coupling fiber 101d, and the other end of each coupling fiber 101d is connected to the input end of the fiber grating 102 on the input side of a set of fiber gratings by a combiner 1203. Is bound to.
  • the optical output of the pumping light can be increased to a predetermined magnitude, so that the optical pulse LP can be generated as a pulse train having a higher output optical pulse as a basic unit.
  • the wavelength conversion laser light source 1200 shown in FIG. 15 is different from the wavelength conversion laser light source 1000 shown in FIG. 13 in that a polarization plane selection unit 1204 that selects the polarization plane of the laser light is arranged on the output end side of the second fiber 106. ing.
  • the light pulse LP can be generated as a pulse train having a light pulse with a uniform polarization plane as a basic unit. Then, when performing wavelength conversion in the SHG module 110, not only can the conversion efficiency be improved, but also the harmonic light SP with a uniform polarization plane can be output, which is optimal as a light source for a liquid crystal display device or the like.
  • FIG. 16 shows the waveform of the pulse current of the input current IC on the upper stage, and the pump LD 101 is driven by the pulse current having the shape of the input current IC and is pumped by the pumping light generated from the pump LD 101.
  • the waveform of the light pulse LP which is the light output from the light source 100b (or 100c), is shown in the lower part.
  • the input current IC is a pulse current composed of a trapezoidal wave that monotonously increases from the current value I1 to the current value (I2 + I3) over time.
  • This pulse current is biased by a current value I3 as a direct current.
  • the optical pulse having a single high output peak value P1 not accompanied by the 2nd pulse as the optical output. LP can be output.
  • a pulse train having the optical pulse shown in the lower part of FIG. 16 as a basic unit can be generated.
  • FIG. 17 is a schematic diagram showing a configuration of a wavelength conversion laser light source according to the third embodiment of the present invention.
  • the optical power LP1 from the pulse fiber laser light source 100 proposed in the first embodiment is used as seed light, and the seed light is further amplified by the fiber amplifier 1400, whereby the peak power can be further amplified.
  • the pulse fiber laser light source used in the present embodiment is not particularly limited to the above example, and other pulse fiber laser light sources may be used. This is the same for the other embodiments.
  • the output light LP2 generated from the pulse fiber laser light source 100 is used for wavelength conversion by the SHG module 110 made of a nonlinear optical crystal, it needs to be linearly polarized light. Therefore, the third fiber 1401 used in the fiber amplifier 1400 also needs to be a double clad polarization maintaining fiber in which the core portion is doped with Yb as a rare earth.
  • the pulse fiber laser light source 100 and the third fiber 1401 of the fiber amplifier 1400 are connected by a combiner 1402 provided with a port for introducing signal light.
  • a plurality of pump LDs 1403 for exciting the fiber amplifier 1400 are also connected to the combiner 1402.
  • the pulse generator 1405 and the LD power source 1404 can modulate the pump LD 1403 of the fiber amplifier 1400 using the signal TG of the pulse generator 402 that drives the pulse fiber laser light source 100 that generates seed light as a trigger. This is a feature of the embodiment.
  • FIG. 18 shows the output light waveform of the fiber amplifier 1400 of the wavelength conversion laser light source shown in FIG. 17, the seed light output waveform of the pulse fiber laser light source 100, the current waveform of the pump LD 1403 of the fiber amplifier 1400, and the pulse fiber laser light source 100.
  • the current waveform of the pump LD 101 for seed light is shown.
  • the pulsed fiber laser light source 100 that generates seed light modulates the current waveform so that the rising speed is 5 ns, the pulse width is 300 ns, and the pulse interval is 10 ⁇ s, as in the first embodiment. is doing.
  • a current waveform for driving the pump LD 1403 of the fiber amplifier 1400 a current waveform having a pulse interval of 10 ⁇ s and a duty ratio of 50% is used by detecting the falling of the current of the pump LD 101.
  • the current waveform for driving the pump LD 1403 of the fiber amplifier 1400 is a waveform in which the LD current for exciting the fiber amplifier 1400 is applied to the pump LD 1403 after 5 ⁇ s from the falling of the current of the pump LD 101. ing.
  • the falling timing D2 of the current waveform of the pump LD 101 that drives the pulse fiber laser light source 100 that outputs the seed light and the falling waveform of the current waveform of the pump LD 1403 that drives the fiber amplifier 1400 are shown.
  • the timing D1 is matched, the falling timing D1 of the current waveform of the pump LD 1403 that drives the fiber amplifier 1400 is set to the rising timing D1 of the current waveform of the pump LD 101 that drives the pulse fiber laser light source 100 that outputs seed light.
  • the trailing edge DS of the output optical waveform from the fiber amplifier 1400 can be reduced.
  • reducing the skirt DS at the time of falling has an important meaning in increasing the processing speed and processing accuracy, for example, when performing laser processing using a scanning mirror.
  • a peak power 5 to 10 times that of the pulse fiber laser light source shown in the first embodiment can be obtained, and a 1064 nm light having a peak power of about 5 kW can be obtained. did it.
  • This 1064 nm light is converted into green light having a peak power of about 2 to 3 kW by wavelength conversion using a nonlinear optical crystal in the SHG module 110.
  • This pulse green laser beam has a peak power capable of performing metal laser trimming and the like.
  • the combination of the pulse fiber laser light source 100 and the fiber amplifier 1400 described in the present embodiment can reduce the heat generated from the pump LDs 101 and 1403, and thus the heat dissipation structure can be simplified.
  • the pump LDs 101 and 1403 are not always lit, so they are fixed to an aluminum heat sink and can be operated simply by forcing the outside air with a cooling fan. .
  • a water cooling mechanism such as the conventional YAG laser and YVO 4 laser becomes unnecessary, and the power consumption can be reduced.
  • FIG. 19 is a schematic diagram showing a configuration of a wavelength conversion laser light source according to the fourth embodiment of the present invention.
  • a problem when infrared light generated from the pulse fiber laser light source 100 having the configuration shown in the first embodiment is wavelength-converted by a QPM-LN element and a solution to the problem will be described.
  • the QPM-LN element has a large nonlinear optical constant, the conversion efficiency from the fundamental wave to the harmonic can be increased.
  • the infrared light that becomes the fundamental wave due to the large nonlinear optical constant It occurs even when ultraviolet light (third harmonic), which is the sum frequency of the converted green light (second harmonic), deviates from the phase matching condition.
  • This ultraviolet light has the problem of causing green light absorption, causing green high power saturation and crystal breakage.
  • this problem is solved as follows.
  • the fundamental wave BL emitted from the pulse fiber laser light source 100 is condensed on the wavelength conversion element 1601 by the condenser lens 1604, and the light emitted from the wavelength conversion element 1601 is
  • the collimated lens 1605 converts the light into parallel light
  • the dichroic mirror 1606 separates the remaining fundamental wave into the converted second harmonic SL.
  • the wavelength conversion element 1601 an Mg: LiNbO 3 element having a polarization inversion structure with an element length of 25 mm is used.
  • the temperature of the wavelength conversion element 1601 is managed by the Peltier element 1602, and the phase matching temperature is maintained.
  • FIG. 20 is a schematic diagram showing the condensing position of the fundamental wave in the conventional wavelength conversion element.
  • the fundamental wave BL from the pulse fiber laser light source that generates the fundamental wave is collected in the wavelength conversion element 601 by the condenser lens 604. Shine.
  • the focal point F2 of the beam is generally at the center of the wavelength conversion element 601.
  • FIG. 19 a method of preventing crystal breakage by arranging the position of the focal point F1 in the vicinity of the end face of the wavelength conversion element 1601 is proposed.
  • FIG. 21 shows the relationship between the position (mm) from the center position of the wavelength conversion element 1601 and the fundamental wave power density (W / ⁇ m 2 ) with the condensing position of the fundamental wave BL as parameter L1 (mm).
  • the parameter L1 indicates the distance from the left end face (incident side end face of the fundamental wave BL) of the wavelength conversion element 1601 to the focal position F1. From FIG. 21, it can be seen that the power density of the fundamental wave is the highest at the assumed condensing position.
  • the focusing position of the fundamental wave BL is further set as the parameter L1 (mm), and as a measure of the power density of the third harmonic wave, which is ultraviolet light, with respect to the position (mm) from the center position of the wavelength conversion element 1601.
  • FIG. 22 is a diagram in which (second harmonic power density ⁇ fundamental wave power density) (arbitrary unit) is plotted. From FIG. 22, it can be seen that the intensity of the ultraviolet light increases rapidly when the condensing position L1 is 10 mm or more. From this result, it can be seen that the condensing position of the fundamental wave is preferably 10 mm or less from the end face of the wavelength conversion element 1601. Similarly, it can be seen that the length of the wavelength conversion element 1601 is preferably 0 to 10 mm. In this sense, it is preferable that the wavelength conversion element 1601 has an element length of 10 mm or less. However, the element length may be set to about 20 to 30 mm in consideration of a reduction in wavelength conversion efficiency.
  • the fundamental wave is condensed in order to prevent saturation of high green output and crystal breakdown. It is particularly effective that the position is a position of 0 to 10 mm from the incident side end face of the wavelength conversion element, and the length of the wavelength conversion element is 0 to 10 mm.
  • FIG. 24 is a schematic diagram showing a configuration of a wavelength conversion laser light source 1900 according to the fifth embodiment of the present invention.
  • FIG. 25 is a principal ray of a fundamental laser beam in the wavelength conversion laser light source 1900 shown in FIG.
  • FIG. 10 is a schematic diagram illustrating only the ML and explaining how the fundamental laser beam passes while changing the incident angle to the wavelength conversion element 1905;
  • the pulsed fiber laser light source 100 proposed in the first embodiment is used as the fundamental wave laser light source 1901 shown in FIG. 24.
  • the present invention is not particularly limited to the above example.
  • a pulse fiber laser light source may be used.
  • the condensing point of the fundamental laser light (pulse light) emitted from the fundamental laser light source 1901 is controlled by the condensing optical system 1902, and between the reflecting mirrors composed of the first concave mirror 1903 and the second concave mirror 1904. Incident.
  • the fundamental laser beam is incident on the wavelength conversion element 1905, and a part thereof is converted into the second harmonic (first pass).
  • the first concave mirror 1903 has a coating that reflects the fundamental laser beam and transmits the second harmonic laser beam (wavelength conversion laser beam).
  • the fundamental laser light and the second harmonic laser light pass through the wavelength conversion element 1905 and then reach the first concave mirror 1903, and the fundamental laser light is reflected and reenters the wavelength conversion element 1905, and the second Harmonic laser light (wavelength conversion laser light) is output to the outside.
  • the fundamental laser beam reflected by the first concave mirror 1903 reenters the wavelength conversion element 1905, is partially converted into the second harmonic, and reaches the second concave mirror 1904 (second pass).
  • the fundamental laser beam is reflected, reenters the wavelength conversion element 1905, is partially converted into the second harmonic, and reaches the first concave mirror 1903 (third pass).
  • the second harmonic laser beam is output from the first concave mirror 1903, and the fundamental laser beam is reflected and reenters the wavelength conversion element 1905 (fourth pass).
  • the fundamental laser beam reciprocates several times to several tens of times depending on the curvature and arrangement conditions of the reflecting mirrors (first concave mirror 1903 and second concave mirror 1904) and the setting of the focusing optical system 1902. Thereafter, the reciprocation between the reflecting mirrors is stopped. The wavelength-converted laser light generated until the reciprocation is stopped is output from the first concave mirror 1903.
  • the conversion efficiency ⁇ from the fundamental wave to the second harmonic in the wavelength conversion element 1905 is L
  • the interaction length of the wavelength conversion element 1905 is L
  • the power of the fundamental wave is P
  • the beam cross-sectional area of the wavelength conversion element 1905 is A.
  • the conversion efficiency is high in the region where the beam cross-sectional area is small, and the conversion efficiency at the beam waist position BW is remarkably high in the pass region of the wavelength conversion element 1905.
  • the condensing optical system is such that the beam waist positions BW are scattered while the fundamental laser beam is reflected between the reflecting mirrors (the first concave mirror 1903 and the second concave mirror 1904).
  • Reference numeral 1902 controls the beam waist position BW.
  • the wavelength conversion element 1905 is broken due to light damage or the wavelength conversion becomes unstable at the concentrated position.
  • the focal lengths of the first concave mirror 1904 (first reflecting mirror) and the second concave mirror 1903 (second reflecting mirror) are represented by f1 and f2
  • the distance between the reflecting mirrors is (f1 + f2).
  • the beam waist position is concentrated at the confocal point of the reflecting mirror, and optical damage and instability of wavelength conversion become a problem.
  • the beam waist position BW is controlled by the condensing optical system 1902 so that a stable wavelength conversion laser can be output even when a confocal arrangement is used. That is, in the present embodiment, a beam waist is formed by the condensing optical system 1902 before the incidence of the first reflecting mirror (first concave mirror 1903) as shown in the figure, and the first and second reflecting mirrors (first A stable wavelength conversion laser beam can be obtained by performing wavelength conversion at different beam waist positions BW in the wavelength conversion element 1905 without forming a beam waist in several paths at the focal points of the concave mirror 1903 and the second concave mirror 1904). I am doing so.
  • the beam waist positions BW are scattered by the condensing optical system 1902 so that the wavelength conversion of the beam paths having different phase matching conditions at each beam waist position BW can be performed stably, and the wavelength conversion laser beam Can be taken out stably.
  • a first concave mirror 1903 having a focal length f1: 25 mm and a second concave mirror 1904 having a focal length f2: 20 mm are used. Further, the incidence between the reflecting mirrors is performed by cutting the second concave mirror 1904 so as to be smaller than the first concave mirror 1903, and from this cut portion.
  • the principal ray axis MA connecting between the centers of the reflecting mirrors indicates an optical axis connecting the centers of curvature between the reflecting mirrors as shown in FIG.
  • the fundamental laser beam is incident on the wavelength conversion element 1905 and the first concave mirror 1903 so as to be parallel to the principal ray axis MA by the condensing optical system 1902.
  • MgO: LiNbO 3 (length: 26 mm, width: 10 mm) having a polarization inversion structure was used as the wavelength conversion element 1905.
  • the distance between the reflectors is 58.4 mm, and is slightly shifted from the confocal arrangement.
  • the fundamental laser light repeatedly passes through the wavelength conversion element 1905 while changing the angle of incidence on the wavelength conversion element 1905 between the reflecting mirrors.
  • the phase matching condition is determined by the wavelength of the laser beam, the refractive index of the nonlinear optical material, the incident angle of the laser beam, the period of the polarization inversion structure, and the like.
  • the refractive index of the nonlinear optical material and the incident angle are adjusted according to the temperature. Therefore, ⁇ k> 0 and a decrease in wavelength conversion efficiency is observed.
  • the wavelength of the laser beam is shifted, the phase matching conditions are different, so that readjustment and review of the configuration are necessary.
  • the wavelength conversion laser light source 1900 of the present embodiment has a plurality of phase matching conditions. As a result, when performing wavelength conversion of a fixed laser beam wavelength, there are multiple temperatures that satisfy the phase matching condition, and even if the temperature deviates from one phase matching condition, it matches the phase matching condition of the other pass path. This can compensate for the decrease in conversion efficiency.
  • the temperature satisfying the phase matching condition varies depending on the incident angle of the passing path in each path, and the total conversion efficiency is less likely to decrease even if the temperature changes.
  • the full width at half maximum of the conversion efficiency is 1.1 degrees, but the full width at half maximum of the conversion efficiency of the present embodiment is 2.6 degrees. And has an allowable width of more than twice.
  • the total conversion efficiency of the present embodiment has a higher value in a wider temperature range than the conventional configuration because the fundamental laser beam repeatedly enters the wavelength conversion element 1905. As a result, in this embodiment, the total conversion efficiency is high, and a conversion efficiency of 60% or more, which is twice the conversion efficiency of the conventional configuration, is achieved.
  • the wavelength conversion element 1905 is disposed between two reflecting mirrors (a first concave mirror 1903 and a second concave mirror 1904) that reflect the laser light and have a curvature.
  • the laser light is incident between the reflecting mirrors from a portion having no reflecting function by the condensing optical system 1902, and the laser light repeatedly passes between the reflecting mirrors while changing the incident angle to the wavelength conversion element 1905. Therefore, the wavelength conversion is repeated by changing the phase matching condition, and the condensing optical system 1902 controls the beam waist positions BW between the laser beam reflecting mirrors, and at least one of the reflecting mirrors converts the wavelength. Transmits light and emits a wavelength conversion laser.
  • phase matching conditions it is possible to have a plurality of phase matching conditions while having high conversion efficiency, so that the allowable range from the phase matching conditions such as temperature is expanded, and a wavelength conversion laser that is stable against environmental changes and the like can be obtained. Further, by interspersing the beam waist positions BW, it is possible to obtain a high-power wavelength-converted laser beam that eliminates optical damage and wavelength conversion instability.
  • a fiber laser having a center wavelength of 1064 nm and a full width at half maximum of 0.1 nm is used as the fundamental laser light source 1901.
  • the fundamental laser light source 1901 a solid laser, a semiconductor laser, a gas laser, a wavelength conversion laser, or the like can be used in addition to a fiber laser.
  • wavelength conversion to the second harmonic is performed.
  • the present invention can be applied to wavelength conversion laser light sources such as sum frequency, difference frequency, and optical parametric oscillation. Can also be used.
  • the distance D between the two reflecting mirrors (the first concave mirror 1903 and the second concave mirror 1904), the focal lengths of the two reflecting mirrors f1 and f2, and the wavelength conversion element 1905
  • the length is L
  • this is a preferable form satisfying f1 + f2 ⁇ D ⁇ f1 + f2 + L.
  • D is 58.4 mm when f1: 25 mm, f2: 20 mm, and L: 26 mm.
  • the two reflecting mirrors (the first concave mirror 1903 and the second concave mirror 1904) are close to the confocal arrangement, and the number of reciprocations of the beam path increases, and the wavelength conversion element Since the number of passes 1905 increases, the total conversion efficiency of the wavelength conversion laser light source 1900 can be increased.
  • the focal length of the reflecting mirror means the focal length in the direction in which the incident light beam between the reflecting mirrors is deviated from the principal ray axis MA.
  • the refractive index of the wavelength conversion element 1905 is n, it is particularly preferable that the distance D between the reflecting mirrors satisfies the following formula.
  • This confocal arrangement refers to the distance D at which the focal points of the two reflecting mirrors are at the same position.
  • the distance D between the reflecting mirrors is set to be a confocal arrangement, the laser beam may converge on the principal ray axis MA, causing optical damage and instability of wavelength conversion at high output.
  • the distance shorter than the confocal arrangement within the above range the number of reciprocations is ensured, the convergence of the focal position of the reflecting mirror is avoided, the laser light incident between the reflecting mirrors, and the second concave mirror 1904 (second The margin for the effective diameter of the reflecting mirror can be increased.
  • the condensing optical system 1902 of the present embodiment includes a fiber collimator and a plano-convex lens.
  • the condensing optical system 1902 collects the laser light in the wavelength conversion element 1905 except for the focal points of the two reflecting mirrors, and the beam waist positions BW during the reciprocation are scattered in the wavelength conversion element 1905. I have control.
  • At the focal point of the two reflecting mirrors there is an overlap of laser light, which may cause destruction of the wavelength conversion element and instability of wavelength conversion. Similarly, when wavelength conversion is concentrated in one place, the wavelength conversion element is destroyed and wavelength conversion is unstable.
  • the wavelength conversion is strongly performed at the focused beam waist position, but in this embodiment, the beam waist position BW is interspersed other than the focal points of the two reflecting mirrors.
  • the beam waist positions BW may converge at the focal positions of the two reflecting mirrors.
  • the condensing optical system 1902 collects light between the reflecting mirrors of the first concave mirror 1903 and the second concave mirror 1904 before the laser light is reflected by the first concave mirror 1903. It is.
  • a condensing point beam waist position
  • the condensing optical system 1902 collects light between the reflecting mirrors of the first concave mirror 1903 and the second concave mirror 1904 before the laser light is reflected by the first concave mirror 1903. It is.
  • a condensing point beam waist position
  • a large number of beam waist positions BW can be arranged in a wide range as a laser beam path of the wavelength conversion element 1905.
  • a large number of beam waist positions BW can be scattered over a wide range in the wavelength conversion element 1905, and stable wavelength conversion can be performed even at high output.
  • this embodiment is a particularly preferable embodiment in which the light is condensed in the wavelength conversion element 1905 before being reflected by the reflecting mirrors (the first concave mirror 1903 and the second concave mirror 1904).
  • the wavelength conversion before the reflection by the reflecting mirror may be performed to monitor the laser light whose wavelength is converted in the first pass of the wavelength conversion element 1905.
  • a compact laser light source can be manufactured.
  • total conversion efficiency can be raised by performing wavelength conversion before reflecting with a reflective mirror.
  • spherical concave mirrors are used for the two reflecting mirrors, but aspherical or flat reflecting mirrors may be used.
  • at least one of the two reflecting mirrors has a curvature so that the laser beam is bent and reciprocated between the reflecting mirrors a plurality of times, and a laser beam beam waist is formed between the reflecting mirrors.
  • the laser light may be reflected a plurality of times, and the laser light may be incident on the wavelength conversion element 1905 with at least two types of incident angles.
  • the first concave mirror 1903 transmits the second harmonic whose wavelength has been converted.
  • the first concave mirror 1903 reflects the fundamental laser beam with the reflectance of the fundamental wave (1064 nm) of 99.5% and the transmittance of the second harmonic wave (532 nm) of 99%, and the second harmonic laser beam. Transparent.
  • the second concave mirror 1904 reflects both the fundamental laser beam and the second harmonic laser beam with a reflectance of 99.5% of the fundamental wave (1064 nm) and a reflectance of 99% of the second harmonic (532 nm).
  • the reflectance of the reflecting mirror with respect to the laser beam (fundamental wave) is high because loss is reduced.
  • the wavelength conversion laser light may be configured to transmit two reflecting mirrors, or may be configured to transmit only one.
  • MgO: LiNbO 3 (PPLN) having a polarization inversion structure is used for the wavelength conversion element 1905, and the shape thereof may be a rectangular parallelepiped (for example, length 26 mm, width 10 mm, thickness 1 mm).
  • This wavelength conversion element is made of a nonlinear optical crystal capable of performing wavelength conversion, and for example, a nonlinear optical crystal such as KTP, LBO, CLBO, or LT can be used.
  • a wavelength conversion element having a polarization inversion structure and performing quasi-phase matching can be used in the wavelength conversion laser light source of the present invention because different phase matching conditions can be formed in the same element depending on the polarization inversion period. preferable. In this case, by having different phase matching conditions in the same element, it is possible to increase the allowable range for the temperature and wavelength of the wavelength conversion laser as a whole.
  • the wavelength conversion element 1905 of the present embodiment is disposed so as to have an incident surface perpendicular to the principal ray axis MA.
  • the domain-inverted structure is formed with a period parallel to the incident surface, and the domain-inverted period is about 7 ⁇ m.
  • the polarization inversion period is not the same in the element, and the period and direction may be changed.
  • an AR coat of laser light (fundamental wave) and wavelength conversion laser light (second harmonic) is formed on the incident / exit surface of the wavelength conversion element 1905.
  • the wavelength conversion element 1905 preferably forms an AR coat of laser light and wavelength conversion laser light in order to avoid unnecessary reflection between the reflecting mirrors.
  • the effective diameter of the first concave mirror 1903 is ⁇ 5
  • the effective diameter of the second concave mirror 1904 is ⁇ 4
  • the width of the wavelength conversion element 1905 for reciprocating the laser beam is 5 mm.
  • the diameter of the beam incident on the first concave mirror 1903 is ⁇ 0.3
  • the diameter of the laser beam incident on the reflecting mirror is a small effective diameter (second concave mirror 1904).
  • the effective diameter of the reflecting mirror refers to the length in the longitudinal direction of the range where the laser beam hits the reflecting mirror.
  • the center wavelength ⁇ of the fundamental laser light source 1901 is 1064 nm
  • the full width at half maximum ⁇ is 0.1 nm
  • the coherence length ( ⁇ 2 / ⁇ ) is 11.3 mm. Since the distance D between the reflecting mirrors is 58.4 mm, the coherence length is less than twice the distance between the reflections.
  • This embodiment is a preferred form in which the coherence length of the laser light is less than twice the distance between the reflecting mirrors.
  • the coherence length is more than twice the distance between the reflecting mirrors, interference occurs at the point where the laser beams reciprocating between the reflecting mirrors overlap, and the beam intensity becomes very strong. The strong beam intensity generated by the interference causes crystal destruction of the wavelength conversion element and instability of wavelength conversion.
  • the coherence length of the laser light reciprocating between the reflecting mirrors is made shorter than the reciprocating distance, so that the problem of coherence that occurs in the case of this configuration can be solved.
  • the beam path gradually moves from the outside to the inside of the wavelength conversion element 1905 which is a nonlinear optical crystal element.
  • the generated harmonics may be absorbed to increase the temperature of the beam path.
  • the harmonics output in this embodiment are large outside the wavelength conversion element 1905 and inside. It gets smaller as you go. Therefore, in the outer beam path, it is desirable that the temperature of the wavelength conversion element 1905 is low, and the temperature is higher as the temperature becomes closer to the inner side.
  • FIG. 26 is a schematic diagram showing a configuration of a two-dimensional image display device according to the sixth embodiment of the present invention.
  • the present embodiment is a two-dimensional image display device using a wavelength conversion green laser light source using any one of the above wavelength conversion laser light sources.
  • a two-dimensional image display device 2000 according to the present embodiment shown in FIG. 26 is an example in which the above-described pulse fiber laser light source is applied to an optical engine of a liquid crystal three-plate projector.
  • the two-dimensional image display device 2000 includes an image processing unit 2002, a laser output controller 2003, an LD power source 2004, a red laser light source 2005R, a green laser light source 2005G, a blue laser light source 2005B, beam forming rod lenses 2006R, 2006G, 2006B, and a relay lens 2007R. , 2007G, 2007B, folding mirrors 2008G, 2008B, two-dimensional modulation elements 2009R, 2009G, 2009B for displaying images, polarizers 2010R, 2010G, 2010B, a combining prism 2011, and a projection lens 2012.
  • Laser light from each of the laser light sources 2005R, 2005G, and 2005B is shaped into a rectangle by beam forming rod lenses 2006R, 2006G, and 2006B, and the two-dimensional modulation elements 2009R, 2009G, and 2009B for each color are formed by the relay lenses 2007R, 2007G, and 2007B.
  • Illuminate An image modulated two-dimensionally with each color is synthesized by the combining prism 2011 and projected onto the screen from the projection lens 2012 to display an image.
  • the green laser light source 2005G is controlled by a laser output controller 2003 and an LD power source 2004 that control the output of green light.
  • the green laser light source 2005G is a system in which the laser resonator is closed in the fiber, and suppresses a decrease in output with time and an output fluctuation due to an increase in the loss of the resonator due to external dust or reflection surface misalignment. Can do.
  • the image processing unit 2002 generates a light amount control signal for changing the output of the laser light according to the luminance information of the input video signal (video signal from TV, VIDEO, PC, etc.), and sends it to the laser output controller 2003. Playing a role.
  • the laser output controller 2003 and the LD power source 2004 control the red laser light source 2005R, the green laser light source 2005G, and the blue laser light source 2005B, and control the amount of light according to the luminance information, thereby controlling the contrast. It becomes possible to improve.
  • each laser light source 2005R, 2005G, 2005B is pulse-driven, and the duty ratio (lighting time / (lighting time + non-lighting time)) of each laser light source 2005R, 2005G, 2005B is turned on. ) Can be changed to adopt a control method (PWM control) that changes the average light quantity.
  • PWM control pulse-driven
  • the laser light source when used as a green light source used in a laser display, it may be configured to emit green laser light of 510 nm to 550 nm. With this configuration, green laser output light with high visibility can be obtained, and a color expression close to the primary color can be expressed as a display with good color reproducibility.
  • the configuration of the two-dimensional image display device is not particularly limited to the above example, and includes a plurality of laser light sources and a scanning unit that scans the laser light sources, and the laser light sources emit at least red, green, and blue, respectively.
  • the laser light source may be configured so that at least the green light source among the laser light sources may be configured using any of the above-described pulse fiber laser light sources. Further, in addition to a mode of projecting from behind the screen (rear projection display), it is also possible to configure as a two-dimensional image display device having a front projection type configuration.
  • the two-dimensional modulation element is not particularly limited to the above example, and it is of course possible to use a two-dimensional modulation element using a reflection type liquid crystal element, a galvano mirror, or a mechanical micro switch (MEMS) represented by DMD. .
  • MEMS mechanical micro switch
  • a light modulation element that is less affected by the polarization component on the light modulation characteristics such as a reflective spatial modulation element, MEMS, and galvanometer mirror
  • a polarization maintaining fiber such as a PANDA fiber when propagating harmonics through the optical fiber.
  • the optical modulation characteristics and polarization characteristics are greatly related. Therefore, a polarization maintaining fiber is used, and the light after wavelength conversion is linearly polarized light. It is desirable.
  • FIG. 27 is a schematic diagram showing the configuration of the liquid crystal display device according to the seventh embodiment of the present invention.
  • the liquid crystal display device 2100 of this embodiment is an example of a two-dimensional image display device using a backlight illumination device including any one of the above-described wavelength conversion laser light sources as a green light source.
  • the liquid crystal display device 2100 includes a liquid crystal display panel 2101 and a backlight illumination device 2111 that illuminates the liquid crystal display panel 2101 from the back side.
  • the liquid crystal display panel 2101 includes a polarizing plate 2102 and a liquid crystal panel 2103.
  • the laser light source 2112 of the backlight illumination device 2111 includes a plurality of laser light sources 2112r, 2112g, and 2112b.
  • the laser light source 2112 emits light sources that emit at least red (R), green (G), and blue (B), respectively. It consists of the structure used. That is, the R light source 2112r, the G light source 2112g, and the B light source 2112b emit red, green, and blue laser beams, respectively.
  • a semiconductor laser device made of an AlGaInP / GaAs material with a wavelength of 640 nm is used for the R light source 2112r
  • a semiconductor laser device made of a GaN material with a wavelength of 450 nm is used for the B light source 2112b.
  • the G light source 2112g uses a green laser light source having a wavelength of 532 nm, which is configured using a green light source composed of any one of the wavelength conversion laser light sources described above.
  • the liquid crystal display device 2100 in this embodiment displays an image using the backlight illumination device 2111 and the R, G, and B light beams emitted from the backlight illumination device 2111. And a liquid crystal display panel 2101 to be performed.
  • the backlight illuminator 2111 introduced a laser light source 2112 and an optical fiber 2113 that guides the R light, G light, and B light from the laser light source 2112 to the light guide plate 2115 through the light guide unit 2114.
  • the light guide plate 2115 is uniformly filled with laser light of R light, G light, and B light, and emits laser light from a main surface (not shown).
  • the G light source 2112g adds an optical component such as a condensing lens (not shown) to the wavelength conversion laser light source, and multi-beams of output light are condensed on the optical fiber 2113 and guided to the light guide plate 2115. I try to be.
  • an optical component such as a condensing lens (not shown)
  • the present embodiment uses a pulsed fiber laser light source having a single high output peak value and high photoelectric conversion efficiency, so it has high brightness, excellent color reproducibility, and simple configuration with low consumption.
  • An image display device with stable power can be realized.
  • FIG. 28 is a schematic diagram showing a configuration of a laser processing apparatus according to the eighth embodiment of the present invention.
  • this laser processing apparatus any one of the wavelength conversion laser light sources described above is used as a laser light source.
  • the laser processing apparatus 2201 includes a laser light source 2202, a scan mirror 2203, and a stage 2204, and processes a processing target 2205.
  • the laser light source 2202 any one of the wavelength conversion laser light sources described above is used, and the laser light emitted from the laser light source 2202 is reflected by the scan mirror 2203 and irradiated onto the processing target 2205, thereby irradiating the laser on the processing target 2205.
  • the laser irradiation position on the processing target 2205 is moved in the X-axis direction by moving the stage 2204 on which the processing target 2205 is placed in the X-axis direction.
  • processing object 2205 in the water tank and irradiating the laser beam on the surface of the processing object 2205 in the same manner as described above, it can be applied to laser peening and the like.
  • the laser processing apparatus 2201 of this embodiment can stably generate laser light with high beam quality and is preferably used as a light source used in a laser processing apparatus such as laser marking or laser peening. be able to.
  • a laser light source that generates light having a wavelength of 441 nm to 592 nm as wavelength conversion light. This prevents water from evaporating due to absorption of the laser light, and enables processing.
  • a high laser peening effect on the irradiated surface of 2205 can be exhibited.
  • a laser scanning type processing apparatus using a scan mirror is described.
  • This is an example of a processing apparatus using the above-described wavelength conversion laser light source.
  • the fiber shown in FIG. The attached laser light source 2300 may be used.
  • the 29 includes a main body 2301, an output setting unit 2302, and a power switch 2306.
  • the main body 2301 includes any one of the wavelength conversion laser light sources described above and an output control unit that controls the output of the laser light from the wavelength conversion laser light source, and sets the output of the laser light on the front panel.
  • An output setting unit 2302 and a power switch 2306 for turning on / off the power are provided.
  • the laser light source with fiber 2300 causes the laser light generated by the wavelength conversion laser light source incorporated in the main body 2301 to enter the delivery fiber 2304 via the output connector 2303, and the delivery fiber 2304 emits from the wavelength conversion laser light source.
  • the laser beam may be guided to the handpiece 2305, and an arbitrary irradiation surface may be irradiated from the handpiece 2305 with the outgoing beam EB that is a laser beam.
  • the pulse fiber laser light source uses a fiber doped with Yb as a rare earth element, but other rare earth elements such as Nd, Er, Dy, Pr, Tb, Eu, etc. At least one selected rare earth element may be used. Further, the doping amount of the rare earth element may be changed or a plurality of rare earth elements may be doped according to the wavelength and output of the wavelength conversion element.
  • a laser having a wavelength of 915 nm and a wavelength of 976 nm is used as the LD for pumping the pulse fiber laser light source.
  • laser light sources other than these wavelengths are used. May be used.
  • the wavelength conversion element periodic polarization reversal MgO: LiNbO 3 or the like was used, but wavelength conversion elements of other materials or structures, for example, potassium titanyl phosphate (KTP) or Mg: LiTaO 3 or the like may be used.
  • the pulse fiber laser light source includes an excitation laser light source that emits excitation light, a fiber member that contains a laser active substance, and is irradiated with excitation light from the excitation laser light source, and sandwiches the fiber member.
  • a laser resonator including a set of fiber gratings optically connected to the fiber member, wherein the fiber member is provided with a region where excitation light does not substantially reach, The first peak of the light pulse emitted from the resonator is formed and blocked so that the second peak is not formed.
  • the laser resonator self-absorbs the light itself oscillated and the oscillation becomes unstable, and the output light is It becomes a state that is easy to pulse.
  • the input current for driving the excitation laser light source is cut off so that the first peak of the light pulse emitted from the laser resonator is formed and the second peak is not formed, so that it has a steep rise characteristic.
  • the laser light source for excitation is again driven by the input current, so that the laser resonator repeatedly emits a plurality of light pulses.
  • the laser resonator can be periodically and repeatedly excited with excitation light having a steep rise characteristic, high peak pulse light can be repeatedly emitted.
  • the fiber member preferably includes first and second fibers and an excitation light absorption mechanism that is disposed between the first and second fibers and absorbs excitation light.
  • the excitation light after the excitation light propagates through the first fiber, the excitation light is absorbed by the excitation light absorption mechanism, so that the second fiber can be made an area where the excitation light does not reach.
  • the pulse fiber laser light source further includes a step index type multimode fiber that optically couples the excitation laser light source and the laser resonator, and the NA of the step index type multimode fiber is the excitation laser light source. It is preferable that it is NA or more with respect to the excitation light of the incident side fiber of the laser resonator.
  • the light oscillated in the laser resonator can be prevented from flowing back to the excitation laser light source, it is possible to prevent the excitation laser light source from being damaged by the return light.
  • the pulse fiber laser light source further includes a multimode combiner that optically couples the excitation laser light source and the laser resonator, and NAs of a plurality of input ports of the multimode combiner are
  • the NA of the output side fiber is equal to or greater than the NA of the output port of the multimode combiner, and is equal to or less than the NA of the pump light of the incident side fiber of the laser resonator, and at least one of the plurality of input ports of the multimode combiner.
  • One is preferably not optically connected to the excitation laser light source.
  • the effect of reducing the return light to the excitation laser light source due to the difference in the NA of the fiber in addition to the effect of reducing the return light to the excitation laser light source due to the difference in the NA of the fiber, the effect of reducing the return light due to the branching of the fiber can be obtained, and at least one input port has Since it is not optically connected to the excitation laser light source, the influence of the return light can be further reduced.
  • the rising speed of the input current applied to the excitation laser light source is preferably 1 ns to 100 ns.
  • the laser resonator can be pulse-oscillated.
  • the pulse fiber laser light source further includes a detection unit that detects an optical output of the optical pulse, and a light source driving unit that applies the input current to the excitation laser light source, and the light source driving unit is based on the detection unit. It is preferable to cut off the input current based on the detection signal.
  • a pulse fiber laser light source with high photoelectric conversion efficiency capable of generating an optical pulse having a high output peak value as a pulse train can be realized with a simple configuration.
  • the detection unit detects an optical output of the optical pulse from a branch fiber optically connected in the middle of the fiber member.
  • an optical pulse having a single high output peak value can be generated as a pulse train with a simpler device configuration.
  • the pulse fiber laser light source further includes an amplifier for amplifying an optical pulse emitted from the laser resonator, and the amplifier includes an amplification laser light source, a laser active material, and an amplification fiber having a polarization maintaining structure. And a combiner that optically couples the amplification laser light source and the amplification fiber, and the amplification fiber receives an optical pulse emitted from the laser resonator and passes through the combiner. Then, excitation light is incident from the amplification laser light source, and the drive current of the excitation laser light source and the drive current of the amplification laser light source are modulated in synchronization with a predetermined pulse width and a predetermined rising speed. It is preferable.
  • a pulse fiber laser light source can be used for processing such as metal laser trimming.
  • the fall timing of the drive current of the amplification laser light source is preferably earlier than the fall timing of the drive current of the excitation laser light source.
  • the trailing edge of the output light waveform from the amplifier can be reduced, for example, when laser processing is performed using a scanning mirror, the processing speed and processing accuracy can be increased.
  • a wavelength conversion laser light source includes any one of the pulse fiber laser light source described above and a wavelength conversion element that converts the fundamental light emitted from the pulse fiber laser light source into a harmonic light.
  • the condensing position is a position of 0 to 10 mm from the end face of the wavelength conversion element.
  • a pulsed fiber laser light source can be pulsed and wavelength conversion can be performed efficiently, and crystal destruction of the wavelength conversion element can be prevented. Therefore, a more reliable wavelength conversion laser light source can be obtained. realizable.
  • Another wavelength conversion laser light source includes the pulse fiber laser light source according to any one of the above, and a wavelength conversion element that converts fundamental light emitted from the pulse fiber laser light source into harmonic light,
  • the length of the wavelength conversion element is 0 to 10 mm.
  • a pulsed fiber laser light source can be pulsed and wavelength conversion can be performed efficiently, and crystal destruction of the wavelength conversion element can be prevented. Therefore, a more reliable wavelength conversion laser light source can be obtained. realizable.
  • the wavelength conversion element preferably includes a nonlinear optical crystal having an effective nonlinear optical constant of 10 pm / V or more. In this case, it is possible to prevent green high-power saturation and crystal destruction in the wavelength conversion element.
  • a two-dimensional image display device controls the wavelength-converted laser light source according to any one of the above, a display unit that displays an image using laser light from the wavelength-converted laser light source, and the wavelength-converted laser light source. Controller.
  • green laser output light with high visibility can be obtained, and as a display with good color reproducibility, color representation close to the primary color can be achieved.
  • a liquid crystal display device includes a liquid crystal display panel, the wavelength conversion laser light source according to any one of the above, and a backlight illumination device that illuminates the liquid crystal display panel using laser light from the wavelength conversion laser light source. Is provided.
  • a pulsed fiber laser light source having a single high output peak value and high photoelectric conversion efficiency is used, so that it has high brightness, excellent color reproducibility, a simple configuration and low power consumption and stable An image display device can be realized.
  • a laser processing apparatus includes the wavelength conversion laser light source according to any one of the above and an optical system that guides laser light emitted from the wavelength conversion laser light source to a processing target.
  • this laser processing apparatus can stably generate laser light with high beam quality, it is possible to realize a highly efficient laser processing apparatus that performs various laser processing such as laser marking and laser peening.
  • a fiber-attached laser light source includes any one of the wavelength conversion laser light sources described above and a light guide fiber member that guides laser light emitted from the wavelength conversion laser light source.
  • laser light can be irradiated onto an arbitrary irradiation surface from the tip of the light guide fiber member, so that a laser light source with a fiber used for surgery or the like can be realized.
  • a pulse light source with high efficiency and high peak power can be obtained. Therefore, even when the outside air temperature or the like changes, it can be used as a stable and highly efficient pulse light source.
  • a cooling system such as a Peltier element is not required for cooling the pump LD, and a pulsed fiber laser light source that can be used in an environment of room temperature to 40 ° C or room temperature to 50 ° C is realized only by forced air cooling using a heat sink and a cooling fan. Therefore, the conversion efficiency from the total input power to the optical output can be improved.

Abstract

A pulsed fiber laser light source (100) is provided with an LD (101) for a pump for outputting excitation light, and a laser oscillator. The laser oscillator includes a first fiber (103), which contains a laser activation material and permits the excitation light to enter from the LD (101); a second fiber (106), which contains a laser activation material and is to be a region which excitation light substantially does not reach; and a pair of fiber gratings (102, 104) which are optically connected to the first and the second fibers (103, 106) by sandwiching the first and the second fibers (103, 106). An input current which drives the LD (101) is interrupted so that a first peak of a light pulse outputted from the laser oscillator is formed and a second peak thereof is not formed.

Description

パルスファイバレーザ光源、波長変換レーザ光源、2次元画像表示装置、液晶表示装置、レーザ加工装置及びファイバ付レーザ光源Pulse fiber laser light source, wavelength conversion laser light source, two-dimensional image display device, liquid crystal display device, laser processing device, and fiber laser light source
 本発明は、高出力のピーク値をもつ光パルスを発生することができる光電変換効率の高いパルスファイバレーザ光源、それを用いた波長変換レーザ光源、2次元画像表示装置、液晶表示装置、レーザ加工装置及びファイバ付レーザ光源に関する。 The present invention relates to a pulse fiber laser light source having high photoelectric conversion efficiency capable of generating a light pulse having a high output peak value, a wavelength conversion laser light source using the same, a two-dimensional image display device, a liquid crystal display device, and laser processing. The present invention relates to an apparatus and a laser light source with a fiber.
 これまで、1μm帯の光を発生するレーザ光源としては、Nd:YAGレーザ、Nd:YVOレーザ等の固体レーザが主流となっており、これらを用いたレーザ加工機やこれらの光を基本波とした可視光源などが実現されているが、大出力になるほど、レーザ媒質の冷却が必要となり、装置が大型化するという課題があった。そこで、簡単な冷却機構でW級の高出力光が出力できるファイバレーザ光源は、溶接用の光源や波長変換レーザ光源の基本波光源として注目とされている。 Up to now, solid-state lasers such as Nd: YAG laser and Nd: YVO 4 laser have been mainly used as laser light sources for generating light in the 1 μm band, and laser processing machines using these lasers and these lights as fundamental waves. However, there is a problem that the larger the output, the more the laser medium needs to be cooled and the apparatus becomes larger. Therefore, a fiber laser light source capable of outputting W-class high-output light with a simple cooling mechanism has been attracting attention as a light source for welding and a fundamental wave light source of a wavelength conversion laser light source.
 このファイバレーザ光源の基本レーザ動作について以下に説明する。まず、励起用レーザ光源からの励起光がファイバの一端から入射する。入射した励起光は、ファイバに含まれるレーザ活性物質に吸収された後、ファイバの内部で基本波の種光が発生する。この基本波の種光は、ファイバに形成されたファイバグレーティングと、別のファイバに形成されたファイバグレーティングとを一対の反射ミラーとする共振器の中を何度も反射して往復する。それと同時に、種光は、ファイバに含まれるレーザ活性物質によるゲインで増幅され、光強度が増大し、波長選択もされてレーザ発振に到る。なお、ファイバとファイバとは、接続部で接続されており、レーザ光源は、励起用レーザ電流源により電流駆動される。 The basic laser operation of this fiber laser light source will be described below. First, excitation light from an excitation laser light source enters from one end of the fiber. The incident excitation light is absorbed by the laser active material contained in the fiber, and then the seed light of the fundamental wave is generated inside the fiber. The seed light of the fundamental wave is reflected back and forth many times in a resonator having a pair of reflection mirrors, a fiber grating formed in a fiber and a fiber grating formed in another fiber. At the same time, the seed light is amplified by the gain of the laser active substance contained in the fiber, the light intensity increases, the wavelength is selected, and laser oscillation occurs. Note that the fiber and the fiber are connected by a connecting portion, and the laser light source is current-driven by an excitation laser current source.
 また、ビームスプリッタで出力光の一部を分離し、出力光をモニターするための受光素子で受光された後、出力光が電気信号に変換されて利用される。この変換された信号の強度が、所望の出力が得られる強度になるように、出力制御部は、励起用レーザ電流源でレーザ光源の駆動電流を調整する。そうすると、レーザ光源からの励起光の強度が調整され、ファイバレーザ光源の基本波の出力強度が調整される。このことにより、ファイバレーザ光源の出力の強度が一定に保たれる、いわゆるオートパワーコントロール(以下、「APC」と略する)が、安定的に動作することとなる。 Also, after a part of the output light is separated by a beam splitter and received by a light receiving element for monitoring the output light, the output light is converted into an electrical signal and used. The output control unit adjusts the drive current of the laser light source with the excitation laser current source so that the intensity of the converted signal becomes an intensity at which a desired output can be obtained. Then, the intensity of the excitation light from the laser light source is adjusted, and the output intensity of the fundamental wave of the fiber laser light source is adjusted. As a result, so-called auto power control (hereinafter abbreviated as “APC”) in which the output intensity of the fiber laser light source is kept constant operates stably.
 ところで、レーザ光源が高いピークパワーを持つパルス光源であれば、穴あけなどのレーザ加工、高効率波長変換等の用途にも適用することができ、用途がさらに広がるが、実用段階となっている光源は、連続発振のタイプであるため、レーザ溶接などに用途が限られている。例えば、ファイバを用いた光源をパルス発振させるためには、変調された種光源をファイバアンプで増幅する構成が主流となっている。 By the way, if the laser light source is a pulse light source having a high peak power, it can be applied to laser processing such as drilling and high-efficiency wavelength conversion. Is a continuous wave type, so its use is limited to laser welding. For example, in order to oscillate a light source using a fiber, a configuration in which a modulated seed light source is amplified by a fiber amplifier has become mainstream.
 加えて、ファイバレーザ光源で発生した基本波から、波長変換装置で高調波を発生させる場合でも、同じ平均出力においては、高いピークパワーを持つパルス状の基本波光を発生させる方法が、連続光を波長変換する方法より、基本波から高調波への変換効率を向上させることができるため、ファイバレーザ光源のパルス発振は、効率向上に大きく貢献する。 In addition, even when harmonics are generated from a fundamental wave generated by a fiber laser light source by a wavelength converter, a method of generating pulsed fundamental wave light having a high peak power at the same average output is a continuous light. Since the conversion efficiency from the fundamental wave to the harmonic can be improved by the wavelength conversion method, the pulse oscillation of the fiber laser light source greatly contributes to the efficiency improvement.
 このようなファイバレーザ光源のパルス化についても、通信応用等の分野で検討されており、主共振器と副共振器とを設け、共振器内に光変調器を挿入し、光変調器により主共振器と副共振器とのビート位相を整合させることにより、光パルスを発生させる方法が特許文献1に記述されている。また、異常分散特性を持つ光ファイバに高い強度の光パルスを入力し、周波数シフト効果により、狭帯域の光パルスを発生させる方法が特許文献2に記載され、ファイバレーザ共振器のファイバグレーティング部に過飽和吸収効果を持たせる方法が特許文献3に記載されている。一方、逆に予期しない光サージパルスを発生させない励起用LDの変調方法についても、特許文献4に記載されている。 Such fiber laser light source pulsing has also been studied in the field of communication applications and the like. A main resonator and a sub-resonator are provided, an optical modulator is inserted into the resonator, and the optical modulator is used as the main resonator. Patent Document 1 describes a method of generating an optical pulse by matching beat phases of a resonator and a sub-resonator. In addition, a method of inputting a high-intensity optical pulse into an optical fiber having anomalous dispersion characteristics and generating a narrow-band optical pulse by the frequency shift effect is described in Patent Document 2, and is applied to a fiber grating portion of a fiber laser resonator. Patent Document 3 describes a method for providing a supersaturated absorption effect. On the other hand, Patent Document 4 also describes a modulation method for an excitation LD that does not generate an unexpected optical surge pulse.
 図30は、上記のような従来のパルスファイバレーザ光源の構成の一例を示す模式図である。図30に示すパルスファイバレーザ光源200は、ポンプ用LD201、ファイバグレーティング202、204、ファイバ203及び変調機構301を備える。ファイバ203は、Ybをドープしたダブルクラッド偏波保持ファイバからなり、ポンプ用LD201は、ファイバ203を励起し、一組のファイバグレーティング202、204から構成された共振器内に変調機構301を挿入し、光パルスを発生させる。 FIG. 30 is a schematic diagram showing an example of the configuration of the conventional pulse fiber laser light source as described above. A pulse fiber laser light source 200 shown in FIG. 30 includes a pump LD 201, fiber gratings 202 and 204, a fiber 203, and a modulation mechanism 301. The fiber 203 is composed of a double clad polarization maintaining fiber doped with Yb. The pump LD 201 excites the fiber 203 and inserts the modulation mechanism 301 into a resonator composed of a pair of fiber gratings 202 and 204. , Generate a light pulse.
 しかしながら、従来例の特許文献1及び2に示されたような方法では、超狭帯域の光パルスを発生させることは可能であるが、図30の従来構成に示しているように、共振器内に変調機構301を挿入する必要があったり、励起効率が低かったりするため、光源としての効率が低下するという課題があった。また、特許文献3のように過飽和吸収帯を共振器内に設けた場合においても、共振器内損失が大きくなるため、効率低下の要因となっていた。また、上記のいずれの場合も、連続光を発生させるファイバレーザ共振器の構成に加えて、新たな部材が必要なため、コストアップ及び部材劣化の要因となるという課題もあり、高効率なパルスファイバレーザ光源を利用した波長変換レーザ光源の実現が困難であった。 However, in the methods as disclosed in Patent Documents 1 and 2 of the conventional example, it is possible to generate an optical pulse with an ultra-narrow band. However, as shown in the conventional configuration of FIG. Therefore, there is a problem that the efficiency as a light source is lowered because it is necessary to insert the modulation mechanism 301 in the light source or the excitation efficiency is low. Further, even when a supersaturated absorption band is provided in the resonator as in Patent Document 3, the loss in the resonator is increased, which causes a reduction in efficiency. In any of the above cases, in addition to the configuration of the fiber laser resonator that generates continuous light, a new member is required, which causes a problem of cost increase and deterioration of the member. It has been difficult to realize a wavelength conversion laser light source using a fiber laser light source.
特許2577785号Patent 2577785 特開平8-146474JP-A-8-146474 特開2005-174993JP-A-2005-174993 特開2007-142380JP2007-142380
 本発明の目的は、簡略な構成で高効率なパルスファイバレーザ光源を提供することである。 An object of the present invention is to provide a highly efficient pulse fiber laser light source with a simple configuration.
 本発明の一局面に従うパルスファイバレーザ光源は、励起光を出射する励起用レーザ光源と、レーザ活性物質を含み、前記励起用レーザ光源から励起光を入射されるファイバ部材と、前記ファイバ部材を挟む形で前記ファイバ部材に光学的に接続されている一組のファイバグレーティングとを含むレーザ共振器とを備え、前記ファイバ部材には励起光が実質的に到達しない領域が設けられており、前記励起用レーザ光源を駆動する入力電流は、前記レーザ共振器から出射される光パルスの第1ピークが形成され且つ第2ピークが形成されないように遮断される。 A pulsed fiber laser light source according to one aspect of the present invention includes an excitation laser light source that emits excitation light, a fiber member that includes a laser active substance, and that receives excitation light from the excitation laser light source, and sandwiches the fiber member. A laser resonator including a set of fiber gratings optically connected to the fiber member, wherein the fiber member is provided with a region where excitation light does not substantially reach, The input current for driving the laser light source is blocked so that the first peak of the light pulse emitted from the laser resonator is formed and the second peak is not formed.
 上記のファイバレーザ光源において、新たに高価な部品を追加することなく、パルス発振が可能になるため、簡略な構成で高効率なパルスファイバレーザ光源を実現することができる。 In the above-described fiber laser light source, pulse oscillation can be performed without adding new expensive parts, so that a highly efficient pulse fiber laser light source can be realized with a simple configuration.
本発明の第1の実施の形態における波長変換レーザ光源の構成を示す概略図である。It is the schematic which shows the structure of the wavelength conversion laser light source in the 1st Embodiment of this invention. ポンプ用LDに矩形のパルス電流を入力電流として供給したときに、ファイバレーザ光源から発生される光出力の過渡応答特性を示す図である。It is a figure which shows the transient response characteristic of the optical output generate | occur | produced from a fiber laser light source, when a rectangular pulse current is supplied to LD for pumps as an input current. 入力の電荷量を変化させるために入力電流のパルス幅を変化させたときの光出力の変化を示す第1の図である。It is a 1st figure which shows the change of the optical output when changing the pulse width of an input electric current in order to change the electric charge amount of an input. 入力の電荷量を変化させるために入力電流のパルス幅を変化させたときの光出力の変化を示す第2の図である。It is a 2nd figure which shows the change of the optical output when changing the pulse width of input current in order to change the electric charge amount of input. 入力の電荷量を変化させるために入力電流のパルス幅を変化させたときの光出力の変化を示す第3の図である。It is a 3rd figure which shows the change of the optical output when changing the pulse width of an input electric current in order to change the electric charge amount of an input. 入力の電荷量を変化させるために入力電流のパルス幅を変化させたときの光出力の変化を示す第4の図である。It is a 4th figure which shows the change of an optical output when changing the pulse width of an input electric current in order to change the electric charge amount of an input. 矩形の入力電流のパルス幅及び電流値を所定の値に設定して発生させた単一の光パルスの一例を示す図である。It is a figure which shows an example of the single optical pulse generated by setting the pulse width and current value of a rectangular input current to predetermined values. 入力電圧が正の直流電圧でバイアスされている場合に所定の周期の複数のパルス電圧からなる入力電圧をポンプ用LDに印加することにより得られる光出力の一例を示す図である。It is a figure which shows an example of the optical output obtained by applying the input voltage which consists of several pulse voltage of a predetermined | prescribed period to pump LD, when input voltage is biased with the positive DC voltage. 入力電圧が負の直流電圧でバイアスされている場合に所定の周期の複数のパルス電圧からなる入力電圧をポンプ用LDに印加することにより得られる光出力の一例を示す図である。It is a figure which shows an example of the optical output obtained by applying the input voltage which consists of several pulse voltage of a predetermined | prescribed period to pump LD, when input voltage is biased with the negative DC voltage. ポンプ用LDへ供給する電流波形と、パルスファイバレーザ光源から発生する光出力波形とを示す図である。It is a figure which shows the electric current waveform supplied to LD for pumps, and the optical output waveform generate | occur | produced from a pulse fiber laser light source. ポンプ用LDへ供給する実際の電流波形と、パルスファイバレーザ光源から発生する実際の光出力波形とを示す図である。It is a figure which shows the actual electric current waveform supplied to LD for pumps, and the actual optical output waveform generate | occur | produced from a pulse fiber laser light source. 本発明の第1の実施の形態による波長変換レーザ光源に用いられる他のパルスファイバレーザ光源の主要な構成を示す概略図である。It is the schematic which shows the main structures of the other pulse fiber laser light source used for the wavelength conversion laser light source by the 1st Embodiment of this invention. 本発明の第2の実施の形態における波長変換レーザ光源の構成を示す概略図である。It is the schematic which shows the structure of the wavelength conversion laser light source in the 2nd Embodiment of this invention. 図13に示すパルスファイバレーザ光源から光パルスが出射されるときのパルスファイバレーザ光源の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of a pulse fiber laser light source when an optical pulse is radiate | emitted from the pulse fiber laser light source shown in FIG. 本発明の第2の実施の形態による他の波長変換レーザ光源の構成を示す概略図である。It is the schematic which shows the structure of the other wavelength conversion laser light source by the 2nd Embodiment of this invention. 入力電流のパルス電流の波形と、このパルス電流により駆動されたパルスファイバレーザ光源からの光出力の波形とを示す図である。It is a figure which shows the waveform of the pulse current of an input electric current, and the waveform of the optical output from the pulse fiber laser light source driven by this pulse current. 本発明の第3の実施の形態における波長変換レーザ光源の構成を示す概略図である。It is the schematic which shows the structure of the wavelength conversion laser light source in the 3rd Embodiment of this invention. 図17に示す波長変換レーザ光源のファイバアンプの出力光波形、パルスファイバレーザ光源のシード光出力波形、ファイバアンプのポンプ用LDの電流波形、及びパルスファイバレーザ光源のポンプ用LDの電流波形を示す図である。The output light waveform of the fiber amplifier of the wavelength conversion laser light source shown in FIG. 17, the seed light output waveform of the pulse fiber laser light source, the current waveform of the pump LD of the fiber amplifier, and the current waveform of the pump LD of the pulse fiber laser light source are shown. FIG. 本発明の第4の実施の形態における波長変換レーザ光源の構成を示す概略図である。It is the schematic which shows the structure of the wavelength conversion laser light source in the 4th Embodiment of this invention. 従来の波長変換素子における基本波の集光位置を示す模式図である。It is a schematic diagram which shows the condensing position of the fundamental wave in the conventional wavelength conversion element. 基本波の集光位置をパラメータとして波長変換素子の位置と基本波パワー密度との関係を示す図である。It is a figure which shows the relationship between the position of a wavelength conversion element, and a fundamental wave power density by using the condensing position of a fundamental wave as a parameter. 基本波の集光位置をパラメータとして波長変換素子の位置に対する(第2高調波のパワー密度×基本波パワー密度)をプロットした図である。It is the figure which plotted (the power density of the 2nd harmonic x fundamental wave power density) with respect to the position of a wavelength conversion element using the condensing position of a fundamental wave as a parameter. 従来例と第4の実施の形態との波長変換特性を示す図である。It is a figure which shows the wavelength conversion characteristic of a prior art example and 4th Embodiment. 本発明の第5の実施の形態における波長変換レーザ光源の構成を示す概略図である。It is the schematic which shows the structure of the wavelength conversion laser light source in the 5th Embodiment of this invention. 図24に示す波長変換レーザ光源において基本波レーザ光が波長変換素子への入射角を変化させながら通過する様子を説明するための模式図である。FIG. 25 is a schematic diagram for explaining how the fundamental laser beam passes through the wavelength conversion laser light source shown in FIG. 24 while changing the incident angle to the wavelength conversion element. 本発明の第6の実施の形態における2次元画像表示装置の構成を示す概略図である。It is the schematic which shows the structure of the two-dimensional image display apparatus in the 6th Embodiment of this invention. 本発明の第7の実施の形態における液晶表示装置の構成を示す概略図である。It is the schematic which shows the structure of the liquid crystal display device in the 7th Embodiment of this invention. 本発明の第8の実施の形態におけるレーザ加工装置の構成を示す概略図である。It is the schematic which shows the structure of the laser processing apparatus in the 8th Embodiment of this invention. 本発明の第8の実施の形態によるファイバ付レーザ光源を示す概略図である。It is the schematic which shows the laser light source with a fiber by the 8th Embodiment of this invention. 従来のパルスファイバレーザ光源の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the conventional pulse fiber laser light source.
 以下、本発明の実施の形態にかかるレーザ応用装置について、図面を参照しながら説明する。なお、図面で同じ符号が付いたものは、説明を省略する場合もある。 Hereinafter, a laser application apparatus according to an embodiment of the present invention will be described with reference to the drawings. In addition, what attached | subjected the same code | symbol in drawing may abbreviate | omit description.
 (第1の実施の形態)
 図1は、本発明の第1の実施の形態における波長変換レーザ光源の構成を示す概略図である。図1に示す波長変換レーザ光源は、パルスファイバレーザ光源100、光偏波保持ファイバ105、SHG(Second Harmonic Generation)モジュール110、LD電源401及びパルスジェネレータ402を備え、パルスファイバレーザ光源100は、ポンプ用LD(励起用レーザ光源)101、ファイバグレーティング102、104、第1ファイバ103、第2ファイバ106、NA(開口率)変換器107及びファイバ108を備える。
(First embodiment)
FIG. 1 is a schematic diagram showing a configuration of a wavelength conversion laser light source according to the first embodiment of the present invention. The wavelength conversion laser light source shown in FIG. 1 includes a pulse fiber laser light source 100, an optical polarization maintaining fiber 105, an SHG (Second Harmonic Generation) module 110, an LD power supply 401, and a pulse generator 402. The pulse fiber laser light source 100 includes a pump. LD (excitation laser light source) 101, fiber gratings 102 and 104, first fiber 103, second fiber 106, NA (aperture ratio) converter 107, and fiber 108 are provided.
 第1ファイバ103は、例えば、コア部分に希土類としてYbをドープしたダブルクラッド偏波保持ファイバからなり、ファイバ長は10mである。ポンプ用LD101は、第1ファイバ103を励起し、第1ファイバ103、第2ファイバ106及び一組のファイバグレーティング102、104から構成されたレーザ共振器内でレーザ光を発振させる。このように、第1ファイバ103を、Ybをドープしたダブルクラッド偏波保持ファイバとするとともに、ファイバグレーティング102、104の特性を操作することにより、パルスファイバレーザ光源100は、1050~1170nmまでの光を任意に発振でき、加工応用や波長変換用途等に応用できるため、このレーザ活性物質を選択した。 The first fiber 103 is made of, for example, a double clad polarization maintaining fiber doped with Yb as a rare earth in the core portion, and the fiber length is 10 m. The pump LD 101 excites the first fiber 103 and oscillates laser light in a laser resonator composed of the first fiber 103, the second fiber 106, and the pair of fiber gratings 102 and 104. In this way, the first fiber 103 is a double-clad polarization maintaining fiber doped with Yb, and by manipulating the characteristics of the fiber gratings 102 and 104, the pulse fiber laser light source 100 can emit light of 1050 to 1170 nm. This laser active substance was selected because it can oscillate arbitrarily and can be applied to processing applications, wavelength conversion applications, and the like.
 また、本実施の形態では、ポンプ用LD101として、最大出力8Wで発振波長975nmの3個のシングルエミッターレーザダイオードを使用している。ファイバグレーティング102は、コア部分にゲルマニウムが添加されたダブルクラッド偏波保持ファイバに形成されており、紫外光に対する感度が向上され、中心波長1064nm、反射スペクトル半値幅1nm及び反射率98%という特性を持っている。また、ファイバグレーティング104は、コア部分に同じくゲルマニウムが添加された一般的なシングルモード偏波保持ファイバ(コア径9μm、クラッド外形125μm)に形成されており、中心波長1064nm、反射スペクトル半値幅0.05nm及び反射率10~15%という特性を持っている。 Further, in this embodiment, three single emitter laser diodes having a maximum output of 8 W and an oscillation wavelength of 975 nm are used as the pump LD 101. The fiber grating 102 is formed in a double clad polarization maintaining fiber in which germanium is added to the core portion, has improved sensitivity to ultraviolet light, and has characteristics of a center wavelength of 1064 nm, a reflection spectrum half width of 1 nm, and a reflectance of 98%. have. The fiber grating 104 is formed in a common single-mode polarization maintaining fiber (core diameter 9 μm, clad outer shape 125 μm) in which germanium is similarly added to the core portion, the center wavelength is 1064 nm, the reflection spectrum half-value width is 0. It has the characteristics of 05 nm and reflectivity of 10 to 15%.
 ここで、レーザ共振器から出射するレーザ光を波長変換レーザ光源の基本波として使用する際、波長変換素子であるSHGモジュール110内での可視光への変換効率を考慮すると、反射スペクトル半値幅は、0.1nm以下であることが望ましく、0.01~0.06nmの範囲内であることがより望ましい。本願発明者らの検討において、ファイバグレーティング104の反射帯域が0.05nm以下となった場合、より安定してパルス発振することを確認している。また、発振したレーザ光に対する、希土類添加ダブルクラッドファイバのモードフィールド径が8~13μmのとき、よりパルス発振しやすくなることも確認している。この理由は、レーザ活性物質である希土類イオンの密度を同じくした場合においても、モードフィールド径が増加する分だけ添加量を増やすことができるためである。 Here, when the laser light emitted from the laser resonator is used as the fundamental wave of the wavelength conversion laser light source, in consideration of the conversion efficiency to visible light in the SHG module 110 which is a wavelength conversion element, the half width of the reflection spectrum is The thickness is preferably 0.1 nm or less, and more preferably in the range of 0.01 to 0.06 nm. In the study by the present inventors, it has been confirmed that when the reflection band of the fiber grating 104 is 0.05 nm or less, pulse oscillation is more stably performed. It has also been confirmed that when the mode field diameter of the rare earth-doped double clad fiber with respect to the oscillated laser beam is 8 to 13 μm, pulse oscillation is more likely to occur. This is because, even when the density of the rare earth ions that are laser active materials is the same, the amount of addition can be increased by an amount corresponding to an increase in the mode field diameter.
 また、波長変換レーザ光源の基本波として使用する際、本実施の形態のパルスファイバレーザ光源100は、偏光を単一偏光(直線偏光)にして使用することが望ましい。直線偏光にする理由としては、SHGモジュール110内の波長変換結晶が一方の偏光成分しか波長変換しないためである。 Also, when used as a fundamental wave of a wavelength conversion laser light source, it is desirable that the pulse fiber laser light source 100 of the present embodiment is used with a single polarized light (linearly polarized light). The reason why the linearly polarized light is used is that the wavelength conversion crystal in the SHG module 110 converts only one polarization component.
 その後、発振した1064nm付近の光を伝搬させる光偏波保持ファイバ105により、光パルスLPがSHGモジュール110に導入され、SHGモジュール110は、第2高調波発生により532nmの光を発生させる。 Thereafter, the optical pulse LP is introduced into the SHG module 110 by the optical polarization maintaining fiber 105 that propagates the oscillated light of around 1064 nm, and the SHG module 110 generates 532 nm light by the second harmonic generation.
 本実施の形態で提案しているパルスファイバレーザ光源100の特長は、レーザ共振器内のYbドープファイバ(第1及び第2ファイバ103、106)に、励起光で励起されない部分である第2ファイバ106が存在している点と、レーザ共振器と励起光源であるポンプ用LD101との間にNA変換器107が挿入されている点にある。このように構成されたレーザ共振器に対して、ポンプ用LD101を駆動する電流波形を所定の立ち上がり速度及びパルス幅で駆動することにより、レーザ共振器をパルス発振させることができ、高ピークパワーの光パルスLPを得ることができる。 The feature of the pulsed fiber laser light source 100 proposed in the present embodiment is that the Yb-doped fiber (first and second fibers 103 and 106) in the laser resonator is the second fiber that is not excited by the pumping light. 106 is present, and the NA converter 107 is inserted between the laser resonator and the pumping LD 101 which is an excitation light source. By driving a current waveform for driving the pump LD 101 at a predetermined rising speed and pulse width with respect to the laser resonator configured as described above, the laser resonator can be oscillated in a pulsed manner, and has a high peak power. An optical pulse LP can be obtained.
 すなわち、本実施の形態では、レーザ共振器内に励起されないYbドープ偏波保持ファイバである第2ファイバ106が挿入されているので、レーザ共振器が自ら発振した光を自己吸収し、発振が不安定となる。発振が不安定になることにより、出力光はパルス化しやすい状態となる。ここで、発振が不安定なレーザ共振器に入射する励起光の立ち上がりを急峻な立ち上がりとすると、Ybドープファイバである第2ファイバ106の緩和振動により、ジャイアントパルスを発生させることができる。このことを利用して、急峻な立ち上がり特性を持った励起光で本実施の形態のレーザ共振器を周期的に繰り返し励起することにより、高ピークなパルス光を繰り返し出射することができる。 That is, in the present embodiment, since the second fiber 106, which is a Yb-doped polarization maintaining fiber that is not excited, is inserted into the laser resonator, the laser resonator self-absorbs the light itself oscillated and oscillation is not caused. It becomes stable. As the oscillation becomes unstable, the output light is easily pulsed. Here, if the rise of the excitation light incident on the laser resonator whose oscillation is unstable is a steep rise, a giant pulse can be generated by the relaxation oscillation of the second fiber 106 which is a Yb-doped fiber. By utilizing this fact, high-peak pulsed light can be repeatedly emitted by periodically and repeatedly exciting the laser resonator of this embodiment with pumping light having a steep rise characteristic.
 具体的には、Ybドープダブルクラッド偏波保持ファイバ部分である第1ファイバ103にポンプ用LD101から発せられた励起光の98%以上を吸収させ、Ybドープ偏波保持ファイバ部分である第2ファイバ106は、励起光が実質的に到達しない領域となるように、励起光の2%以下しか到達できないような構造となっていることが望ましい。本実施の形態では、コア径9μmでYbイオン濃度9×1025個/mのYbドープファイバ(励起光吸収率:1.8dB/m)を用いている。その際、第1ファイバ103の長さは9.5m、第2ファイバ106の長さは5mとしている。これらの長さは、ファイバのコア径やYbイオン濃度によって変化する値であるので、構成によって変わり得る値であるが、第2ファイバ106の長さは、第1ファイバ103が励起光の98%以上を吸収するファイバ長の0.5倍程度であることが望ましい。 Specifically, 98% or more of the pumping light emitted from the pump LD 101 is absorbed by the first fiber 103 which is a Yb-doped double clad polarization maintaining fiber portion, and the second fiber which is a Yb-doped polarization maintaining fiber portion. It is desirable that the structure 106 can reach only 2% or less of the excitation light so as to be a region where the excitation light does not substantially reach. In the present embodiment, a Yb-doped fiber (excitation light absorption: 1.8 dB / m) having a core diameter of 9 μm and a Yb ion concentration of 9 × 10 25 ions / m 3 is used. At this time, the length of the first fiber 103 is 9.5 m, and the length of the second fiber 106 is 5 m. Since these lengths are values that vary depending on the core diameter of the fiber and the Yb ion concentration, they can be changed depending on the configuration. However, the length of the second fiber 106 is 98% of the excitation light of the first fiber 103. It is desirable that the length be about 0.5 times the fiber length that absorbs the above.
 次に、NA変換器107について説明する。上記のレーザ共振器では、高いピークパワーを持つ光が発振するため、発振した光がポンプ用LD101側のファイバグレーティング102を通過してポンプ用LD101に戻り、この戻り光がポンプ用LD101を破壊してしまうことがあるが、NA変換器107をポンプ用LD101とファイバグレーティング102との間に挿入することで、戻り光による破壊を防止することができる。 Next, the NA converter 107 will be described. In the laser resonator described above, light having a high peak power oscillates, so the oscillated light passes through the fiber grating 102 on the pump LD 101 side and returns to the pump LD 101, and this return light destroys the pump LD 101. However, by inserting the NA converter 107 between the pump LD 101 and the fiber grating 102, it is possible to prevent destruction due to return light.
 NA変換器107のメカニズムについて以下に説明する。ポンプ用LD101から光を伝搬させるファイバ108のNAは0.22であり、レーザ共振器に用いる入射側ファイバである第1ファイバ103において、励起光に対するNAは0.46であり、発振した光に対するNAは0.1であり、これらの光りが第1ファイバ103内を伝搬している。 The mechanism of the NA converter 107 will be described below. The NA of the fiber 108 that propagates light from the pump LD 101 is 0.22, and the NA of the excitation light in the first fiber 103 that is the incident side fiber used for the laser resonator is 0.46, and the NA of the oscillated light is 0.46. NA is 0.1, and these lights propagate in the first fiber 103.
 一般に、ファイバ内を伝搬する光は、NAが小さいファイバからNAが大きなファイバへ伝搬するとき、高い結合効率で光学的に結合されるため、伝搬ロスが小さくなるが、逆にNAが大きなファイバからNAが小さなファイバへは、結合効率が小さくなる。そこで、ポンプ用LD101とレーザ共振器(ファイバグレーティング102)との間に、NA0.25(ポンプ用LD101のファイバ108のNA以上)~NA0.46(レーザ共振器を構成する第1ファイバ103における励起光に対するNA以下)のマルチモードファイバをNA変換器107として挿入することにより、発振した光がポンプ用LD101へ逆流することを防止できる。 Generally, light propagating in a fiber is optically coupled with high coupling efficiency when propagating from a fiber having a small NA to a fiber having a large NA. For fibers with a small NA, the coupling efficiency is small. Therefore, between the pump LD 101 and the laser resonator (fiber grating 102), NA 0.25 (more than NA of the fiber 108 of the pump LD 101) to NA 0.46 (excitation in the first fiber 103 constituting the laser resonator). By inserting a multimode fiber (NA or less for light) as the NA converter 107, it is possible to prevent the oscillated light from flowing back to the pump LD 101.
 具体的には、レーザ共振器内の戻り光に対するNAは0.1なのに対し、NA変換器107のNAは0.25~0.46と大きいため、NA変換器107を伝搬する間に、戻り光のNAは0.3程度となる。その後、NA変換器107は、ポンプ用LD101へ接続されるため、戻り光に対しては、ポンプ用LD101の出射側ファイバであるファイバ108への結合効率を低下させることができる。このとき、NA変換器107として、マルチモードファイバを使用する際には、NAが0.3~0.46であり且つ長さが1~5m程度のステップインデックス型マルチモードファイバを用いることが望ましい。 Specifically, the NA for the return light in the laser resonator is 0.1, whereas the NA of the NA converter 107 is as large as 0.25 to 0.46. The NA of light is about 0.3. Thereafter, since the NA converter 107 is connected to the pump LD 101, the coupling efficiency to the fiber 108 that is the output side fiber of the pump LD 101 can be reduced with respect to the return light. At this time, when a multimode fiber is used as the NA converter 107, it is desirable to use a step index type multimode fiber having an NA of 0.3 to 0.46 and a length of about 1 to 5 m. .
 なお、NA変換器107として、NA0.22の複数本、例えば、2~7本のファイバからの励起光入力をNA0.46のファイバ1本へまとめる際に使用する「マルチモードコンバイナ」を使用することもできる。マルチモードコンバイナを使用することにより、ファイバのNAの違いによりポンプ用LD101への戻り光を低減する効果に加え、ファイバが分岐されていることによる戻り光低減の効果を得ることができる。ここで、マルチモードコンバイナの入力ポートとなる複数本のファイバのNAは、ポンプ用LD101側のファイバ108のNA以上であり、マルチモードコンバイナの出力ポートとなる1本のファイバのNAは、レーザ共振器の第1ファイバ103の励起光に対するNA以下であることが好ましい。この際、マルチモードコンバイナのポンプ用LD101を接続する入力側の複数のファイバのうち出力側ファイバの中央部分に接続される入力側ファイバは、戻り光の影響が大きいため、入力側の複数のファイバのうち少なくとも1本は、ポンプ用LD101に光学的に接続されていない状態とすることが望ましい。 As the NA converter 107, a “multi-mode combiner” used when pumping light input from a plurality of NA0.22 fibers, for example, 2 to 7 fibers, is combined into one NA0.46 fiber is used. You can also. By using the multi-mode combiner, in addition to the effect of reducing the return light to the pump LD 101 due to the difference in the NA of the fiber, the effect of reducing the return light due to the branching of the fiber can be obtained. Here, the NA of the plurality of fibers serving as the input port of the multimode combiner is equal to or greater than the NA of the fiber 108 on the pump LD 101 side, and the NA of one fiber serving as the output port of the multimode combiner is the laser resonance. It is preferable that it is below NA with respect to the excitation light of the 1st fiber 103 of a container. At this time, the input side fiber connected to the central portion of the output side fiber among the plurality of input side fibers connecting the LD 101 for the pump of the multimode combiner is greatly influenced by the return light. At least one of them is preferably not optically connected to the pump LD 101.
 以上のようなレーザ共振器の構成により、パルス発振しやすい状態の共振器を形成することができるが、ポンプ用LD101に印加する電流をパルス変調することにより、繰り返しパルス発振をさせることが可能となる。 With the laser resonator configuration as described above, it is possible to form a resonator that is easily pulsated, but by pulse-modulating the current applied to the pump LD 101, it is possible to repeatedly oscillate the pulse. Become.
 ここで、LD電源401は、立ち上がり速度1~15nsの急速な立ち上がりを実現できる電源となっている。LD電源401は、パルスジェネレータ402からの信号をトリガにしてパルス状の電流波形を形成する。ポンプ用LD101に印加する電流の立ち上がり速度については、100ns程度までの早さであれば、レーザ共振器をパルス発振させることが可能であるが、レーザ共振器に緩和振動によるパルス発光を特に発生させやすくするために、1~15nsという値は、必要な値である。ここで、電流の立ち上がり速度としては、例えば、電流が0%から100%(目標値)に達するまでの時間を用いることができる。 Here, the LD power supply 401 is a power supply that can realize a rapid rise with a rise speed of 1 to 15 ns. The LD power supply 401 forms a pulsed current waveform using the signal from the pulse generator 402 as a trigger. If the rising speed of the current applied to the pump LD 101 is as fast as about 100 ns, the laser resonator can be pulse-oscillated. For the sake of simplicity, a value of 1 to 15 ns is a necessary value. Here, as the rising speed of the current, for example, the time until the current reaches 0% to 100% (target value) can be used.
 図2は、ポンプ用LD101に矩形のパルス電流を入力電流ICとして供給した際の、パルスファイバレーザ光源100から発せられる光パルスLPの過渡応答特性を示す図であり、時間軸に対する入力電流IC及び光パルスLPの変化を示している。 FIG. 2 is a diagram showing transient response characteristics of the optical pulse LP emitted from the pulse fiber laser light source 100 when a rectangular pulse current is supplied to the pump LD 101 as the input current IC. The change of the light pulse LP is shown.
 図2に示すように、LD電源401が矩形の入力電流ICによりポンプ用LD101を駆動し、励起光がレーザ共振器に入射すると、T1時間後に光出力として第1ピークP1(光パルスLP)が発生する。さらに、入力電流ICを注入し続けると、T2時間後に第2ピークP2が発生し、過渡応答のピークが発生した後に、光出力は、矩形の入力電流ICの電流値Isに対応した光出力の定常値Psとなる。 As shown in FIG. 2, when the LD power supply 401 drives the pump LD 101 with a rectangular input current IC and the excitation light is incident on the laser resonator, the first peak P1 (light pulse LP) is output as an optical output after time T1. appear. Furthermore, if the input current IC is continuously injected, the second peak P2 occurs after T2 time, and after the transient response peak occurs, the light output is the light output corresponding to the current value Is of the rectangular input current IC. It becomes a steady value Ps.
 本実施の形態のパルスファイバレーザ光源100は、光パルスLPの第1ピークP1が形成され且つ第2ピークP2が形成されないように、入力電流ICを遮断することで、光出力として第1ピークP1のみの単一のピークをもつ光パルスLPを出射させることを特徴としている。具体的には、パルスファイバレーザ光源100は、入力電流ICの立ち上がりを起点とし、光パルスLPが発せられてから第1ピークP1が形成された後、第2ピークが形成される前に終点が設けられた区間で励起され、その後、入力電流ICを遮断するようにしてもよい。また、パルスファイバレーザ光源100は、入力電流ICの立ち上がりを起点とし、光パルスLPが発せられてから第1ピークP1に達するまでの間に終点が設けられた区間で励起され、その後、入力電流ICを遮断するようにしてもよい。また、パルスファイバレーザ光源100は、光パルスIPが出射されると同時に遮断されるようにしてもよく、例えば、入力電流ICの立ち上がりを起点とし、光パルスIPの第1ピークP1が形成されている間に終点が設けられた区間で励起され、その後、入力電流ICを遮断するようにしてもよい。 The pulse fiber laser light source 100 according to the present embodiment cuts off the input current IC so that the first peak P1 and the second peak P2 of the optical pulse LP are not formed, thereby providing the first peak P1 as the optical output. It is characterized by emitting an optical pulse LP having only a single peak. Specifically, the pulse fiber laser light source 100 starts from the rise of the input current IC, and after the first peak P1 is formed after the light pulse LP is emitted, the end point is reached before the second peak is formed. The excitation may be performed in the provided section, and then the input current IC may be cut off. Further, the pulse fiber laser light source 100 is excited in the section where the end point is provided from the start of the input current IC to the arrival of the first peak P1 after the light pulse LP is emitted. The IC may be shut off. Further, the pulse fiber laser light source 100 may be cut off at the same time as the light pulse IP is emitted. For example, the first peak P1 of the light pulse IP is formed starting from the rise of the input current IC. In the meantime, excitation may be performed in the section where the end point is provided, and then the input current IC may be cut off.
 第2ピーク以降は、第1ピークに比べて、ピーク出力が低いため、波長変換素子を用いて波長変換する場合、高い波長変換効率が得られない。このため、T2時間後の入力電流量を、第1ピークP1の発生時の入力電流量の20%以下とすることが望ましく、この場合、第2のピークP2の発生を防ぎ、ピーク出力が高い第1ピークP1のみを発生させることが可能となる。 Since the peak output after the second peak is lower than that of the first peak, high wavelength conversion efficiency cannot be obtained when wavelength conversion is performed using a wavelength conversion element. For this reason, it is desirable that the input current amount after T2 time be 20% or less of the input current amount when the first peak P1 is generated. In this case, the generation of the second peak P2 is prevented and the peak output is high. Only the first peak P1 can be generated.
 また、LD電源401は、入力電流ICが遮断されて所定の時間が経過した後に、入力電流ICを再び印加してポンプ用LD101をさらに駆動することにより、出力光として複数の光パルスLPが繰り返し出射されているように動作させることもできる。このような構成とすることにより、高出力ピーク値をもつ光パルスLPをパルス列として継続して発生させることができる。なお、入力電流ICを遮断するタイミングは、後述する検討結果を基に予め決定されており、LD電源401内の所定のメモリに予め記憶されている。 The LD power supply 401 repeats a plurality of optical pulses LP as output light by applying the input current IC again and further driving the pump LD 101 after the input current IC is cut off and a predetermined time elapses. It can also be operated as it is emitted. With such a configuration, it is possible to continuously generate an optical pulse LP having a high output peak value as a pulse train. Note that the timing at which the input current IC is cut off is determined in advance based on the examination results described later, and is stored in advance in a predetermined memory in the LD power source 401.
 図3~図6は、入力の電荷量を変化させるために入力電流のパルス幅を変化させたときの光出力の変化を示す図である。各図において、入力電流として、10Aの矩形のパルス電流をポンプ用LD101に印加している。また、パルスファイバレーザ光源100のファイバ長は、例えば10mであり、ファイバのコア径は9μmのものを使用している。 3 to 6 are diagrams showing changes in the light output when the pulse width of the input current is changed in order to change the charge amount of the input. In each figure, a 10 A rectangular pulse current is applied to the pump LD 101 as an input current. The fiber length of the pulse fiber laser light source 100 is, for example, 10 m, and the core diameter of the fiber is 9 μm.
 図3は、入力電流として電荷量55μC(パルス幅5.5μs)のパルスを用いて、ポンプ用LD101を駆動してパルスファイバレーザ光源100を動作させた場合の入力電流及び光出力の波形を示す図である。この場合、十分な励起光が入力されていないため、パルスファイバレーザ光源100は、レーザ発振に至らず、自然放出光がわずかに発生する。 FIG. 3 shows the waveforms of the input current and the optical output when the pulse fiber laser light source 100 is operated by driving the pump LD 101 using a pulse having a charge amount of 55 μC (pulse width 5.5 μs) as the input current. FIG. In this case, since sufficient excitation light is not input, the pulse fiber laser light source 100 does not oscillate, and spontaneous emission light is slightly generated.
 図4は、入力電流として電荷量65μC(パルス幅6.5μs)のパルスを用いて、ポンプ用LD101を駆動してパルスファイバレーザ光源100を動作させた場合の入力電流及び光出力の波形を示す図である。この場合、パルスファイバレーザ光源100は、レーザ発振に至り、第1のピークP1をもつ単一の光パルスが発生し、光パルスP1のピークは、入力電流の開始時点(入力電流の立ち上がり時点)から7μs後の位置にある。 FIG. 4 shows the waveforms of the input current and the optical output when the pulse fiber laser light source 100 is operated by driving the pump LD 101 using a pulse having a charge amount of 65 μC (pulse width 6.5 μs) as the input current. FIG. In this case, the pulse fiber laser light source 100 reaches laser oscillation, and a single optical pulse having the first peak P1 is generated. The peak of the optical pulse P1 is the input current start time (input current rise time). 7 μs after.
 図5は、入力電流として電荷量75μC(パルス幅7.5μs)のパルスを用いて、ポンプ用LD101を駆動してパルスファイバレーザ光源100を動作させた場合の入力電流及び光出力の波形を示す図である。この場合、図4の例に比べて、さらに大きい第1のピークP1をもつ単一の光パルスが発生する。 FIG. 5 shows the waveforms of the input current and the optical output when the pulse fiber laser light source 100 is operated by driving the pump LD 101 using a pulse having a charge amount of 75 μC (pulse width 7.5 μs) as the input current. FIG. In this case, a single optical pulse having a larger first peak P1 is generated as compared with the example of FIG.
 図6は、入力電流として電荷量85μC(パルス幅8.5μs)のパルスを用いて、ポンプ用LD101を駆動してパルスファイバレーザ光源100を動作させた場合の入力電流及び光出力の波形を示す図である。この場合、第1のピークP1に加えて第2のピークP2を伴う光パルスが発生し、光パルスは、2ndパルスを含む波形となる。 FIG. 6 shows the waveforms of the input current and the optical output when the pulse fiber laser light source 100 is operated by driving the pump LD 101 using a pulse having an electric charge of 85 μC (pulse width 8.5 μs) as the input current. FIG. In this case, an optical pulse with the second peak P2 in addition to the first peak P1 is generated, and the optical pulse has a waveform including a 2nd pulse.
 図3~図6に示す上述の場合には、図5に示す入力電流の条件で単一のピーク値の高い光パルスが得られることになる。また、入力電流を矩形のパルス列にすると、光パルスも光パルス列が得られることとなる。 In the above-described case shown in FIGS. 3 to 6, a single light pulse having a high peak value can be obtained under the input current conditions shown in FIG. Further, when the input current is a rectangular pulse train, an optical pulse train can be obtained for the optical pulse.
 上記のように、ファイバ長や励起用レーザ光源の出力などにもよるが、第1ピークP1の発生までの間に入力された電荷量の1.1倍以上の電荷量を入力すると、第2ピークP2が発生してしまう。このため、第1ピークP1発生後の入力電流の電荷量が、第1ピークP1発生までの電荷量の20%以下となるように、入力電流を遮断することが望ましい。 As described above, depending on the fiber length, the output of the excitation laser light source, and the like, if a charge amount 1.1 times or more of the charge amount input until the first peak P1 is generated is input, Peak P2 will occur. For this reason, it is desirable to block the input current so that the charge amount of the input current after the first peak P1 is generated is 20% or less of the charge amount until the first peak P1 is generated.
 また、入力電流源であるLD電源401の時定数が大きく、入力電流の波形がテールを引く場合も同様に、第1ピークP1発生後の入力電流の電荷量が、第1ピークP1発生前の電荷量の20%以下となるように入力電流を減少させることが望ましい。また、第1ピークP1のピーク出力は、第1ピークP1発生時の入力電流量に比例するため、最も望ましくは、時定数が小さく、時間応答性に優れた入力電流源を用いて、第1ピークP1の発生時から第2ピークP2の発生前の間に入力電流を遮断することが望ましい。 Similarly, when the time constant of the LD power source 401 as the input current source is large and the waveform of the input current has a tail, the charge amount of the input current after the first peak P1 is generated is the same as that before the first peak P1 is generated. It is desirable to reduce the input current so that the charge amount is 20% or less. Also, since the peak output of the first peak P1 is proportional to the amount of input current when the first peak P1 occurs, it is most desirable to use an input current source having a small time constant and excellent time response. It is desirable to cut off the input current between the occurrence of the peak P1 and before the occurrence of the second peak P2.
 図7は、矩形の入力電流のパルス幅及び電流値を所定の値に設定して発生させた単一の光パルスの一例を示す図である。上記の検討結果から、第1ピークP1発生後の入力電流ICの電荷量が、光パルスLPの第1ピークP1発生までの電荷量の20%以下となるように、図7に示すように入力電流ICのパルス幅及び電流値を設定し、さらに、第1ピークP1が発生した後に第2ピークが発生するまでに入力電流を遮断すると、第1ピークP1の出力ピーク値PLを高くすることができる。 FIG. 7 is a diagram showing an example of a single optical pulse generated by setting the pulse width and current value of a rectangular input current to predetermined values. From the above examination results, the input current IC after the first peak P1 is generated so that the charge amount is 20% or less of the charge amount until the first peak P1 of the light pulse LP is generated as shown in FIG. When the pulse width and current value of the current IC are set and the input current is cut off after the first peak P1 occurs and before the second peak occurs, the output peak value PL of the first peak P1 may be increased. it can.
 図8及び図9は、所定の周期の複数のパルス電圧からなる入力電圧をポンプ用LD101に印加することにより、パルスファイバレーザ光源100を駆動して光出力を得ていることを示す図であり、図8は、入力電圧が正の直流電圧でバイアスされている場合を示す図であり、図9は、入力電圧が負の直流電圧でバイアスされている場合を示す図である。 FIG. 8 and FIG. 9 are diagrams showing that the optical output is obtained by driving the pulse fiber laser light source 100 by applying an input voltage composed of a plurality of pulse voltages with a predetermined cycle to the pump LD 101. 8 is a diagram illustrating a case where the input voltage is biased with a positive DC voltage, and FIG. 9 is a diagram illustrating a case where the input voltage is biased with a negative DC voltage.
 図8に示す例では、ポンプ用LD101は、周期3μs及びパルス幅300nsのパルス列に正の直流電圧を重畳した入力電圧により駆動されている。この入力電圧により、光出力は、半値幅が50nsの光パルスがパルス列として出力されている。また、図9は、図8と同じ周期3μs、パルス幅300nsのパルス電圧に、負の直流電圧を重畳した入力電圧を印加して、光パルスがパルス列として出力されていることを示している。なお、これらの例では、パルス幅を短くする代わりに、入力電流(電荷)のピーク値を上げることにより、電流が入力される区間の積分電荷量が同じになるように、駆動波形を制御している。 In the example shown in FIG. 8, the pump LD 101 is driven by an input voltage in which a positive DC voltage is superimposed on a pulse train having a period of 3 μs and a pulse width of 300 ns. With this input voltage, the optical output is an optical pulse having a half width of 50 ns as a pulse train. FIG. 9 shows that an optical pulse is output as a pulse train by applying an input voltage in which a negative DC voltage is superimposed on a pulse voltage having the same period of 3 μs and a pulse width of 300 ns as in FIG. In these examples, instead of shortening the pulse width, the drive waveform is controlled so that the integrated charge amount in the section where the current is input is the same by increasing the peak value of the input current (charge). ing.
 ここで、図9に示す例では、一定の負の直流電圧を印加しているが、ポンプ用LD101に入力電流を印加した後に入力電流を遮断すると同時に、ポンプ用LD101に0.1V以上且つ0.5V以下の逆方向電圧(負の直流電圧)を印加してもよい。こうすることにより、光出力の半値幅を40ns以下と小さくすることが可能となり、狭パルス化が可能となる。また、狭パルス化した分だけ、高いピーク出力が得られるため、パルスファイバレーザ光源100で生成したレーザ光を基本波として波長変換させた場合の変換効率を高めることが可能となる。 Here, in the example shown in FIG. 9, a constant negative DC voltage is applied, but the input current is cut off after the input current is applied to the pump LD 101, and at the same time, the pump LD 101 has a voltage of 0.1 V or more and 0 A reverse voltage of 5 V or less (negative DC voltage) may be applied. By doing so, the half-value width of the optical output can be reduced to 40 ns or less, and the pulse can be narrowed. Further, since a high peak output is obtained as much as the pulse is narrowed, it is possible to increase the conversion efficiency when the wavelength of the laser beam generated by the pulse fiber laser light source 100 is converted as a fundamental wave.
 また、ここでは周期を3μsとしたが、周期は5μs以上としてもよい。これにより、更に、狭パルス化及び高ピーク化が可能となる。また、同様に周期を11μs以上としてもよい。これにより、狭パルス化及び高ピーク化に加えて、パルス出力の安定性が改善し、高い出力安定性が求められる画像表示装置に用いることが可能となるため望ましい。 In addition, although the period is 3 μs here, the period may be 5 μs or more. Thereby, further narrowing of the pulse and higher peaking are possible. Similarly, the period may be 11 μs or more. Thus, in addition to narrowing the pulse and increasing the peak, the stability of the pulse output is improved, so that it can be used for an image display device that requires high output stability.
 上記のような構成とすることにより、パルスファイバレーザ光源100を励起する励起光を瞬時に停止することができる。したがって、本実施の形態では、確実に2ndパルスを付随しない単一の高出力ピーク値をもつ光パルスを基本単位としたパルス列を発生することができる。さらに、入力電流の大きさ、波形及び周期などを適切に設定することにより、パルス幅が狭い光パルスをパルス列として発生することもできるので、さらに波長変換効率の高い波長変換レーザ光源を実現することができる。 With the above-described configuration, the excitation light for exciting the pulse fiber laser light source 100 can be stopped instantaneously. Therefore, in the present embodiment, it is possible to reliably generate a pulse train whose basic unit is an optical pulse having a single high output peak value not accompanied by a 2nd pulse. Furthermore, by appropriately setting the magnitude, waveform, period, etc. of the input current, it is also possible to generate optical pulses with a narrow pulse width as a pulse train, thereby realizing a wavelength conversion laser light source with higher wavelength conversion efficiency. Can do.
 図10は、ポンプ用LD101へ印加される電流の波形に対するパルスファイバレーザ光源100から発生される光出力の波形を示している。図10に示す例では、立ち上がり速度5ns、パルス幅300ns及びパルス間隔5μsとなるように、電流波形を変調している。この電流波形によりポンプ用LD101を駆動した結果が図11に示す実際のパルス波形である。図11から、上記のLD電流波形により、光出力波形として、安定した繰り返しパルス波形が得られていることが分かる。 FIG. 10 shows the waveform of the light output generated from the pulse fiber laser light source 100 with respect to the waveform of the current applied to the pump LD 101. In the example shown in FIG. 10, the current waveform is modulated so that the rising speed is 5 ns, the pulse width is 300 ns, and the pulse interval is 5 μs. The result of driving the pump LD 101 with this current waveform is the actual pulse waveform shown in FIG. From FIG. 11, it can be seen that a stable repetitive pulse waveform is obtained as an optical output waveform by the LD current waveform.
 上記の構成により、本実施の形態では、ピークパワーで500W程度の1064nm光を得ることができた。この1064nm光は、SHGモジュール110のように非線形光学結晶を用いた波長変換により、200W程度のピークパワーを持つ緑色光へ変換される。このパルスグリーンレーザ光は、レーザマーキング等を行うことができるピークパワーを持っていることになる。 With the above configuration, 1064 nm light with a peak power of about 500 W could be obtained in this embodiment. This 1064 nm light is converted into green light having a peak power of about 200 W by wavelength conversion using a nonlinear optical crystal like the SHG module 110. This pulse green laser beam has a peak power capable of performing laser marking or the like.
 なお、上記の説明では、第2ファイバ106を、励起光が実質的に到達しない領域とするために、第1ファイバ103により励起光の98%以上を吸収させたが、この例に特に限定されず、種々の変更が可能である。図12は、本実施の形態による波長変換レーザ光源に用いられる他のパルスファイバレーザ光源の主要な構成を示す概略図である。 In the above description, 98% or more of the excitation light is absorbed by the first fiber 103 in order to make the second fiber 106 a region where the excitation light does not substantially reach. However, the present invention is particularly limited to this example. However, various modifications are possible. FIG. 12 is a schematic diagram showing a main configuration of another pulse fiber laser light source used in the wavelength conversion laser light source according to the present embodiment.
 図12に示すパルスファイバレーザ光源100aと、図1に示すパルスファイバレーザ光源100とで異なる点は、第1ファイバ103及び第2ファイバ106が、Ybドープダブルクラッド偏波保持ファイバからなる第1ファイバ103a及び第2ファイバ106aに変更され、第1ファイバ103aと第2ファイバ106aとの間に励起光を吸収する励起光吸収機構302が設けられている点であり、その他の点は、図1に示すパルスファイバレーザ光源100と同様である。 The difference between the pulse fiber laser light source 100a shown in FIG. 12 and the pulse fiber laser light source 100 shown in FIG. 1 is that the first fiber 103 and the second fiber 106 are made of a Yb-doped double clad polarization maintaining fiber. 103a and the second fiber 106a, and an excitation light absorption mechanism 302 that absorbs excitation light is provided between the first fiber 103a and the second fiber 106a. The other points are shown in FIG. This is the same as the pulse fiber laser light source 100 shown.
 図12に示すように、Ybドープダブルクラッド偏波保持ファイバからなる第1ファイバ103aと第2ファイバ106aとの間に励起光吸収機構302を挿入する。この場合、第1ファイバ103aを励起光が伝搬した後、励起光吸収機構302により強制的に励起光が吸収されるので、第2ファイバ106aを励起光が完全に到達しない領域にすることができる。このように、強制的に励起光を除去する構成でも、上記と同様の効果が得られる。 As shown in FIG. 12, an excitation light absorption mechanism 302 is inserted between the first fiber 103a and the second fiber 106a made of a Yb-doped double clad polarization maintaining fiber. In this case, after the excitation light propagates through the first fiber 103a, the excitation light is forcibly absorbed by the excitation light absorption mechanism 302. Therefore, the second fiber 106a can be made a region where the excitation light does not reach completely. . In this way, the same effect as described above can be obtained even when the excitation light is forcibly removed.
 また、SHGモジュール110の構成については、後述の実施の形態で詳細な説明を行うが、非線形光学結晶を用いた波長変換には、パルスファイバレーザ光源100から発生される光の偏光状態が直線偏光である必要がある。この直線偏光にする方法として、PANDAファイバのfast軸とslow軸との曲げ損失差を利用する方法や、ファイバグレーティング102及びファイバグレーティング104のfast軸とslow軸との軸関係を90°回転させてファイバ融着したり、ファイバの複屈折性を用いたりする方法を用いることができる。 The configuration of the SHG module 110 will be described in detail in an embodiment described later. For wavelength conversion using a nonlinear optical crystal, the polarization state of light generated from the pulse fiber laser light source 100 is linearly polarized light. Need to be. As a method of making this linearly polarized light, a method using the difference in bending loss between the fast axis and the slow axis of the PANDA fiber, or by rotating the axial relationship between the fast axis and the slow axis of the fiber grating 102 and the fiber grating 104 by 90 °. A method of fusing fibers or using the birefringence of a fiber can be used.
 また、図示しないが、ファイバグレーティング102、104の代わりに、ミラーなどの反射部材をもちいる構成としてもよい。また、ファイバ出射端面は、特に反射防止膜などを形成することが無ければ、3%程度フレネル反射するため、ファイバグレーティングの代わりとすることも可能である。ファイバグレーティングを用いることで、高効率なパルスファイバレーザ光源を実現することができるが、ミラーや出射端のフレネル反射を利用することで、より安価なパルスファイバレーザ光源を実現することが可能となる。 Although not shown, a configuration using a reflecting member such as a mirror instead of the fiber gratings 102 and 104 may be used. Further, since the fiber exit end face reflects Fresnel by about 3% unless an antireflection film or the like is particularly formed, it can be used instead of the fiber grating. By using a fiber grating, a highly efficient pulse fiber laser light source can be realized, but by using a mirror or Fresnel reflection at the emission end, a cheaper pulse fiber laser light source can be realized. .
 (第2の実施の形態)
 図13は、本発明の第2の実施の形態における波長変換レーザ光源の構成を示す概略図である。本実施の形態の波長変換レーザ光源1000は、パルスファイバレーザ光源100bから光パルスが発生したことを検知して電流の供給を停止する。
(Second Embodiment)
FIG. 13 is a schematic diagram showing a configuration of a wavelength conversion laser light source according to the second embodiment of the present invention. The wavelength conversion laser light source 1000 of the present embodiment detects that an optical pulse has been generated from the pulse fiber laser light source 100b, and stops supplying current.
 図13に示すように、パルスファイバレーザ光源100bは、第1の実施の形態と同様に、励起光(図示せず)を出射する励起用のレーザ光源であるポンプ用LD101と、レーザ活性物質を含み、励起光を入射する第1ファイバ103と、励起光で励起されない部分である第2ファイバ106と、第1及び第2ファイバ103、106を挟んで光学的に接続されている1組のファイバグレーティング102、104とを備え、さらに、ハーフミラー1002、検出部1003、制御部1004及び電源1005を備えている。 As shown in FIG. 13, the pulse fiber laser light source 100b includes a pump LD 101 that is an excitation laser light source that emits excitation light (not shown) and a laser active material, as in the first embodiment. A first fiber 103 that includes excitation light, a second fiber 106 that is not excited by the excitation light, and a pair of fibers that are optically connected with the first and second fibers 103 and 106 interposed therebetween. And a half mirror 1002, a detection unit 1003, a control unit 1004, and a power source 1005.
 検出部1003は、1組のファイバグレーティング102、104のうちの出力側のファイバグレーティング104の出力端部の近傍に配置されている。ハーフミラー1002により、出力光である光パルスLPの一部が分岐されて検出部1003に取り込まれている。ポンプ用LDと電源1005とは、所定の配線により接続され、検出部1003及び電源1005は、所定の配線により制御部1004に接続されて制御される。 The detection unit 1003 is disposed in the vicinity of the output end of the output side fiber grating 104 of the pair of fiber gratings 102 and 104. A part of the optical pulse LP that is output light is branched by the half mirror 1002 and taken into the detection unit 1003. The pump LD and the power source 1005 are connected by a predetermined wiring, and the detection unit 1003 and the power source 1005 are connected to the control unit 1004 by a predetermined wiring and controlled.
 パルスファイバレーザ光源100bでは、光パルスLPが出射されると同時に、ポンプ用LD101を駆動する入力電流ICを遮断することにより、出力光LPが出射される。検出部1003は、光パルスLPの光出力を検出して検出信号DSを制御部1004へ出力し、制御部1004は、入力電流ICを遮断するように電源1005を制御する。すなわち、検出信号DSが制御部1004により受信されると、検出信号DSの内容に対応して、後述するように制御部1004は、電源1005からポンプ用LD101に供給される入力電流ICを遮断することになる。 In the pulse fiber laser light source 100b, the light pulse LP is emitted, and at the same time, the output light LP is emitted by cutting off the input current IC that drives the pump LD 101. The detection unit 1003 detects the optical output of the light pulse LP and outputs a detection signal DS to the control unit 1004. The control unit 1004 controls the power supply 1005 so as to cut off the input current IC. That is, when the detection signal DS is received by the control unit 1004, the control unit 1004 cuts off the input current IC supplied from the power source 1005 to the pump LD 101, as will be described later, in accordance with the content of the detection signal DS. It will be.
 このような構成とすることにより、高出力ピーク値をもつ光パルスLPをパルス列として発生することができる光電変換効率の高いパルスファイバレーザ光源100bを簡単な構成により実現することができる。 With such a configuration, the pulse fiber laser light source 100b with high photoelectric conversion efficiency capable of generating the optical pulse LP having a high output peak value as a pulse train can be realized with a simple configuration.
 また、波長変換レーザ光源1000は、パルスファイバレーザ光源100bからの出力光LPを基本波として、この基本波を高調波に変換する波長変換素子からなるSHGモジュール110をさらに備え、SHGモジュール110からの高調波光SPを出力する。このような構成とすることにより、さらに変換効率の高い高調波光パルスを基本単位としたパルス列を発生することができる。 The wavelength conversion laser light source 1000 further includes an SHG module 110 including a wavelength conversion element that converts the fundamental wave into a harmonic wave using the output light LP from the pulse fiber laser light source 100b as a fundamental wave. Outputs harmonic light SP. By adopting such a configuration, it is possible to generate a pulse train having harmonic light pulses with higher conversion efficiency as a basic unit.
 図14は、図13に示すパルスファイバレーザ光源100bから出力光である光パルスLPが出射されるときのパルスファイバレーザ光源100bの動作を説明するためのフローチャートである。図13及び図14を用いて、パルスファイバレーザ光源100bの具体的な動作について説明する。 FIG. 14 is a flowchart for explaining the operation of the pulse fiber laser light source 100b when the optical pulse LP that is output light is emitted from the pulse fiber laser light source 100b shown in FIG. A specific operation of the pulse fiber laser light source 100b will be described with reference to FIGS.
 まず、ポンプ用LD101は、電源1005により駆動され、ポンプ用LD101に入力電流ICが注入され、ポンプ用LD101から出射されるレーザ光(図示せず)が、励起光としてパルスファイバレーザ光源100bを励起する(ステップS1)。ここで、励起用のレーザ光源であるポンプ用LD101として、例えば、発振波長975nmのシングルエミッターレーザダイオードを3個使用しており、ポンプ用LD101の最大出力は8Wである。 First, the pump LD 101 is driven by a power source 1005, an input current IC is injected into the pump LD 101, and laser light (not shown) emitted from the pump LD 101 excites the pulse fiber laser light source 100b as excitation light. (Step S1). Here, for example, three single-emitter laser diodes having an oscillation wavelength of 975 nm are used as the pump LD 101 which is an excitation laser light source, and the maximum output of the pump LD 101 is 8 W.
 次に、励起光が、パルスファイバレーザ光源100bのレーザ活性物質を励起する(ステップS2)。ここで、第1ファイバ103及び第2ファイバ106は、コア部分に、例えば、希土類の元素としてYb(イッテルビウム)をドープしてレーザ活性物質としたファイバ長10mのものであり、第1ファイバ103及び第2ファイバ106を挟んでレーザ共振器のミラーに相当する1組のファイバグレーティング102、104が設けられている。 Next, the excitation light excites the laser active substance of the pulse fiber laser light source 100b (step S2). Here, the first fiber 103 and the second fiber 106 are fibers having a fiber length of 10 m in which the core portion is doped with, for example, Yb (ytterbium) as a rare earth element to form a laser active material. A pair of fiber gratings 102 and 104 corresponding to the mirrors of the laser resonator are provided with the second fiber 106 interposed therebetween.
 また、1組のファイバグレーティング102、104のうち、入射側のファイバグレーティング102のコア部分には、例えば、ゲルマニウムが添加されており、紫外光に対する感度を向上させてグレーティングが形成しやすいようにしている。また、ファイバグレーティング102は、レーザ共振器のミラーとして、例えば、中心波長1064nm、反射スペクトル半値幅1nm及び反射率98%という特性を持つように形成されている。 In addition, for example, germanium is added to the core portion of the fiber grating 102 on the incident side of the pair of fiber gratings 102 and 104 to improve sensitivity to ultraviolet light so that the grating can be easily formed. Yes. Further, the fiber grating 102 is formed as a laser resonator mirror so as to have, for example, a center wavelength of 1064 nm, a reflection spectrum half width of 1 nm, and a reflectance of 98%.
 一方、出射側のファイバグレーティング104のコア部分には、例えばゲルマニウムが同様に添加されており、ファイバグレーティング104は、レーザ共振器のミラーとして、中心波長1064nm、反射スペクトル半値幅0.05nm及び反射率10%または15%という特性を持つように形成されている。 On the other hand, for example, germanium is similarly added to the core portion of the fiber grating 104 on the emission side, and the fiber grating 104 serves as a mirror of the laser resonator, with a center wavelength of 1064 nm, a reflection spectrum half width of 0.05 nm, and a reflectance. It is formed to have a characteristic of 10% or 15%.
 このような1組のファイバグレーティング102、104から、SHGモジュール110への基本波を発生させる場合には、SHGモジュール110内における高調波への波長変換効率を考慮すると、ファイバグレーティング102、104の反射スペクトル幅は0.01nm以上且つ0.06nm以下であることが望ましい。なお、この範囲内でパルスファイバレーザ光源100bが安定にパルス発振していることを確認している。 When generating a fundamental wave from such a pair of fiber gratings 102 and 104 to the SHG module 110, the reflection of the fiber gratings 102 and 104 is considered in consideration of the wavelength conversion efficiency to the harmonics in the SHG module 110. The spectral width is desirably 0.01 nm or more and 0.06 nm or less. It has been confirmed that the pulse fiber laser light source 100b stably oscillates within this range.
 次に、上記のように構成されたパルスファイバレーザ光源100bから光パルスLPが出射される(ステップS3)。このとき、励起光により、パルスファイバレーザ光源100bのレーザ活性物質が、基本波を発振する波長に相当するエネルギー準位に励起され、反転分布が生じる。そして、誘導放出が生じ、基本波は、1組のファイバグレーティング102、104をレーザ共振器のミラーとして、第1ファイバ103及び第2ファイバ106の中で増幅されながら往復し、出射側のファイバグレーティング104から光パルスLPが出射することとなる。 Next, the optical pulse LP is emitted from the pulse fiber laser light source 100b configured as described above (step S3). At this time, the laser active substance of the pulse fiber laser light source 100b is excited by the excitation light to an energy level corresponding to the wavelength for oscillating the fundamental wave, and an inversion distribution is generated. Then, stimulated emission occurs, and the fundamental wave reciprocates while being amplified in the first fiber 103 and the second fiber 106 using the pair of fiber gratings 102 and 104 as mirrors of the laser resonator, and the output side fiber grating. The light pulse LP is emitted from 104.
 次に、検出部1003は、光パルスLPの一部を検知し、制御部1004は、電源1005を制御してポンプ用LD101に供給される入力電流ICを遮断する(ステップS4)。すなわち、パルスファイバレーザ光源100bから出射される出力光である光パルスLPの一部をハーフミラー1002により分岐し、検出部1003により検出する。検出部1003の検出信号DSは、所定の配線を介して制御部1004に伝達されることにより、制御部1004は、ポンプ用LD101を駆動する電源1005を遮断して入力電流ICを遮断する。そうすると、ポンプ用LD101から第1ファイバ103に入射する励起光が遮断されるので、パルスファイバレーザ光源100bからの出力光が遮断される。 Next, the detection unit 1003 detects a part of the light pulse LP, and the control unit 1004 controls the power supply 1005 to cut off the input current IC supplied to the pump LD 101 (step S4). That is, a part of the optical pulse LP that is output light emitted from the pulse fiber laser light source 100 b is branched by the half mirror 1002 and detected by the detection unit 1003. The detection signal DS of the detection unit 1003 is transmitted to the control unit 1004 via a predetermined wiring, whereby the control unit 1004 cuts off the power source 1005 that drives the pump LD 101 and cuts off the input current IC. If it does so, since the excitation light which injects into the 1st fiber 103 from the LD 101 for pumps will be interrupted | blocked, the output light from the pulse fiber laser light source 100b will be interrupted | blocked.
 最後に、上述のステップS1からS4までの処理を繰返すことにより、光パルスLPが単一の光パルスではなく、光パルス列として出射される(ステップS5)。このようにして、所定の周期の連続した光パルス列を出射することができる。 Finally, by repeating the above steps S1 to S4, the light pulse LP is emitted as an optical pulse train instead of a single light pulse (step S5). In this way, a continuous optical pulse train having a predetermined cycle can be emitted.
 ところで、出力光の光パルスLPのほとんどは、ハーフミラー1002を通過してSHGモジュール110へ基本波として入射する。ここで、SHGモジュール110は、例えば、周期的に分極反転構造を有するMgO:LiNbO(酸化マグネシウムを添加したニオブ酸リチウム)、KTP(リン酸チタニルカリウム)、又は、MgO:LiTaO(マグネシウムを添加したタンタル酸リチウム)などを用いている。 By the way, most of the optical pulse LP of the output light passes through the half mirror 1002 and enters the SHG module 110 as a fundamental wave. Here, the SHG module 110 includes, for example, MgO: LiNbO 3 (lithium niobate added with magnesium oxide), KTP (potassium titanyl phosphate), or MgO: LiTaO 3 (magnesium) having a periodically poled structure. For example, added lithium tantalate).
 このようなSHGモジュール110を用いて、基本波としての光パルスLPは、高調波光としての光パルスSPに波長変換される。この場合、SHGモジュール110は、2次の非線形光学効果により波長変換を行うので、基本波の光パルスLPの発振波長のスペクトル幅が狭いほど、また、ピークパワーが大きいほど、変換効率が向上することになり、結果として、波長変換レーザ光源1000は、低消費電力で動作することになる。なお、本実施の形態では、基本波として、ピークパワーが200W、発振波長が1064nmの光パルスLPを用いて、高調波として、ピークパワーが120W、発振波長が532nmの緑色の光パルスSPが得られている。 Using such an SHG module 110, the optical pulse LP as a fundamental wave is wavelength-converted to an optical pulse SP as harmonic light. In this case, since the SHG module 110 performs wavelength conversion by the second-order nonlinear optical effect, the conversion efficiency improves as the spectrum width of the oscillation wavelength of the fundamental light pulse LP is narrower and the peak power is larger. As a result, the wavelength conversion laser light source 1000 operates with low power consumption. In this embodiment, an optical pulse LP having a peak power of 200 W and an oscillation wavelength of 1064 nm is used as a fundamental wave, and a green optical pulse SP having a peak power of 120 W and an oscillation wavelength of 532 nm is obtained as a harmonic. It has been.
 また、ポンプ用LD101に矩形のパルス電流を入力電流として供給したときに、パルスファイバレーザ光源100bからの出力光LPの光出力の過渡応答特性は、第1の実施の形態で説明に使用した図2を用いて、第1の実施の形態と同様に説明することができ、このときの時間軸に対する入力電流及び光出力の変化は、図2と同様になる。 Further, the transient response characteristic of the optical output of the output light LP from the pulse fiber laser light source 100b when a rectangular pulse current is supplied as an input current to the pump LD 101 is a diagram used in the description of the first embodiment. 2 can be used in the same way as in the first embodiment, and the changes in the input current and the optical output with respect to the time axis at this time are the same as in FIG.
 すなわち、第1の実施の形態でも説明したように、矩形の入力電流ICによりポンプ用LD101を駆動して励起光を入射すると、T1時間後に、光出力として、光パルスLPの第1ピークP1が発生する。さらに、入力電流ICを注入し続けると、T2時間後に、第2ピークP2が発生する。以下過渡応答のピークが発生した後に、光出力は、矩形の入力電流ICの電流値Isに対応した光出力の定常値Psを示すことになる。 That is, as described in the first embodiment, when the pump LD 101 is driven by the rectangular input current IC and the excitation light is incident, the first peak P1 of the light pulse LP is obtained as an optical output after T1 time. appear. Furthermore, if the input current IC is continuously injected, the second peak P2 occurs after T2 time. Hereinafter, after the peak of the transient response occurs, the light output indicates the steady value Ps of the light output corresponding to the current value Is of the rectangular input current IC.
 本実施の形態のパルスファイバレーザ光源100bは、図2の光パルスLPの第1ピークP1が発生したことを検出部1003により検知して入力電流ICを遮断するので、光出力として、第1ピークP1のみの単一のピークをもつ光パルスLPを出射することができる。 Since the pulse fiber laser light source 100b of the present embodiment detects that the first peak P1 of the optical pulse LP of FIG. 2 has occurred by the detection unit 1003 and cuts off the input current IC, the first peak is used as the optical output. An optical pulse LP having a single peak of only P1 can be emitted.
 具体的には、検出部1003は、光パルスLPの第1ピークP1の出力ピーク値PLを検出した後(図7参照)、光パルスLPの出力値が出力ピーク値PLの95%から5%までの範囲の値、例えば、95%以下に低下したことを検出し、このとき、制御部1004は、電源1005からの入力電流ICを遮断することが好ましい。このような構成とすることにより、光パルスLPとして、2ndパルスを付随しない単一の高出力ピーク値をもつ光パルスを発生することができ、パルス列を発生することもできる。 Specifically, the detection unit 1003 detects the output peak value PL of the first peak P1 of the light pulse LP (see FIG. 7), and then the output value of the light pulse LP is 95% to 5% of the output peak value PL. It is preferable that the control unit 1004 cuts off the input current IC from the power supply 1005 at this time. With such a configuration, an optical pulse having a single high output peak value not accompanied by a 2nd pulse can be generated as the optical pulse LP, and a pulse train can also be generated.
 また、光パルスLPの出力値が出力ピーク値PLの95%から5%までの範囲の値に低下したことを検出することにより、入力電流ICを遮断するタイミングや設定が容易になり、波長変換レーザ光源1000の動作を簡略化することができる。また、このような構成とすることにより、パルスファイバレーザ光源100bを励起する励起光を瞬時に停止することができるので、光パルスLPを、確実に2ndパルスを付随しない単一の高出力ピーク値をもつ光パルスを基本単位としたパルス列として発生することができる。 In addition, by detecting that the output value of the optical pulse LP has fallen to a value in the range of 95% to 5% of the output peak value PL, the timing and setting for cutting off the input current IC can be facilitated, and wavelength conversion can be performed. The operation of the laser light source 1000 can be simplified. Also, with such a configuration, the excitation light for exciting the pulse fiber laser light source 100b can be stopped instantaneously, so that the optical pulse LP is reliably supplied with a single high output peak value not accompanied by a 2nd pulse. Can be generated as a pulse train whose basic unit is an optical pulse having
 なお、光パルスが発生したことを検知して電流の供給を停止する波長変換レーザ光源の構成は、上記の例に特に限定されず、種々の変更が可能である。図15は、本発明の第2の実施の形態による他の波長変換レーザ光源の構成を示す概略図である。 It should be noted that the configuration of the wavelength conversion laser light source that detects the occurrence of an optical pulse and stops the supply of current is not particularly limited to the above example, and various modifications are possible. FIG. 15 is a schematic diagram showing the configuration of another wavelength conversion laser light source according to the second embodiment of the present invention.
 図15に示す波長変換レーザ光源1200は、図13に示す波長変換レーザ光源1000と異なり、分岐ファイバ1202が第1ファイバ103の途中に光学的に接続され、検出部1003の他に、検出部1201が分岐ファイバ1202の近傍に配置されている。このとき、検出部1201は、パルスファイバレーザ光源100cの基本波の一部を分岐ファイバ1202の一部から取り出して検出し、制御部1004は、検出部1201からの検出信号DDを受信し、電源1005からポンプ用LD101へ出力される入力電流ICを制御している。なお、この場合、検出部1003を省略してもよい。 A wavelength conversion laser light source 1200 shown in FIG. 15 is different from the wavelength conversion laser light source 1000 shown in FIG. 13 in that a branch fiber 1202 is optically connected in the middle of the first fiber 103, and in addition to the detection unit 1003, a detection unit 1201. Is arranged in the vicinity of the branch fiber 1202. At this time, the detection unit 1201 extracts and detects a part of the fundamental wave of the pulse fiber laser light source 100c from a part of the branch fiber 1202, and the control unit 1004 receives the detection signal DD from the detection unit 1201, An input current IC output from 1005 to the pump LD 101 is controlled. In this case, the detection unit 1003 may be omitted.
 このような構成とすることにより、ピーク値を含む光パルスLPの発生を的確に把握することができるので、さらに簡単な装置の構成で単一の高出力ピーク値をもつ光パルスLPをパルス列として発生することができる。なお、検出部1201は、分岐ファイバ1202の一部に組み込んで配置してもよい。 With such a configuration, it is possible to accurately grasp the generation of the optical pulse LP including the peak value, so that the optical pulse LP having a single high output peak value can be used as a pulse train with a simpler device configuration. Can be generated. The detection unit 1201 may be arranged by being incorporated in a part of the branch fiber 1202.
 また、図15に示す波長変換レーザ光源1200は、図13に示す波長変換レーザ光源1000と異なり、レーザ光源であるポンプ用LD101は、複数のレーザ光源101a、101b、101cから構成され、複数のレーザ光源101a、101b、101cの一端は、それぞれ結合ファイバ101dの一端に接続され、各結合ファイバ101dの他端は、コンバイナ1203により1組のファイバグレーティングのうちの入力側のファイバグレーティング102の入力端部に結合されている。このような構成とすることにより、励起光の光出力を所定の大きさに高めることができるので、光パルスLPを、さらに高出力の光パルスを基本単位としたパルス列として発生することができる。 Further, the wavelength conversion laser light source 1200 shown in FIG. 15 is different from the wavelength conversion laser light source 1000 shown in FIG. 13, and the pump LD 101 that is a laser light source is composed of a plurality of laser light sources 101 a, 101 b, 101 c, and a plurality of lasers. One end of each of the light sources 101a, 101b, and 101c is connected to one end of a coupling fiber 101d, and the other end of each coupling fiber 101d is connected to the input end of the fiber grating 102 on the input side of a set of fiber gratings by a combiner 1203. Is bound to. With such a configuration, the optical output of the pumping light can be increased to a predetermined magnitude, so that the optical pulse LP can be generated as a pulse train having a higher output optical pulse as a basic unit.
 さらに、図15に示す波長変換レーザ光源1200は、図13に示す波長変換レーザ光源1000と異なり、レーザ光の偏波面を選択する偏波面選択部1204が第2ファイバ106の出力端側に配置されている。このような構成とすることにより、光パルスLPを、さらに偏光面の揃った光パルスを基本単位としたパルス列として発生することができる。そうすると、SHGモジュール110において波長変換を行う際に変換効率を高めることができるだけでなく、偏光面の揃った高調波光SPを出力することができるので、液晶表示装置などの光源として最適である。 Further, the wavelength conversion laser light source 1200 shown in FIG. 15 is different from the wavelength conversion laser light source 1000 shown in FIG. 13 in that a polarization plane selection unit 1204 that selects the polarization plane of the laser light is arranged on the output end side of the second fiber 106. ing. With such a configuration, the light pulse LP can be generated as a pulse train having a light pulse with a uniform polarization plane as a basic unit. Then, when performing wavelength conversion in the SHG module 110, not only can the conversion efficiency be improved, but also the harmonic light SP with a uniform polarization plane can be output, which is optimal as a light source for a liquid crystal display device or the like.
 ところで、上記の波長変換レーザ光源1000、1200から、さらにピーク値の大きい光パルスLP及び高調波光SPを得ることは、入力電流ICの波形を工夫することにより実現できる。図16は、入力電流ICのパルス電流の波形を上段に示し、この入力電流ICの形状を有するパルス電流でポンプ用LD101を駆動し、ポンプ用LD101から発生した励起光で励起されたパルスファイバレーザ光源100b(又は100c)からの光出力である光パルスLPの波形を下段に示している。 By the way, obtaining the light pulse LP and the harmonic light SP having larger peak values from the wavelength conversion laser light sources 1000 and 1200 can be realized by devising the waveform of the input current IC. FIG. 16 shows the waveform of the pulse current of the input current IC on the upper stage, and the pump LD 101 is driven by the pulse current having the shape of the input current IC and is pumped by the pumping light generated from the pump LD 101. The waveform of the light pulse LP, which is the light output from the light source 100b (or 100c), is shown in the lower part.
 図16の上段に示すように、入力電流ICは、時間的に電流値I1から電流値(I2+I3)に単調に増加する台形波からなるパルス電流である。このパルス電流は、直流電流として電流値I3だけバイアスされている。このように、パルス電流を遮断する直前に電流値を最大にすることで、図16の下段に示すように、光出力として、2ndパルスを付随しない単一の高出力ピーク値P1をもつ光パルスLPを出力することが可能となる。また、図16の上段に示した電流波形を繰り返しポンプ用LD101に入力することにより、図16の下段に示す光パルスを基本単位としたパルス列を発生することができる。なお、パルス電流は、電流値が単調に増加する三角波(I1=I3の状態)であってもよい。 As shown in the upper part of FIG. 16, the input current IC is a pulse current composed of a trapezoidal wave that monotonously increases from the current value I1 to the current value (I2 + I3) over time. This pulse current is biased by a current value I3 as a direct current. In this way, by maximizing the current value immediately before cutting off the pulse current, as shown in the lower part of FIG. 16, the optical pulse having a single high output peak value P1 not accompanied by the 2nd pulse as the optical output. LP can be output. Further, by repeatedly inputting the current waveform shown in the upper part of FIG. 16 to the LD 101 for the pump, a pulse train having the optical pulse shown in the lower part of FIG. 16 as a basic unit can be generated. Note that the pulse current may be a triangular wave (state of I1 = I3) in which the current value increases monotonously.
 (第3の実施の形態)
 図17は、本発明の第3の実施の形態における波長変換レーザ光源の構成を示す概略図である。本実施の形態では、第1の実施の形態で提案したパルスファイバレーザ光源100からの光パルスLP1をシード光とし、さらにファイバアンプ1400でシード光を増幅することにより、ピークパワーをさらに増幅できる構成(Master Oscillator - Power Amplifier)となっている。なお、本実施の形態に用いられるパルスファイバレーザ光源は、上記の例に特に限定されず、他のパルスファイバレーザ光源を用いてもよい。この点に関して他の実施の形態も同様である。
(Third embodiment)
FIG. 17 is a schematic diagram showing a configuration of a wavelength conversion laser light source according to the third embodiment of the present invention. In this embodiment, the optical power LP1 from the pulse fiber laser light source 100 proposed in the first embodiment is used as seed light, and the seed light is further amplified by the fiber amplifier 1400, whereby the peak power can be further amplified. (Master Oscillator-Power Amplifier). The pulse fiber laser light source used in the present embodiment is not particularly limited to the above example, and other pulse fiber laser light sources may be used. This is the same for the other embodiments.
 本実施の形態では、パルスファイバレーザ光源100から発生した出力光LP2を非線形光学結晶からなるSHGモジュール110による波長変換に用いるため、直線偏光となっている必要がある。そのため、ファイバアンプ1400に用いる第3ファイバ1401も、コア部分に希土類としてYbをドープしたダブルクラッド偏波保持ファイバとなっている必要がある。 In this embodiment, since the output light LP2 generated from the pulse fiber laser light source 100 is used for wavelength conversion by the SHG module 110 made of a nonlinear optical crystal, it needs to be linearly polarized light. Therefore, the third fiber 1401 used in the fiber amplifier 1400 also needs to be a double clad polarization maintaining fiber in which the core portion is doped with Yb as a rare earth.
 また、パルスファイバレーザ光源100と、ファイバアンプ1400の第3ファイバ1401とは、シグナル光を導入するポートが設けられたコンバイナ1402により接続されている。コンバイナ1402には、ファイバアンプ1400を励起する複数のポンプ用LD1403も接続されている。 The pulse fiber laser light source 100 and the third fiber 1401 of the fiber amplifier 1400 are connected by a combiner 1402 provided with a port for introducing signal light. A plurality of pump LDs 1403 for exciting the fiber amplifier 1400 are also connected to the combiner 1402.
 一方、ファイバアンプ1400を使用する際、ポンプ用LD1403を連続的に励起すると、ASE(Amplitude Spontaneous Emission)と呼ばれるブロードな波長スペクトルを持つ光が発生し、予期しないジャイアントパルスを引き起こす原因となる。このため、シード光を発生するパルスファイバレーザ光源100を駆動するパルスジェネレータ402の信号TGをトリガにして、パルスジェネレータ1405及びLD電源1404により、ファイバアンプ1400のポンプ用LD1403を変調することも、本実施の形態の特徴となっている。 On the other hand, when the fiber amplifier 1400 is used, if the pump LD 1403 is continuously excited, light having a broad wavelength spectrum called ASE (Amplitude Spontaneous Emission) is generated, which causes an unexpected giant pulse. Therefore, the pulse generator 1405 and the LD power source 1404 can modulate the pump LD 1403 of the fiber amplifier 1400 using the signal TG of the pulse generator 402 that drives the pulse fiber laser light source 100 that generates seed light as a trigger. This is a feature of the embodiment.
 図18は、図17に示す波長変換レーザ光源のファイバアンプ1400の出力光波形、パルスファイバレーザ光源100のシード光出力波形、ファイバアンプ1400のポンプ用LD1403の電流波形、及びパルスファイバレーザ光源100のシード光用のポンプ用LD101の電流波形を示している。 18 shows the output light waveform of the fiber amplifier 1400 of the wavelength conversion laser light source shown in FIG. 17, the seed light output waveform of the pulse fiber laser light source 100, the current waveform of the pump LD 1403 of the fiber amplifier 1400, and the pulse fiber laser light source 100. The current waveform of the pump LD 101 for seed light is shown.
 図18に示すように、シード光を発生させるパルスファイバレーザ光源100は、第1の実施の形態と同様に、立ち上がり速度5ns、パルス幅300ns、及びパルス間隔10μsとなるように、電流波形を変調している。一方、ファイバアンプ1400のポンプ用LD1403を駆動する電流波形としては、ポンプ用LD101の電流の立ち下がりを検出し、パルス間隔10μs及びデューティー比50%の電流波形を用いている。具体的には、ファイバアンプ1400のポンプ用LD1403を駆動する電流波形は、ポンプ用LD101の電流の立ち下がりから5μs後に、ファイバアンプ1400を励起するLD電流をポンプ用LD1403に印加するという波形になっている。 As shown in FIG. 18, the pulsed fiber laser light source 100 that generates seed light modulates the current waveform so that the rising speed is 5 ns, the pulse width is 300 ns, and the pulse interval is 10 μs, as in the first embodiment. is doing. On the other hand, as a current waveform for driving the pump LD 1403 of the fiber amplifier 1400, a current waveform having a pulse interval of 10 μs and a duty ratio of 50% is used by detecting the falling of the current of the pump LD 101. Specifically, the current waveform for driving the pump LD 1403 of the fiber amplifier 1400 is a waveform in which the LD current for exciting the fiber amplifier 1400 is applied to the pump LD 1403 after 5 μs from the falling of the current of the pump LD 101. ing.
 なお、図18に示す例では、シード光を出力するパルスファイバレーザ光源100を駆動するポンプ用LD101の電流波形の立ち下がりタイミングD2と、ファイバアンプ1400を駆動するポンプ用LD1403の電流波形の立ち下がりタイミングD1とを一致させているが、ファイバアンプ1400を駆動するポンプ用LD1403の電流波形の立ち下がりタイミングD1を、シード光を出力するパルスファイバレーザ光源100を駆動するポンプ用LD101の電流波形の立ち下がりタイミングD2より1~5ns早めておくこと(位相をシフトさせること)で、ファイバアンプ1400からの出力光波形における立ち下がり時の裾DSを小さくすることができる。このように立ち下がり時の裾DSを小さくすることは、例えば、スキャニングミラーを使用してレーザ加工する際に、加工速度及び加工精度を高めることにおいて重要な意味を持つ。 In the example shown in FIG. 18, the falling timing D2 of the current waveform of the pump LD 101 that drives the pulse fiber laser light source 100 that outputs the seed light and the falling waveform of the current waveform of the pump LD 1403 that drives the fiber amplifier 1400 are shown. Although the timing D1 is matched, the falling timing D1 of the current waveform of the pump LD 1403 that drives the fiber amplifier 1400 is set to the rising timing D1 of the current waveform of the pump LD 101 that drives the pulse fiber laser light source 100 that outputs seed light. By setting the phase 1 to 5 ns earlier than the falling timing D2 (shifting the phase), the trailing edge DS of the output optical waveform from the fiber amplifier 1400 can be reduced. Thus, reducing the skirt DS at the time of falling has an important meaning in increasing the processing speed and processing accuracy, for example, when performing laser processing using a scanning mirror.
 この構成により、本実施の形態では、第1の実施の形態に示したパルスファイバレーザ光源の5~10倍のピークパワーを得ることができ、5kW程度のピークパワーを有する1064nm光を得ることができた。この1064nm光は、SHGモジュール110に非線形光学結晶を用いた波長変換により、2~3kW程度のピークパワーを持つ緑色光へ変換される。このパルスグリーンレーザ光は、金属のレーザトリミング等を行うことができるピークパワーを持っていることになる。 With this configuration, in this embodiment, a peak power 5 to 10 times that of the pulse fiber laser light source shown in the first embodiment can be obtained, and a 1064 nm light having a peak power of about 5 kW can be obtained. did it. This 1064 nm light is converted into green light having a peak power of about 2 to 3 kW by wavelength conversion using a nonlinear optical crystal in the SHG module 110. This pulse green laser beam has a peak power capable of performing metal laser trimming and the like.
 また、本実施の形態で説明した、パルスファイバレーザ光源100とファイバアンプ1400との組み合わせにより、ポンプ用LD101、1403からの発熱を小さくすることができるため、放熱構造を簡単な構造にできるという利点もある。すなわち、本実施の形態の場合、ポンプ用LD101、1403は、常時点灯しているわけではないため、アルミニウム製のヒートシンクに固定され、外気を冷却ファンで強制的に吹き付けるだけで動作が可能である。この結果、従来のYAGレーザ、YVOレーザのような水冷機構が不要となり、低消費電力化が可能である。本実施の形態の構成では、0~60℃の範囲で安定的に動作させることができた。 In addition, the combination of the pulse fiber laser light source 100 and the fiber amplifier 1400 described in the present embodiment can reduce the heat generated from the pump LDs 101 and 1403, and thus the heat dissipation structure can be simplified. There is also. In other words, in the case of the present embodiment, the pump LDs 101 and 1403 are not always lit, so they are fixed to an aluminum heat sink and can be operated simply by forcing the outside air with a cooling fan. . As a result, a water cooling mechanism such as the conventional YAG laser and YVO 4 laser becomes unnecessary, and the power consumption can be reduced. With the configuration of the present embodiment, it was possible to operate stably in the range of 0 to 60 ° C.
 (第4の実施の形態)
 図19は、本発明の第4の実施の形態における波長変換レーザ光源の構成を示す概略図である。本実施の形態では、第1の実施の形態に示した構成のパルスファイバレーザ光源100から発生した赤外光をQPM-LN素子で波長変換する場合の課題とその解決方法について説明する。QPM-LN素子は、大きな非線形光学定数を持つことから、基本波から高調波への変換効率を大きくすることができるが、その大きな非線形光学定数が原因となり、基本波となる赤外光と、変換された緑色光(第2高調波)との和周波である紫外光(第3高調波)が位相整合条件からはずれた場合においても発生する。この紫外光により、緑色光の吸収を引き起こし、緑色高出力の飽和及び結晶破壊を引き起こすという課題を持っている。本実施の形態では、この課題を以下のようにして解決している。
(Fourth embodiment)
FIG. 19 is a schematic diagram showing a configuration of a wavelength conversion laser light source according to the fourth embodiment of the present invention. In the present embodiment, a problem when infrared light generated from the pulse fiber laser light source 100 having the configuration shown in the first embodiment is wavelength-converted by a QPM-LN element and a solution to the problem will be described. Since the QPM-LN element has a large nonlinear optical constant, the conversion efficiency from the fundamental wave to the harmonic can be increased. However, the infrared light that becomes the fundamental wave due to the large nonlinear optical constant, It occurs even when ultraviolet light (third harmonic), which is the sum frequency of the converted green light (second harmonic), deviates from the phase matching condition. This ultraviolet light has the problem of causing green light absorption, causing green high power saturation and crystal breakage. In the present embodiment, this problem is solved as follows.
 図19に示すように、波長変換部1600では、パルスファイバレーザ光源100から発せられた基本波BLは、集光レンズ1604で波長変換素子1601に集光され、波長変換素子1601から出射した光は、再コリメートレンズ1605で平行光とされ、ダイクロイックミラー1606で、残った基本波と、変換された第2高調波SLとに分離される構成となっている。また、波長変換素子1601としては、素子長25mmの分極反転構造を有するMg:LiNbO素子を使用している。波長変換素子1601の温度は、ペルチェ素子1602で管理されており、位相整合温度を保つようになっている。 As shown in FIG. 19, in the wavelength conversion unit 1600, the fundamental wave BL emitted from the pulse fiber laser light source 100 is condensed on the wavelength conversion element 1601 by the condenser lens 1604, and the light emitted from the wavelength conversion element 1601 is The collimated lens 1605 converts the light into parallel light, and the dichroic mirror 1606 separates the remaining fundamental wave into the converted second harmonic SL. As the wavelength conversion element 1601, an Mg: LiNbO 3 element having a polarization inversion structure with an element length of 25 mm is used. The temperature of the wavelength conversion element 1601 is managed by the Peltier element 1602, and the phase matching temperature is maintained.
 図20は、従来の波長変換素子における基本波の集光位置を示す模式図であるが、基本波を発生するパルスファイバレーザ光源からの基本波BLを集光レンズ604で波長変換素子601に集光する。このとき、ビームの焦点F2は、波長変換素子601の中央とすることが一般的であった。一方、本実施の形態では、図19に示すように、焦点F1の位置を波長変換素子1601の端面近傍に配置することにより、結晶破壊を防止する方法を提案している。 FIG. 20 is a schematic diagram showing the condensing position of the fundamental wave in the conventional wavelength conversion element. The fundamental wave BL from the pulse fiber laser light source that generates the fundamental wave is collected in the wavelength conversion element 601 by the condenser lens 604. Shine. At this time, the focal point F2 of the beam is generally at the center of the wavelength conversion element 601. On the other hand, in the present embodiment, as shown in FIG. 19, a method of preventing crystal breakage by arranging the position of the focal point F1 in the vicinity of the end face of the wavelength conversion element 1601 is proposed.
 図21は、基本波BLの集光位置をパラメータL1(mm)として、波長変換素子1601の中心位置からの位置(mm)と基本波パワー密度(W/μm)との関係を示している。パラメータL1は、波長変換素子1601の左側端面(基本波BLの入射側端面)から焦点位置F1までの距離を示している。図21から、想定した集光位置で基本波のパワー密度が最も大きくなっていることが分かる。 FIG. 21 shows the relationship between the position (mm) from the center position of the wavelength conversion element 1601 and the fundamental wave power density (W / μm 2 ) with the condensing position of the fundamental wave BL as parameter L1 (mm). . The parameter L1 indicates the distance from the left end face (incident side end face of the fundamental wave BL) of the wavelength conversion element 1601 to the focal position F1. From FIG. 21, it can be seen that the power density of the fundamental wave is the highest at the assumed condensing position.
 この結果より、さらに、基本波BLの集光位置をパラメータL1(mm)として、紫外光である第3高調波のパワー密度の目安として、波長変換素子1601の中心位置からの位置(mm)に対する(第2高調波のパワー密度×基本波パワー密度)(任意単位)をプロットした図が、図22である。図22から、紫外光の強度は、集光位置L1を10mm以上とした場合、急激に大きくなることが分かる。この結果より、基本波の集光位置は、波長変換素子1601の端面より10mm以下の値とすることが望ましいことが分かる。同様に、波長変換素子1601の長さは、0~10mmであること望ましいことが分かる。なお、上記の意味で、波長変換素子1601の素子長を10mm以下とする構成を取ることが好ましいが、波長変換効率の低減を考慮して、素子長を20~30mm程度にしてもよい。 From this result, the focusing position of the fundamental wave BL is further set as the parameter L1 (mm), and as a measure of the power density of the third harmonic wave, which is ultraviolet light, with respect to the position (mm) from the center position of the wavelength conversion element 1601. FIG. 22 is a diagram in which (second harmonic power density × fundamental wave power density) (arbitrary unit) is plotted. From FIG. 22, it can be seen that the intensity of the ultraviolet light increases rapidly when the condensing position L1 is 10 mm or more. From this result, it can be seen that the condensing position of the fundamental wave is preferably 10 mm or less from the end face of the wavelength conversion element 1601. Similarly, it can be seen that the length of the wavelength conversion element 1601 is preferably 0 to 10 mm. In this sense, it is preferable that the wavelength conversion element 1601 has an element length of 10 mm or less. However, the element length may be set to about 20 to 30 mm in consideration of a reduction in wavelength conversion efficiency.
 図23は、従来例である、波長変換素子の中央(L1=12.5mm)で集光した場合と、本実施の形態のように、L1=0mmで集光した場合とにおける、基本波である赤外入力(W)に対する、第2高調波である緑色出力(W)の入出力特性をプロットした図である。図23から、従来例では、第2高調波出力が3Wとなるあたりで出力飽和が発生しているが、本実施の形態(L1=0mm)では、変換効率が6割程度となっているものの、第2高調波出力を4Wまで出力しても、出力飽和が観測されず、良好な結果が得られている。 FIG. 23 is a fundamental wave in the case where light is condensed at the center of the wavelength conversion element (L1 = 12.5 mm) and in the case where light is condensed at L1 = 0 mm as in the present embodiment. It is the figure which plotted the input-output characteristic of the green output (W) which is a 2nd harmonic with respect to a certain infrared input (W). From FIG. 23, in the conventional example, output saturation occurs when the second harmonic output becomes 3 W, but in this embodiment (L1 = 0 mm), the conversion efficiency is about 60%. Even when the second harmonic output is output up to 4 W, output saturation is not observed, and good results are obtained.
 上記のように、分極反転構造を有するMg:LiNbO素子に代表されるような大きな非線形光学定数、例えば、実効的非線形光学定数deff=10pm/V以上となる非線形光学結晶からなる波長変換素子を用いる場合、本実施の形態で提案しているような基本波光のピークパワーがkW以上と大きなパルスファイバレーザ光源100では、緑色高出力の飽和及び結晶破壊を防止するために、基本波の集光位置は、波長変換素子の入射側端面から0~10mmの位置であること、及び、波長変換素子の長さは、0~10mmであることが特に有効である。 As described above, a wavelength conversion element made of a nonlinear optical crystal having a large nonlinear optical constant represented by an Mg: LiNbO 3 element having a domain-inverted structure, for example, an effective nonlinear optical constant diff = 10 pm / V or more is used. When used, in the pulsed fiber laser light source 100 having a peak power of the fundamental wave light as large as kW or more as proposed in the present embodiment, the fundamental wave is condensed in order to prevent saturation of high green output and crystal breakdown. It is particularly effective that the position is a position of 0 to 10 mm from the incident side end face of the wavelength conversion element, and the length of the wavelength conversion element is 0 to 10 mm.
 (第5の実施の形態)
 図24は、本発明の第5の実施の形態における波長変換レーザ光源1900の構成を示す概略図であり、図25は、図24に示す波長変換レーザ光源1900において、基本波レーザ光の主光線MLのみを示し、基本波レーザ光が波長変換素子1905への入射角を変化させながら通過する様子を説明するための模式図である。なお、本実施の形態では、図24に示す基本波レーザ光源1901として、第1の実施の形態で提案したパルスファイバレーザ光源100を用いているが、上記の例に特に限定されず、他のパルスファイバレーザ光源を用いてもよい。
(Fifth embodiment)
FIG. 24 is a schematic diagram showing a configuration of a wavelength conversion laser light source 1900 according to the fifth embodiment of the present invention. FIG. 25 is a principal ray of a fundamental laser beam in the wavelength conversion laser light source 1900 shown in FIG. FIG. 10 is a schematic diagram illustrating only the ML and explaining how the fundamental laser beam passes while changing the incident angle to the wavelength conversion element 1905; In this embodiment, the pulsed fiber laser light source 100 proposed in the first embodiment is used as the fundamental wave laser light source 1901 shown in FIG. 24. However, the present invention is not particularly limited to the above example. A pulse fiber laser light source may be used.
 基本波レーザ光源1901を出射した基本波レーザ光(パルス光)は、その集光点が集光光学系1902により制御され、第1凹面ミラー1903と第2凹面ミラー1904とからなる反射鏡間に入射する。基本波レーザ光は波長変換素子1905に入射し、その一部が第2高調波に変換される(1パス目)。 The condensing point of the fundamental laser light (pulse light) emitted from the fundamental laser light source 1901 is controlled by the condensing optical system 1902, and between the reflecting mirrors composed of the first concave mirror 1903 and the second concave mirror 1904. Incident. The fundamental laser beam is incident on the wavelength conversion element 1905, and a part thereof is converted into the second harmonic (first pass).
 ここで、第1凹面ミラー1903は、基本波レーザ光を反射し、第2高調波レーザ光(波長変換レーザ光)を透過するコーティングを有している。基本波レーザ光と第2高調波レーザ光とは、波長変換素子1905を通過した後に第1凹面ミラー1903に達し、基本波レーザ光は、反射されて波長変換素子1905に再入射し、第2高調波レーザ光(波長変換レーザ光)は、外部に出力される。第1凹面ミラー1903を反射した基本波レーザ光は、波長変換素子1905に再入射し、第2高調波に一部変換され、第2凹面ミラー1904に達する(2パス目)。 Here, the first concave mirror 1903 has a coating that reflects the fundamental laser beam and transmits the second harmonic laser beam (wavelength conversion laser beam). The fundamental laser light and the second harmonic laser light pass through the wavelength conversion element 1905 and then reach the first concave mirror 1903, and the fundamental laser light is reflected and reenters the wavelength conversion element 1905, and the second Harmonic laser light (wavelength conversion laser light) is output to the outside. The fundamental laser beam reflected by the first concave mirror 1903 reenters the wavelength conversion element 1905, is partially converted into the second harmonic, and reaches the second concave mirror 1904 (second pass).
 次に、第2凹面ミラー1904では、基本波レーザ光が反射され、波長変換素子1905に再入射して第2高調波に一部変換され、第1凹面ミラー1903に達する(3パス目)。このとき、第1凹面ミラー1903から、第2高調波レーザ光は外部に出力され、基本波レーザ光は、反射されて波長変換素子1905に再入射する(4パス目)。上記の反射及び変換を繰り返すことで、基本波レーザ光が2つの反射鏡間を往復する間に、波長変換素子1905の通過をくり返し、波長変換レーザ光を発生させる。 Next, at the second concave mirror 1904, the fundamental laser beam is reflected, reenters the wavelength conversion element 1905, is partially converted into the second harmonic, and reaches the first concave mirror 1903 (third pass). At this time, the second harmonic laser beam is output from the first concave mirror 1903, and the fundamental laser beam is reflected and reenters the wavelength conversion element 1905 (fourth pass). By repeating the above reflection and conversion, while the fundamental laser beam reciprocates between the two reflecting mirrors, the wavelength conversion element 1905 is repeatedly passed to generate the wavelength conversion laser beam.
 本実施の形態では、反射鏡(第1凹面ミラー1903及び第2凹面ミラー1904)の曲率及び配置条件、並びに集光光学系1902の設定により、基本波レーザ光は、数往復~数十往復した後、反射鏡間の往復を停止する。往復を停止するまでに発生した波長変換レーザ光は、第1凹面ミラー1903から出力される。 In the present embodiment, the fundamental laser beam reciprocates several times to several tens of times depending on the curvature and arrangement conditions of the reflecting mirrors (first concave mirror 1903 and second concave mirror 1904) and the setting of the focusing optical system 1902. Thereafter, the reciprocation between the reflecting mirrors is stopped. The wavelength-converted laser light generated until the reciprocation is stopped is output from the first concave mirror 1903.
 ここで、波長変換素子1905における基本波から第2高調波への変換効率ηは、波長変換素子1905の相互作用長をL、基本波のパワーをP、波長変換素子1905のビーム断面積をA、位相整合条件からのずれをΔkとすると、下記式で表される。 Here, the conversion efficiency η from the fundamental wave to the second harmonic in the wavelength conversion element 1905 is L, the interaction length of the wavelength conversion element 1905 is L, the power of the fundamental wave is P, and the beam cross-sectional area of the wavelength conversion element 1905 is A. When the deviation from the phase matching condition is Δk, it is expressed by the following equation.
 η∝LP/A×sinc(ΔkL) η∝L 2 P / A × sinc 2 (ΔkL)
 上式からわかるように、ビーム断面積が小さい領域で変換効率が高く、波長変換素子1905の通過領域では、ビームウェスト位置BWでの変換効率が著しく高くなる。本実施の形態では、基本波レーザ光が反射鏡(第1凹面ミラー1903及び第2凹面ミラー1904)間で反射している間に、ビームウェスト位置BWが点在するように、集光光学系1902がビームウェスト位置BWを制御している。 As can be seen from the above equation, the conversion efficiency is high in the region where the beam cross-sectional area is small, and the conversion efficiency at the beam waist position BW is remarkably high in the pass region of the wavelength conversion element 1905. In the present embodiment, the condensing optical system is such that the beam waist positions BW are scattered while the fundamental laser beam is reflected between the reflecting mirrors (the first concave mirror 1903 and the second concave mirror 1904). Reference numeral 1902 controls the beam waist position BW.
 ここで、反射鏡間のビームウェスト位置が集中すると、光損傷などによる波長変換素子1905の破壊や、集中した箇所での波長変換が不安定になるという問題が生じる。特に、第1凹面ミラー1904(第1反射鏡)と第2凹面ミラー1903(第2反射鏡)の各焦点距離をf1、f2で表すと、反射鏡間の距離を(f1+f2)とする共焦点配置(波長変換素子の屈折率を考慮していない場合)において、ビームウェスト位置が反射鏡の共焦点に集中し、光損傷や波長変換の不安定性が問題となる。 Here, when the beam waist position between the reflecting mirrors is concentrated, there arises a problem that the wavelength conversion element 1905 is broken due to light damage or the wavelength conversion becomes unstable at the concentrated position. In particular, when the focal lengths of the first concave mirror 1904 (first reflecting mirror) and the second concave mirror 1903 (second reflecting mirror) are represented by f1 and f2, the distance between the reflecting mirrors is (f1 + f2). In the arrangement (when the refractive index of the wavelength conversion element is not considered), the beam waist position is concentrated at the confocal point of the reflecting mirror, and optical damage and instability of wavelength conversion become a problem.
 本実施の形態では、集光光学系1902によりビームウェスト位置BWを制御することで、共焦点配置を用いた場合でも、安定な波長変換レーザの出力を可能とする。すなわち、本実施の形態では、集光光学系1902によって、図のように第1反射鏡(第1凹面ミラー1903)の入射前にビームウェストを形成し、第1及び第2反射鏡(第1凹面ミラー1903及び第2凹面ミラー1904)の焦点でビームウェストを数パス内で形成させず、波長変換素子1905内の異なるビームウェスト位置BWで波長変換を行い、安定した波長変換レーザ光を得られるようにしている。このように、集光光学系1902によりビームウェスト位置BWを点在させることは、各ビームウェスト位置BWで異なる位相整合条件をもつビームパスの波長変換をそれぞれ安定に行うことができ、波長変換レーザ光を安定に取り出すことができる。 In this embodiment, the beam waist position BW is controlled by the condensing optical system 1902 so that a stable wavelength conversion laser can be output even when a confocal arrangement is used. That is, in the present embodiment, a beam waist is formed by the condensing optical system 1902 before the incidence of the first reflecting mirror (first concave mirror 1903) as shown in the figure, and the first and second reflecting mirrors (first A stable wavelength conversion laser beam can be obtained by performing wavelength conversion at different beam waist positions BW in the wavelength conversion element 1905 without forming a beam waist in several paths at the focal points of the concave mirror 1903 and the second concave mirror 1904). I am doing so. In this manner, the beam waist positions BW are scattered by the condensing optical system 1902 so that the wavelength conversion of the beam paths having different phase matching conditions at each beam waist position BW can be performed stably, and the wavelength conversion laser beam Can be taken out stably.
 具体的には、本実施の形態では、焦点距離f1:25mmの第1凹面ミラー1903及び焦点距離f2:20mmの第2凹面ミラー1904を用いている。また、反射鏡間への入射は、第2凹面ミラー1904を第1凹面ミラー1903よりも小さくなるように切断し、この切断部から行っている。反射鏡の中央間を結ぶ主光線軸MAとは、図25に示すように、反射鏡間の曲率中心を結ぶ光軸のことをさす。基本波レーザ光は、集光光学系1902により主光線軸MAと平行になるように波長変換素子1905及び第1凹面ミラー1903に入射している。波長変換素子1905には、分極反転構造を有するMgO:LiNbO(長さ26mm、幅10mm)を用いた。反射鏡間距離は58.4mmとし、共焦点配置からわずかにずらしている。基本波レーザ光は、反射鏡間を波長変換素子1905への入射角を変化させながら、波長変換素子1905の通過を繰り返している。 Specifically, in the present embodiment, a first concave mirror 1903 having a focal length f1: 25 mm and a second concave mirror 1904 having a focal length f2: 20 mm are used. Further, the incidence between the reflecting mirrors is performed by cutting the second concave mirror 1904 so as to be smaller than the first concave mirror 1903, and from this cut portion. The principal ray axis MA connecting between the centers of the reflecting mirrors indicates an optical axis connecting the centers of curvature between the reflecting mirrors as shown in FIG. The fundamental laser beam is incident on the wavelength conversion element 1905 and the first concave mirror 1903 so as to be parallel to the principal ray axis MA by the condensing optical system 1902. As the wavelength conversion element 1905, MgO: LiNbO 3 (length: 26 mm, width: 10 mm) having a polarization inversion structure was used. The distance between the reflectors is 58.4 mm, and is slightly shifted from the confocal arrangement. The fundamental laser light repeatedly passes through the wavelength conversion element 1905 while changing the angle of incidence on the wavelength conversion element 1905 between the reflecting mirrors.
 ここで、位相整合条件とは、非線形光学材料で発生する波長変換光の位相が一致し、波長変換効率が最大(Δk=0)となる条件である。位相整合条件は、レーザ光の波長、非線形光学材料の屈折率、レーザ光の入射角、分極反転構造の周期、などによって決まる。従来、ある波長の変換を行う場合、位相整合条件を一致させるため、温度による非線形光学材料の屈折率の調整と入射角の調整とを行っており、温度や入射角がずれると、位相整合条件からずれ、Δk>0となり、波長変換効率の低下がみられる。また、レーザ光の波長がずれると、位相整合条件が異なるため、再調整や構成の見直しが必要であった。 Here, the phase matching condition is a condition in which the phase of the wavelength converted light generated in the nonlinear optical material matches and the wavelength conversion efficiency is maximum (Δk = 0). The phase matching condition is determined by the wavelength of the laser beam, the refractive index of the nonlinear optical material, the incident angle of the laser beam, the period of the polarization inversion structure, and the like. Conventionally, when converting a certain wavelength, in order to match the phase matching conditions, the refractive index of the nonlinear optical material and the incident angle are adjusted according to the temperature. Therefore, Δk> 0 and a decrease in wavelength conversion efficiency is observed. In addition, if the wavelength of the laser beam is shifted, the phase matching conditions are different, so that readjustment and review of the configuration are necessary.
 本実施の形態では、通過パスにより波長変換素子1905への入射角が変化しているため、通過パスにより位相整合条件を満たす、レーザ光の波長、非線形光学材料の屈折率(温度)、分極反転周期などが変化することとなる。このため、本実施の形態の波長変換レーザ光源1900は、複数の位相整合条件を有することとなる。この結果、一定のレーザ光波長の波長変換を行う場合、位相整合条件を満たす温度が複数存在し、あるひとつの位相整合条件から温度がずれた場合でも、他の通過パスの位相整合条件と合致し、変換効率の低下を補完することができる。 In this embodiment, since the incident angle to the wavelength conversion element 1905 is changed by the pass path, the wavelength of the laser light, the refractive index (temperature) of the nonlinear optical material, and the polarization inversion satisfying the phase matching condition by the pass path. Period etc. will change. For this reason, the wavelength conversion laser light source 1900 of the present embodiment has a plurality of phase matching conditions. As a result, when performing wavelength conversion of a fixed laser beam wavelength, there are multiple temperatures that satisfy the phase matching condition, and even if the temperature deviates from one phase matching condition, it matches the phase matching condition of the other pass path. This can compensate for the decrease in conversion efficiency.
 また、本実施の形態では、通過パスの入射角により位相整合条件を満たす温度が各パスで異なり、合計する全体での変換効率は、温度が変化しても、低下しにくくなっている。第1の実施の形態等の構成(パスが一つだけ)の場合、変換効率の半値全幅は1.1度であったが、本実施の形態の変換効率の半値全幅は、2.6度となり、2倍以上の許容幅を持つ。また、本実施の形態の合計の変換効率は、波長変換素子1905に基本波レーザ光が繰り返し入射することにより、従来の構成よりも広い温度範囲で高い値となっている。この結果、本実施の形態では、合計変換効率も高く、従来の構成の2倍の変換効率にあたる60%以上の変換効率を達成している。 Further, in this embodiment, the temperature satisfying the phase matching condition varies depending on the incident angle of the passing path in each path, and the total conversion efficiency is less likely to decrease even if the temperature changes. In the case of the configuration of the first embodiment or the like (only one path), the full width at half maximum of the conversion efficiency is 1.1 degrees, but the full width at half maximum of the conversion efficiency of the present embodiment is 2.6 degrees. And has an allowable width of more than twice. Further, the total conversion efficiency of the present embodiment has a higher value in a wider temperature range than the conventional configuration because the fundamental laser beam repeatedly enters the wavelength conversion element 1905. As a result, in this embodiment, the total conversion efficiency is high, and a conversion efficiency of 60% or more, which is twice the conversion efficiency of the conventional configuration, is achieved.
 さらに、本実施の形態の波長変換レーザ光源1900では、波長変換素子1905がレーザ光を反射し且つ曲率を有する2枚の反射鏡(第1凹面ミラー1903及び第2凹面ミラー1904)間に配置され、レーザ光が集光光学系1902により反射機能のない部位より反射鏡間に入射し、レーザ光が反射鏡間を波長変換素子1905への入射角を変化させながら通過を繰り返す。したがって、位相整合条件を変化させて波長変換を繰り返し、レーザ光の反射鏡間のビームウェスト位置BWが点在するように集光光学系1902で制御し、反射鏡の少なくとも一方が波長変換したレーザ光を透過して波長変換レーザを出射する。この結果、高変換効率を有しながら、位相整合条件を複数有することができるので、温度などの位相整合条件からの許容幅を拡大し、環境変化などに対し安定な波長変換レーザが得られる。また、ビームウェスト位置BWを点在させることで、光損傷や波長変換の不安定性をなくした高出力の波長変換レーザ光を得ることができる。 Further, in the wavelength conversion laser light source 1900 of this embodiment, the wavelength conversion element 1905 is disposed between two reflecting mirrors (a first concave mirror 1903 and a second concave mirror 1904) that reflect the laser light and have a curvature. The laser light is incident between the reflecting mirrors from a portion having no reflecting function by the condensing optical system 1902, and the laser light repeatedly passes between the reflecting mirrors while changing the incident angle to the wavelength conversion element 1905. Therefore, the wavelength conversion is repeated by changing the phase matching condition, and the condensing optical system 1902 controls the beam waist positions BW between the laser beam reflecting mirrors, and at least one of the reflecting mirrors converts the wavelength. Transmits light and emits a wavelength conversion laser. As a result, it is possible to have a plurality of phase matching conditions while having high conversion efficiency, so that the allowable range from the phase matching conditions such as temperature is expanded, and a wavelength conversion laser that is stable against environmental changes and the like can be obtained. Further, by interspersing the beam waist positions BW, it is possible to obtain a high-power wavelength-converted laser beam that eliminates optical damage and wavelength conversion instability.
 また、本実施の形態では、基本波レーザ光源1901に中心波長1064nm、スペクトルの半値全幅0.1nmのファイバレーザを用いている。なお、基本波レーザ光源1901には、ファイバレーザの他、固体レーザ、半導体レーザ、気体レーザ、波長変換レーザなどをもちいることができる。また、本実施の形態では、第2高調波への波長変換を行っているが、適当なレーザ光源を選択することで、和周波、差周波及び光パラメトリック発振などの波長変換レーザ光源に本発明を用いることもできる。 In the present embodiment, a fiber laser having a center wavelength of 1064 nm and a full width at half maximum of 0.1 nm is used as the fundamental laser light source 1901. As the fundamental laser light source 1901, a solid laser, a semiconductor laser, a gas laser, a wavelength conversion laser, or the like can be used in addition to a fiber laser. In this embodiment, wavelength conversion to the second harmonic is performed. However, by selecting an appropriate laser light source, the present invention can be applied to wavelength conversion laser light sources such as sum frequency, difference frequency, and optical parametric oscillation. Can also be used.
 また、本実施の形態は、2枚の反射鏡(第1凹面ミラー1903及び第2凹面ミラー1904)間の距離Dを、2枚の反射鏡の焦点距離をf1、f2、波長変換素子1905の長さをLとするとき、f1+f2<D<f1+f2+Lを満たす好ましい形態である。例えば、本実施の形態では、f1:25mm、f2:20mm、L:26mmのとき、Dを58.4mmとしている。上記の関係に反射鏡間の距離Dがあるとき、2枚の反射鏡(第1凹面ミラー1903及び第2凹面ミラー1904)が共焦点配置に近く、ビームパスの往復回数が多くなり、波長変換素子1905の通過数が増大するので、波長変換レーザ光源1900の合計変換効率を高めることができる。 In this embodiment, the distance D between the two reflecting mirrors (the first concave mirror 1903 and the second concave mirror 1904), the focal lengths of the two reflecting mirrors f1 and f2, and the wavelength conversion element 1905 When the length is L, this is a preferable form satisfying f1 + f2 <D <f1 + f2 + L. For example, in the present embodiment, D is 58.4 mm when f1: 25 mm, f2: 20 mm, and L: 26 mm. When there is a distance D between the reflecting mirrors in the above relationship, the two reflecting mirrors (the first concave mirror 1903 and the second concave mirror 1904) are close to the confocal arrangement, and the number of reciprocations of the beam path increases, and the wavelength conversion element Since the number of passes 1905 increases, the total conversion efficiency of the wavelength conversion laser light source 1900 can be increased.
 ここで、反射鏡の焦点距離とは、反射鏡が非対称レンズの場合、主光線軸MAに対して反射鏡間への入射光線がずれた方位の焦点距離をさす。波長変換素子1905の屈折率をnとするとき、反射鏡間の距離Dは、下記式を満たすことが特に好ましい。 Here, when the reflecting mirror is an asymmetric lens, the focal length of the reflecting mirror means the focal length in the direction in which the incident light beam between the reflecting mirrors is deviated from the principal ray axis MA. When the refractive index of the wavelength conversion element 1905 is n, it is particularly preferable that the distance D between the reflecting mirrors satisfies the following formula.
 D≠f1+f2+(1-1/n)×L(=共焦点配置) D ≠ f1 + f2 + (1-1 / n) × L (= confocal arrangement)
 この共焦点配置とは、2枚の反射鏡の焦点が同じ位置にくる距離Dのことをさす。反射鏡間の距離Dを共焦点配置とする場合、レーザ光が主光線軸MAに収束し、高出力時に光損傷や波長変換の不安定性を引き起こす場合がある。このため、共焦点配置からわずかにずれた位置の範囲内に反射鏡間の距離Dを設定することが好ましい。具体的には、共焦点配置から0.1~3mm程度ずらした位置に距離Dを設定する。共焦点配置よりも距離を上記範囲に短くすることで、往復数を確保し、反射鏡の焦点位置の収束を避けるとともに、反射鏡間に入射するレーザ光と、第2凹面ミラー1904(第2反射鏡)の有効径とに対するマージンを大きくすることができる。 This confocal arrangement refers to the distance D at which the focal points of the two reflecting mirrors are at the same position. When the distance D between the reflecting mirrors is set to be a confocal arrangement, the laser beam may converge on the principal ray axis MA, causing optical damage and instability of wavelength conversion at high output. For this reason, it is preferable to set the distance D between the reflecting mirrors within a range of a position slightly deviated from the confocal arrangement. Specifically, the distance D is set at a position shifted by about 0.1 to 3 mm from the confocal arrangement. By making the distance shorter than the confocal arrangement within the above range, the number of reciprocations is ensured, the convergence of the focal position of the reflecting mirror is avoided, the laser light incident between the reflecting mirrors, and the second concave mirror 1904 (second The margin for the effective diameter of the reflecting mirror can be increased.
 また、本実施の形態の集光光学系1902は、ファイバコリメータと平凸レンズとからなる。集光光学系1902は、2枚の反射鏡の焦点以外で波長変換素子1905内にレーザ光の集光を行い、往復する間のビームウェスト位置BWが波長変換素子1905内で点在するように制御している。2枚の反射鏡の焦点では、レーザ光のオーバラップが生じ、波長変換素子の破壊や波長変換の不安定性を引き起こす可能性がある。また、波長変換を1箇所で集中して行う場合も同様に、波長変換素子の破壊や波長変換の不安定性を引き起こすこととなる。 Further, the condensing optical system 1902 of the present embodiment includes a fiber collimator and a plano-convex lens. The condensing optical system 1902 collects the laser light in the wavelength conversion element 1905 except for the focal points of the two reflecting mirrors, and the beam waist positions BW during the reciprocation are scattered in the wavelength conversion element 1905. I have control. At the focal point of the two reflecting mirrors, there is an overlap of laser light, which may cause destruction of the wavelength conversion element and instability of wavelength conversion. Similarly, when wavelength conversion is concentrated in one place, the wavelength conversion element is destroyed and wavelength conversion is unstable.
 ここで、波長変換は、集光したビームウェスト位置で強く行われるが、本実施の形態では、このビームウェスト位置BWを2枚の反射鏡の焦点以外に点在させている。このように点在したビームウェスト位置BWで波長変換を行うことで、安定した波長変換レーザ光を出力することができる。なお、レーザ光が点在したビームウェスト位置BWで波長変換を繰り返し行った後に、2枚の反射鏡の焦点位置にレーザ光のビームウェスト位置BWが収束しても構わない。 Here, the wavelength conversion is strongly performed at the focused beam waist position, but in this embodiment, the beam waist position BW is interspersed other than the focal points of the two reflecting mirrors. By performing wavelength conversion at the scattered beam waist positions BW in this way, stable wavelength conversion laser light can be output. It should be noted that after the wavelength conversion is repeatedly performed at the beam waist positions BW where the laser beams are scattered, the beam waist positions BW of the laser beams may converge at the focal positions of the two reflecting mirrors.
 また、本実施の形態は、集光光学系1902により、レーザ光が第1凹面ミラー1903で反射する前に、第1凹面ミラー1903と第2凹面ミラー1904の反射鏡間で集光する好ましい形態である。反射鏡で反射する前に反射鏡間で集光点(ビームウェスト位置)を有することで、反射鏡の焦点近傍を通過しない多数のレーザ光パスでビームウェストを形成することができる。これにより、波長変換素子1905のレーザ光路となる広い範囲に多数のビームウェスト位置BWを配置することができる。この結果、本実施の形態では、波長変換素子1905内の広い範囲にビームウェスト位置BWを多数点在することができ、高出力時でも安定した波長変換を行うことができる。 In the present embodiment, the condensing optical system 1902 collects light between the reflecting mirrors of the first concave mirror 1903 and the second concave mirror 1904 before the laser light is reflected by the first concave mirror 1903. It is. By having a condensing point (beam waist position) between the reflecting mirrors before being reflected by the reflecting mirror, it is possible to form a beam waist with a large number of laser light paths that do not pass near the focal point of the reflecting mirror. As a result, a large number of beam waist positions BW can be arranged in a wide range as a laser beam path of the wavelength conversion element 1905. As a result, in the present embodiment, a large number of beam waist positions BW can be scattered over a wide range in the wavelength conversion element 1905, and stable wavelength conversion can be performed even at high output.
 また、本実施の形態は、反射鏡(第1凹面ミラー1903及び第2凹面ミラー1904)で反射する前に、波長変換素子1905内で集光する特に好ましい形態である。このように反射鏡での反射前に波長変換を行うことで、波長変換素子1905での初めのパスで波長変換されたレーザ光をモニターしてもよい。この場合、反射鏡に関わらない波長変換レーザ光の調整を行うことができるので、コンパクトなレーザ光源を作製することができる。また、反射鏡で反射を行う前に、波長変換を行うことで、合計変換効率を上昇させることができる。 Further, this embodiment is a particularly preferable embodiment in which the light is condensed in the wavelength conversion element 1905 before being reflected by the reflecting mirrors (the first concave mirror 1903 and the second concave mirror 1904). As described above, the wavelength conversion before the reflection by the reflecting mirror may be performed to monitor the laser light whose wavelength is converted in the first pass of the wavelength conversion element 1905. In this case, since the wavelength-converted laser light that is not related to the reflecting mirror can be adjusted, a compact laser light source can be manufactured. Moreover, total conversion efficiency can be raised by performing wavelength conversion before reflecting with a reflective mirror.
 なお、本実施の形態では、2枚の反射鏡に球面の凹面ミラーを用いているが、非球面や平面の反射鏡を用いることもできる。この場合、2枚の反射鏡の内少なくとも1枚は曲率を有し、レーザ光を曲げ、反射鏡間を複数回往復させることと、反射鏡間にレーザ光のビームウェストが形成されるようにする。2枚の反射鏡の組み合わせは、レーザ光が複数回反射し、波長変換素子1905に少なくとも2種類以上の入射角でレーザ光が入射すればよい。 In this embodiment, spherical concave mirrors are used for the two reflecting mirrors, but aspherical or flat reflecting mirrors may be used. In this case, at least one of the two reflecting mirrors has a curvature so that the laser beam is bent and reciprocated between the reflecting mirrors a plurality of times, and a laser beam beam waist is formed between the reflecting mirrors. To do. In the combination of the two reflecting mirrors, the laser light may be reflected a plurality of times, and the laser light may be incident on the wavelength conversion element 1905 with at least two types of incident angles.
 また、反射鏡の少なくとも一方は、波長変換したレーザ光を出力するため、波長変換したレーザ光を透過する。本実施の形態では、第1凹面ミラー1903が波長変換した第2高調波を透過する。例えば、第1凹面ミラー1903は、基本波(1064nm)の反射率99.5%、第2高調波(532nm)の透過率99%で、基本波レーザ光を反射し、第2高調波レーザ光を透過する。第2凹面ミラー1904は、基本波(1064nm)の反射率99.5%、第2高調波(532nm)の反射率99%で、基本波レーザ光と第2高調波レーザ光とをともに反射する。反射鏡のレーザ光(基本波)に対する反射率が高ければ、損失が少なくなり好ましい。波長変換レーザ光に対しては、2枚の反射鏡が透過する構成としてもよいし、1枚だけが透過する構成としてもよい。 Also, at least one of the reflecting mirrors transmits the wavelength-converted laser light in order to output the wavelength-converted laser light. In the present embodiment, the first concave mirror 1903 transmits the second harmonic whose wavelength has been converted. For example, the first concave mirror 1903 reflects the fundamental laser beam with the reflectance of the fundamental wave (1064 nm) of 99.5% and the transmittance of the second harmonic wave (532 nm) of 99%, and the second harmonic laser beam. Transparent. The second concave mirror 1904 reflects both the fundamental laser beam and the second harmonic laser beam with a reflectance of 99.5% of the fundamental wave (1064 nm) and a reflectance of 99% of the second harmonic (532 nm). . It is preferable that the reflectance of the reflecting mirror with respect to the laser beam (fundamental wave) is high because loss is reduced. The wavelength conversion laser light may be configured to transmit two reflecting mirrors, or may be configured to transmit only one.
 本実施の形態では、波長変換素子1905に、分極反転構造を有するMgO:LiNbO(PPLN)を用い、その形状は直方体(例えば、長さ26mm、幅10mm、厚み1mm)としてもよい。この波長変換素子は、波長変換を行うことができる非線形光学結晶からなり、例えば、KTP、LBO、CLBO、LTなどの非線形光学結晶を用いることができる。特に、分極反転構造を有し且つ擬似位相整合を行う波長変換素子は、分極反転周期により異なる位相整合条件を同一素子内で形成することができるため、本発明の波長変換レーザ光源に用いることが好ましい。この場合、同一素子内で異なる位相整合条件を有することで、波長変換レーザの全体としての温度や波長に対する許容幅を大きくすることができる。 In the present embodiment, MgO: LiNbO 3 (PPLN) having a polarization inversion structure is used for the wavelength conversion element 1905, and the shape thereof may be a rectangular parallelepiped (for example, length 26 mm, width 10 mm, thickness 1 mm). This wavelength conversion element is made of a nonlinear optical crystal capable of performing wavelength conversion, and for example, a nonlinear optical crystal such as KTP, LBO, CLBO, or LT can be used. In particular, a wavelength conversion element having a polarization inversion structure and performing quasi-phase matching can be used in the wavelength conversion laser light source of the present invention because different phase matching conditions can be formed in the same element depending on the polarization inversion period. preferable. In this case, by having different phase matching conditions in the same element, it is possible to increase the allowable range for the temperature and wavelength of the wavelength conversion laser as a whole.
 また、本実施の形態の波長変換素子1905は、主光線軸MAと垂直な入射面を持つように配置されている。波長変換素子1905は、分極反転構造は、入射面と平行な周期で形成され、分極反転周期は約7μmである。前記したように分極反転周期は、素子内で同一でなく、周期や向きを変化させた構成としてもよい。波長変換素子1905の入出射面は、レーザ光(基本波)及び波長変換レーザ光(第2高調波)のARコートが形成されている。このように、波長変換素子1905は、反射鏡間での不要な反射を避けるため、レーザ光と波長変換レーザ光とのARコートを形成することが好ましい。 Further, the wavelength conversion element 1905 of the present embodiment is disposed so as to have an incident surface perpendicular to the principal ray axis MA. In the wavelength conversion element 1905, the domain-inverted structure is formed with a period parallel to the incident surface, and the domain-inverted period is about 7 μm. As described above, the polarization inversion period is not the same in the element, and the period and direction may be changed. On the incident / exit surface of the wavelength conversion element 1905, an AR coat of laser light (fundamental wave) and wavelength conversion laser light (second harmonic) is formed. As described above, the wavelength conversion element 1905 preferably forms an AR coat of laser light and wavelength conversion laser light in order to avoid unnecessary reflection between the reflecting mirrors.
 また、本実施の形態では、例えば、第1凹面ミラー1903の有効径がφ5、第2凹面ミラー1904の有効径がφ4であり、波長変換素子1905のレーザ光が往復する幅は5mmであり、細長いコンパクトな形状で、ハイパワーの波長変換レーザ光を安定して出力することができる。 In the present embodiment, for example, the effective diameter of the first concave mirror 1903 is φ5, the effective diameter of the second concave mirror 1904 is φ4, and the width of the wavelength conversion element 1905 for reciprocating the laser beam is 5 mm. With a long and compact shape, high-power wavelength-converted laser light can be stably output.
 また、本実施の形態は、第1凹面ミラー1903に入射するビーム径がφ0.3であり、反射鏡に入射するレーザ光のビーム径が有効径の小さい反射鏡(第2凹面ミラー1904)の有効径の1/5以下である好ましい形態である。この場合、反射鏡間に入射するビームが、反射鏡に対して十分に小さいため、反射鏡間でのレーザ光のオーバラップを緩和するとともに、反射鏡間でのレーザ光の往復数を大きくすることができる。このオーバラップの緩和と往復数の増加とにより、コンパクトであっても高出力と高変換効率を両立させることができる。なお、本実施の形態の構成で、反射鏡の有効径の1/5よりも入射ビーム径を大きくすると、往復数が3程度となり、変換効率が低くなった。ここで、反射鏡の有効径とは、反射鏡にレーザ光があたる範囲の長手方向の長さをさす。 In the present embodiment, the diameter of the beam incident on the first concave mirror 1903 is φ0.3, and the diameter of the laser beam incident on the reflecting mirror is a small effective diameter (second concave mirror 1904). This is a preferred form that is 1/5 or less of the effective diameter. In this case, since the beam incident between the reflecting mirrors is sufficiently small with respect to the reflecting mirrors, the overlap of the laser light between the reflecting mirrors is alleviated and the number of round trips of the laser light between the reflecting mirrors is increased. be able to. By alleviating this overlap and increasing the number of reciprocations, it is possible to achieve both high output and high conversion efficiency even if it is compact. In the configuration of the present embodiment, when the incident beam diameter was made larger than 1/5 of the effective diameter of the reflecting mirror, the number of reciprocations was about 3, and the conversion efficiency was lowered. Here, the effective diameter of the reflecting mirror refers to the length in the longitudinal direction of the range where the laser beam hits the reflecting mirror.
 また、本実施の形態では、基本波レーザ光源1901の中心波長λが1064nm、スペクトル半値全幅Δλが0.1nmとなり、コヒーレンス長(λ/Δλ)は11.3mmとなる。反射鏡間の距離Dが58.4mmであるため、コヒーレンス長は、反射間距離の2倍未満となっている。本実施の形態は、レーザ光のコヒーレンス長が反射鏡間の距離の2倍未満となる好ましい形態である。コヒーレンス長が反射鏡間の距離の2倍以上の場合、反射鏡間を往復するレーザ光がオーバラップする点で干渉が生じ、ビーム強度が非常に強くなる点ができる。干渉により生じたビーム強度の強い点は、波長変換素子の結晶破壊や波長変換の不安定性を引き起こすこととなる。本実施の形態は、反射鏡間を往復するレーザ光のコヒーレンス長を往復する距離よりも短くすることで、本構成の場合に生じる干渉性の問題を解決することができる。 In the present embodiment, the center wavelength λ of the fundamental laser light source 1901 is 1064 nm, the full width at half maximum Δλ is 0.1 nm, and the coherence length (λ 2 / Δλ) is 11.3 mm. Since the distance D between the reflecting mirrors is 58.4 mm, the coherence length is less than twice the distance between the reflections. This embodiment is a preferred form in which the coherence length of the laser light is less than twice the distance between the reflecting mirrors. When the coherence length is more than twice the distance between the reflecting mirrors, interference occurs at the point where the laser beams reciprocating between the reflecting mirrors overlap, and the beam intensity becomes very strong. The strong beam intensity generated by the interference causes crystal destruction of the wavelength conversion element and instability of wavelength conversion. In the present embodiment, the coherence length of the laser light reciprocating between the reflecting mirrors is made shorter than the reciprocating distance, so that the problem of coherence that occurs in the case of this configuration can be solved.
 このとき、図24及び図25を見ても明らかなように、ビームパスは、非線形光学結晶素子である波長変換素子1905の外側から内側へ徐々に移動することが分かる。波長変換を行う際、発生した高調波を吸収することにより、ビームパスの温度が上昇することがあるが、本実施の形態において出力される高調波は、波長変換素子1905の外側で大きく、内側に行くほど小さくなる。それ故、外側のビームパスでは、波長変換素子1905の温度が低い状態となっており、内側になるほど温度の高い状態となっていることが望ましい。 At this time, as is apparent from FIG. 24 and FIG. 25, it can be seen that the beam path gradually moves from the outside to the inside of the wavelength conversion element 1905 which is a nonlinear optical crystal element. When wavelength conversion is performed, the generated harmonics may be absorbed to increase the temperature of the beam path. However, the harmonics output in this embodiment are large outside the wavelength conversion element 1905 and inside. It gets smaller as you go. Therefore, in the outer beam path, it is desirable that the temperature of the wavelength conversion element 1905 is low, and the temperature is higher as the temperature becomes closer to the inner side.
 (第6の実施の形態)
 図26は、本発明の第6の実施の形態における2次元画像表示装置の構成を示す概略図である。本実施の形態は、上記のいずれかの波長変換レーザ光源を用いた波長変換グリーンレーザ光源を使用した2次元画像表示装置である。
(Sixth embodiment)
FIG. 26 is a schematic diagram showing a configuration of a two-dimensional image display device according to the sixth embodiment of the present invention. The present embodiment is a two-dimensional image display device using a wavelength conversion green laser light source using any one of the above wavelength conversion laser light sources.
 図26に示す本実施の形態の2次元画像表示装置2000は、液晶3板式プロジェクタの光学エンジンに、上記のパルスファイバレーザ光源を適用した一例である。2次元画像表示装置2000は、画像処理部2002、レーザ出力コントローラ2003、LD電源2004、赤色レーザ光源2005R、緑色レーザ光源2005G、青色レーザ光源2005B、ビーム形成ロッドレンズ2006R、2006G、2006B、リレーレンズ2007R、2007G、2007B、折り返しミラー2008G、2008B、画像を表示させるための2次元変調素子2009R、2009G、2009B、偏光子2010R、2010G、2010B、合波プリズム2011及び投影レンズ2012から構成されている。 A two-dimensional image display device 2000 according to the present embodiment shown in FIG. 26 is an example in which the above-described pulse fiber laser light source is applied to an optical engine of a liquid crystal three-plate projector. The two-dimensional image display device 2000 includes an image processing unit 2002, a laser output controller 2003, an LD power source 2004, a red laser light source 2005R, a green laser light source 2005G, a blue laser light source 2005B, beam forming rod lenses 2006R, 2006G, 2006B, and a relay lens 2007R. , 2007G, 2007B, folding mirrors 2008G, 2008B, two- dimensional modulation elements 2009R, 2009G, 2009B for displaying images, polarizers 2010R, 2010G, 2010B, a combining prism 2011, and a projection lens 2012.
 各レーザ光源2005R、2005G、2005Bからのレーザ光は、ビーム形成ロッドレンズ2006R、2006G、2006Bにより、矩形に整形され、リレーレンズ2007R、2007G、2007Bで各色の2次元変調素子2009R、2009G、2009Bを照明する。各色で2次元に変調された画像は、合波プリズム2011により合成され、投影レンズ2012よりスクリーン上に投影され、映像が表示される。 Laser light from each of the laser light sources 2005R, 2005G, and 2005B is shaped into a rectangle by beam forming rod lenses 2006R, 2006G, and 2006B, and the two- dimensional modulation elements 2009R, 2009G, and 2009B for each color are formed by the relay lenses 2007R, 2007G, and 2007B. Illuminate. An image modulated two-dimensionally with each color is synthesized by the combining prism 2011 and projected onto the screen from the projection lens 2012 to display an image.
 緑色レーザ光源2005Gは、緑色光の出力をコントロールするレーザ出力コントローラ2003及びLD電源2004で制御される。緑色レーザ光源2005Gは、レーザ共振器をファイバ内に閉じた系とし、外部からの塵又は反射面のミスアライメントなどで共振器の損失が増加することによる出力の経時低下及び出力変動を抑制することができる。 The green laser light source 2005G is controlled by a laser output controller 2003 and an LD power source 2004 that control the output of green light. The green laser light source 2005G is a system in which the laser resonator is closed in the fiber, and suppresses a decrease in output with time and an output fluctuation due to an increase in the loss of the resonator due to external dust or reflection surface misalignment. Can do.
 画像処理部2002は、入力される映像信号(TV、VIDEO、PC等からの映像信号)の輝度情報に応じてレーザ光の出力を変動させる光量制御信号を発生し、レーザ出力コントローラ2003に送出する役割を果たしている。この結果、本実施の形態では、レーザ出力コントローラ2003及びLD電源2004が赤色レーザ光源2005R、緑色レーザ光源2005G及び青色レーザ光源2005Bを制御し、輝度情報に応じて光量を制御することにより、コントラストを向上することが可能となる。 The image processing unit 2002 generates a light amount control signal for changing the output of the laser light according to the luminance information of the input video signal (video signal from TV, VIDEO, PC, etc.), and sends it to the laser output controller 2003. Playing a role. As a result, in this embodiment, the laser output controller 2003 and the LD power source 2004 control the red laser light source 2005R, the green laser light source 2005G, and the blue laser light source 2005B, and control the amount of light according to the luminance information, thereby controlling the contrast. It becomes possible to improve.
 この際、本実施の形態では、各レーザ光源2005R、2005G、2005Bをパルス駆動し、各レーザ光源2005R、2005G、2005Bの点灯時間のデューティー比(点灯時間/(点灯時間+非点灯時間)の値)を変化させることにより、平均的な光量を変化させるような制御方法(PWM制御)を取ることもできる。また、レーザ光源をレーザディスプレイに用いられる緑光源として使用する場合、510nm~550nmの緑色レーザ光を出射する構成としてもよい。この構成により、視感度の高い緑色のレーザ出力光を得ることができ、色再現性の良いディスプレイとして、さらに原色に近い色表現をすることができる。 At this time, in the present embodiment, each laser light source 2005R, 2005G, 2005B is pulse-driven, and the duty ratio (lighting time / (lighting time + non-lighting time)) of each laser light source 2005R, 2005G, 2005B is turned on. ) Can be changed to adopt a control method (PWM control) that changes the average light quantity. Further, when the laser light source is used as a green light source used in a laser display, it may be configured to emit green laser light of 510 nm to 550 nm. With this configuration, green laser output light with high visibility can be obtained, and a color expression close to the primary color can be expressed as a display with good color reproducibility.
 なお、2次元画像表示装置の構成は、上記の例に特に限定されず、複数のレーザ光源と、レーザ光源を走査する走査部とを備え、レーザ光源は、少なくとも赤色、緑色及び青色をそれぞれ出射する光源を用いた構成からなり、レーザ光源のうち、少なくとも緑色の光源は上記のいずれかのパルスファイバレーザ光源を用いた構成としてもよい。また、スクリーンの背後から投影する形態(リアプロジェクションディスプレイ)の他に、前方投影型構成の2次元画像表示装置として構成することも可能である。 The configuration of the two-dimensional image display device is not particularly limited to the above example, and includes a plurality of laser light sources and a scanning unit that scans the laser light sources, and the laser light sources emit at least red, green, and blue, respectively. The laser light source may be configured so that at least the green light source among the laser light sources may be configured using any of the above-described pulse fiber laser light sources. Further, in addition to a mode of projecting from behind the screen (rear projection display), it is also possible to configure as a two-dimensional image display device having a front projection type configuration.
 また、2次元変調素子も上記の例に特に限定されず、反射型液晶素子、ガルバノミラーやDMDに代表されるメカニカルマイクロスイッチ(MEMS)を用いた2次元変調素子を用いることももちろん可能である。さらに、反射型空間変調素子やMEMS、ガルバノミラーといった光変調特性に対する偏光成分の影響が少ない光変調素子において、高調波を光ファイバで伝搬する際は、PANDAファイバなどの偏波保持ファイバを用いる必要はないが、液晶を用いた2次元変調デバイスを使用する際には、光変調特性と偏光特性とが大いに関係するため、偏波保持ファイバを使用し、波長変換後の光は直線偏光とすることが望ましい。 Also, the two-dimensional modulation element is not particularly limited to the above example, and it is of course possible to use a two-dimensional modulation element using a reflection type liquid crystal element, a galvano mirror, or a mechanical micro switch (MEMS) represented by DMD. . Furthermore, in a light modulation element that is less affected by the polarization component on the light modulation characteristics such as a reflective spatial modulation element, MEMS, and galvanometer mirror, it is necessary to use a polarization maintaining fiber such as a PANDA fiber when propagating harmonics through the optical fiber. However, when using a two-dimensional modulation device using liquid crystal, the optical modulation characteristics and polarization characteristics are greatly related. Therefore, a polarization maintaining fiber is used, and the light after wavelength conversion is linearly polarized light. It is desirable.
 (第7の実施の形態)
 図27は、本発明の第7の実施の形態における液晶表示装置の構成を示す概略図である。本実施の形態の液晶表示装置2100は、緑色光源として上記のいずれかの波長変換レーザ光源を含むバックライト照明装置を用いた2次元画像表示装置の一例である。
(Seventh embodiment)
FIG. 27 is a schematic diagram showing the configuration of the liquid crystal display device according to the seventh embodiment of the present invention. The liquid crystal display device 2100 of this embodiment is an example of a two-dimensional image display device using a backlight illumination device including any one of the above-described wavelength conversion laser light sources as a green light source.
 図27に示すように、液晶表示装置2100は、液晶表示パネル2101と、液晶表示パネル2101を背面側から照明するバックライト照明装置2111とを備えて構成されている。液晶表示パネル2101は、偏光板2102及び液晶パネル2103から構成される。 As shown in FIG. 27, the liquid crystal display device 2100 includes a liquid crystal display panel 2101 and a backlight illumination device 2111 that illuminates the liquid crystal display panel 2101 from the back side. The liquid crystal display panel 2101 includes a polarizing plate 2102 and a liquid crystal panel 2103.
 バックライト照明装置2111のレーザ光源2112は、複数のレーザ光源2112r、2112g、2112bを含み、このレーザ光源2112は、少なくとも赤色(R)、緑色(G)及び青色(B)をそれぞれ出射する光源を用いた構成からなる。すなわち、R光源2112r、G光源2112g及びB光源2112bは、それぞれ赤色、緑色及び青色のレーザ光を出射する。 The laser light source 2112 of the backlight illumination device 2111 includes a plurality of laser light sources 2112r, 2112g, and 2112b. The laser light source 2112 emits light sources that emit at least red (R), green (G), and blue (B), respectively. It consists of the structure used. That is, the R light source 2112r, the G light source 2112g, and the B light source 2112b emit red, green, and blue laser beams, respectively.
 ここでは、R光源2112rには、波長640nmのAlGaInP/GaAs系材料からなる半導体レーザ装置を、B光源2112bには波長450nmのGaN系材料からなる半導体レーザ装置を用いている。また、G光源2112gは、上記の波長変換レーザ光源のいずれかからなる緑色光源を用いて構成された、波長532nmの緑色レーザ光源を用いている。 Here, a semiconductor laser device made of an AlGaInP / GaAs material with a wavelength of 640 nm is used for the R light source 2112r, and a semiconductor laser device made of a GaN material with a wavelength of 450 nm is used for the B light source 2112b. The G light source 2112g uses a green laser light source having a wavelength of 532 nm, which is configured using a green light source composed of any one of the wavelength conversion laser light sources described above.
 上記のように、本実施の形態における液晶表示装置2100は、バックライト照明装置2111と、バックライト照明装置2111から出射されるR光、G光及びB光のレーザ光を利用して画像表示を行う液晶表示パネル2101とからなる。バックライト照明装置2111は、レーザ光源2112と、レーザ光源2112からのR光、G光及びB光のレーザ光をまとめて導光部2114を介して導光板2115に導く光ファイバ2113と、導入したR光、G光及びB光のレーザ光で均一に満たされて主面(図示せず)からレーザ光を出射する導光板2115とから構成されている。なお、G光源2112gは、上記の波長変換レーザ光源に集光レンズ(図示せず)などの光学部品を付加して、出力光のマルチビームが光ファイバ2113に集光されて導光板2115に導かれるようにしている。 As described above, the liquid crystal display device 2100 in this embodiment displays an image using the backlight illumination device 2111 and the R, G, and B light beams emitted from the backlight illumination device 2111. And a liquid crystal display panel 2101 to be performed. The backlight illuminator 2111 introduced a laser light source 2112 and an optical fiber 2113 that guides the R light, G light, and B light from the laser light source 2112 to the light guide plate 2115 through the light guide unit 2114. The light guide plate 2115 is uniformly filled with laser light of R light, G light, and B light, and emits laser light from a main surface (not shown). The G light source 2112g adds an optical component such as a condensing lens (not shown) to the wavelength conversion laser light source, and multi-beams of output light are condensed on the optical fiber 2113 and guided to the light guide plate 2115. I try to be.
 上記の構成により、本実施の形態では、単一の高出力ピーク値をもつ光電変換効率の高いパルスファイバレーザ光源を用いているので、高輝度で色再現性に優れ、簡単な構成で低消費電力の安定した画像表示装置を実現することができる。 With the above configuration, the present embodiment uses a pulsed fiber laser light source having a single high output peak value and high photoelectric conversion efficiency, so it has high brightness, excellent color reproducibility, and simple configuration with low consumption. An image display device with stable power can be realized.
 (第8の実施の形態)
 図28は、本発明の第8の実施の形態におけるレーザ加工装置の構成を示す概略図である。本レーザ加工装置では、上記のいずれかの波長変換レーザ光源をレーザ光源として用いている。
(Eighth embodiment)
FIG. 28 is a schematic diagram showing a configuration of a laser processing apparatus according to the eighth embodiment of the present invention. In this laser processing apparatus, any one of the wavelength conversion laser light sources described above is used as a laser light source.
 図28に示すように、レーザ加工装置2201は、レーザ光源2202、スキャンミラー2203、及びステージ2204から構成され、加工対象2205を加工する。レーザ光源2202には、上記の波長変換レーザ光源のいずれかを用い、レーザ光源2202から出射したレーザ光をスキャンミラー2203で反射させて加工対象2205に照射することにより、加工対象2205上のレーザ照射位置をY軸方向に移動させる。同時に、加工対象2205を載せたステージ2204をX軸方向に移動させることにより、加工対象2205上のレーザ照射位置は、X軸方向に移動する。このような構成で、例えば、任意のレーザ照射位置でレーザ光源2202をパルス発振させることで、加工対象2205の表面上に任意のパターンのマーキングを施すことが可能となる。 As shown in FIG. 28, the laser processing apparatus 2201 includes a laser light source 2202, a scan mirror 2203, and a stage 2204, and processes a processing target 2205. As the laser light source 2202, any one of the wavelength conversion laser light sources described above is used, and the laser light emitted from the laser light source 2202 is reflected by the scan mirror 2203 and irradiated onto the processing target 2205, thereby irradiating the laser on the processing target 2205. Move the position in the Y-axis direction. At the same time, the laser irradiation position on the processing target 2205 is moved in the X-axis direction by moving the stage 2204 on which the processing target 2205 is placed in the X-axis direction. With such a configuration, for example, by pulsing the laser light source 2202 at an arbitrary laser irradiation position, it is possible to mark an arbitrary pattern on the surface of the processing target 2205.
 また、加工対象2205を水槽内に設置し、上記と同様に加工対象2205の表面上に向けてレーザ光をパルス照射することにより、レーザピーニングなどに応用することも可能となる。 Further, by installing the processing object 2205 in the water tank and irradiating the laser beam on the surface of the processing object 2205 in the same manner as described above, it can be applied to laser peening and the like.
 このように、本実施の形態のレーザ加工装置2201は、ビーム品質が高いレーザ光を安定的に生成することが可能であり、レーザマーキングやレーザピーニングなど、レーザ加工装置に用いる光源として好適に用いることができる。また、レーザピーニングには、波長変換光として、441nm~592nmの波長の光を生成するレーザ光源を用いることが望ましく、これにより、水がレーザ光を吸収することで蒸発することを防ぎ、加工対象2205の照射面での高いレーザピーニング効果を発現することが可能となる。 As described above, the laser processing apparatus 2201 of this embodiment can stably generate laser light with high beam quality and is preferably used as a light source used in a laser processing apparatus such as laser marking or laser peening. be able to. In laser peening, it is desirable to use a laser light source that generates light having a wavelength of 441 nm to 592 nm as wavelength conversion light. This prevents water from evaporating due to absorption of the laser light, and enables processing. A high laser peening effect on the irradiated surface of 2205 can be exhibited.
 なお、本実施の形態では、スキャンミラーを用いたレーザ走査型の加工装置について述べたが、これは、上記の波長変換レーザ光源を用いた加工装置の一例であり、例えば、図29に示すファイバ付レーザ光源2300としてもよい。 In this embodiment, a laser scanning type processing apparatus using a scan mirror is described. This is an example of a processing apparatus using the above-described wavelength conversion laser light source. For example, the fiber shown in FIG. The attached laser light source 2300 may be used.
 図29に示すファイバ付レーザ光源2300は、本体2301、出力設定部2302及び電源スイッチ2306を備える。本体2301は、その内部に上記のいずれかの波長変換レーザ光源と、波長変換レーザ光源のレーザ光の出力を制御する出力制御部を備え、その前面パネルに、レーザ光の出力を設定するための出力設定部2302及び電源をオン/オフするための電源スイッチ2306が設けられている。 29 includes a main body 2301, an output setting unit 2302, and a power switch 2306. The main body 2301 includes any one of the wavelength conversion laser light sources described above and an output control unit that controls the output of the laser light from the wavelength conversion laser light source, and sets the output of the laser light on the front panel. An output setting unit 2302 and a power switch 2306 for turning on / off the power are provided.
 ファイバ付レーザ光源2300は、本体2301に内蔵された波長変換レーザ光源にて生成したレーザ光を、出力コネクタ2303を介してデリバリファイバ2304に入射させ、デリバリファイバ2304は、波長変換レーザ光源から出射するレーザ光を導光してハンドピース2305に導き、ハンドピース2305から任意の照射面にレーザ光である出射ビームEBを照射するようにしてもよい。このような構成とすることにより、手術等に用いるファイバ付レーザ光源を実現することが可能となる。 The laser light source with fiber 2300 causes the laser light generated by the wavelength conversion laser light source incorporated in the main body 2301 to enter the delivery fiber 2304 via the output connector 2303, and the delivery fiber 2304 emits from the wavelength conversion laser light source. The laser beam may be guided to the handpiece 2305, and an arbitrary irradiation surface may be irradiated from the handpiece 2305 with the outgoing beam EB that is a laser beam. By adopting such a configuration, it becomes possible to realize a laser light source with a fiber used for surgery or the like.
 なお、上記の各実施の形態において、パルスファイバレーザ光源は、希土類元素としてYbをドープしたファイバを用いたが、他の希土類元素、例えば、Nd、Er、Dy、Pr、Tb、Eu、等から選択された少なくとも1つの希土類元素を用いてもよい。また、波長変換素子の波長や出力に応じて、希土類元素のドープ量を変えたり、複数の希土類元素をドープしたりしてもよい。 In each of the above embodiments, the pulse fiber laser light source uses a fiber doped with Yb as a rare earth element, but other rare earth elements such as Nd, Er, Dy, Pr, Tb, Eu, etc. At least one selected rare earth element may be used. Further, the doping amount of the rare earth element may be changed or a plurality of rare earth elements may be doped according to the wavelength and output of the wavelength conversion element.
 また、上記の各実施の形態において、パルスファイバレーザ光源のポンプ用LDとして、波長915nm及び波長976nmのレーザ等を用いたが、ファイバレーザを励起できるものであれば、これらの波長以外のレーザ光源を用いてもよい。また、波長変換素子として、周期分極反転MgO:LiNbO等を用いたが、他の材料や構造の波長変換素子、例えば、周期的に分極反転構造を有するリン酸チタニルカリウム(KTP)やMg:LiTaO等を用いてもよい。 In each of the above-described embodiments, a laser having a wavelength of 915 nm and a wavelength of 976 nm is used as the LD for pumping the pulse fiber laser light source. However, as long as the fiber laser can be excited, laser light sources other than these wavelengths are used. May be used. Further, as the wavelength conversion element, periodic polarization reversal MgO: LiNbO 3 or the like was used, but wavelength conversion elements of other materials or structures, for example, potassium titanyl phosphate (KTP) or Mg: LiTaO 3 or the like may be used.
 上記の各実施の形態から本発明について要約すると、以下のようになる。すなわち、本発明に係るパルスファイバレーザ光源は、励起光を出射する励起用レーザ光源と、レーザ活性物質を含み、前記励起用レーザ光源から励起光を入射されるファイバ部材と、前記ファイバ部材を挟む形で前記ファイバ部材に光学的に接続されている一組のファイバグレーティングとを含むレーザ共振器とを備え、前記ファイバ部材には励起光が実質的に到達しない領域が設けられており、前記レーザ共振器から出射される光パルスの第1ピークが形成され且つ第2ピークが形成されないように遮断される。 From the above embodiments, the present invention is summarized as follows. That is, the pulse fiber laser light source according to the present invention includes an excitation laser light source that emits excitation light, a fiber member that contains a laser active substance, and is irradiated with excitation light from the excitation laser light source, and sandwiches the fiber member. A laser resonator including a set of fiber gratings optically connected to the fiber member, wherein the fiber member is provided with a region where excitation light does not substantially reach, The first peak of the light pulse emitted from the resonator is formed and blocked so that the second peak is not formed.
 このパルスファイバレーザ光源においては、ファイバ部材に励起光が実質的に到達しない領域が設けられているので、レーザ共振器が自ら発振した光を自己吸収して発振が不安定になり、出力光がパルス化しやすい状態となる。このとき、励起用レーザ光源を駆動する入力電流が、レーザ共振器から出射される光パルスの第1ピークが形成され且つ第2ピークが形成されないように遮断されるので、急峻な立ち上がり特性を持った励起光でレーザ共振器を励起することにより、高ピークなパルス光を出射することができる。この結果、新たに高価な部品を追加することなく、パルス発振が可能になるため、簡略な構成で高効率なパルスファイバレーザ光源を実現することができる。 In this pulsed fiber laser light source, since the region where the excitation light does not substantially reach the fiber member is provided, the laser resonator self-absorbs the light itself oscillated and the oscillation becomes unstable, and the output light is It becomes a state that is easy to pulse. At this time, the input current for driving the excitation laser light source is cut off so that the first peak of the light pulse emitted from the laser resonator is formed and the second peak is not formed, so that it has a steep rise characteristic. By exciting the laser resonator with the excited light, high-peak pulsed light can be emitted. As a result, pulse oscillation is possible without adding new expensive parts, and a highly efficient pulse fiber laser light source can be realized with a simple configuration.
 前記入力電流を遮断した後に、前記入力電流によって前記励起用レーザ光源が再び駆動されることにより、前記レーザ共振器は、複数の光パルスを繰り返し出射することが好ましい。 It is preferable that after the input current is cut off, the laser light source for excitation is again driven by the input current, so that the laser resonator repeatedly emits a plurality of light pulses.
 この場合、急峻な立ち上がり特性を持った励起光でレーザ共振器を周期的に繰り返し励起することができるので、高ピークなパルス光を繰り返し出射することができる。 In this case, since the laser resonator can be periodically and repeatedly excited with excitation light having a steep rise characteristic, high peak pulse light can be repeatedly emitted.
 前記ファイバ部材は、第1及び第2のファイバと、前記第1及び第2のファイバの間に配置され、励起光を吸収する励起光吸収機構とを含むことが好ましい。 The fiber member preferably includes first and second fibers and an excitation light absorption mechanism that is disposed between the first and second fibers and absorbs excitation light.
 この場合、第1のファイバを励起光が伝搬した後、励起光吸収機構により励起光が吸収されるので、第2のファイバを励起光が到達しない領域にすることができる。 In this case, after the excitation light propagates through the first fiber, the excitation light is absorbed by the excitation light absorption mechanism, so that the second fiber can be made an area where the excitation light does not reach.
 上記パルスファイバレーザ光源は、前記励起用レーザ光源と前記レーザ共振器とを光学的に結合するステップインデックス型マルチモードファイバをさらに備え、前記ステップインデックス型マルチモードファイバのNAは、前記励起用レーザ光源の出射側ファイバのNA以上で且つ前記レーザ共振器の入射側ファイバの励起光に対するNA以下であることが好ましい。 The pulse fiber laser light source further includes a step index type multimode fiber that optically couples the excitation laser light source and the laser resonator, and the NA of the step index type multimode fiber is the excitation laser light source. It is preferable that it is NA or more with respect to the excitation light of the incident side fiber of the laser resonator.
 この場合、レーザ共振器内で発振した光が励起用レーザ光源へ逆流することを防止できるので、励起用レーザ光源の戻り光による破壊を防止することができる。 In this case, since the light oscillated in the laser resonator can be prevented from flowing back to the excitation laser light source, it is possible to prevent the excitation laser light source from being damaged by the return light.
 上記パルスファイバレーザ光源は、前記励起用レーザ光源と前記レーザ共振器とを光学的に結合するマルチモードコンバイナをさらに備え、前記マルチモードコンバイナの複数の入力ポートのNAは、前記励起用レーザ光源の出射側ファイバのNA以上であり、前記マルチモードコンバイナの出力ポートのNAは、前記レーザ共振器の入射側ファイバの励起光に対するNA以下であり、前記マルチモードコンバイナの複数の入力ポートのうち少なくとも一つは、前記励起用レーザ光源に光学的に接続されていないことが好ましい。 The pulse fiber laser light source further includes a multimode combiner that optically couples the excitation laser light source and the laser resonator, and NAs of a plurality of input ports of the multimode combiner are The NA of the output side fiber is equal to or greater than the NA of the output port of the multimode combiner, and is equal to or less than the NA of the pump light of the incident side fiber of the laser resonator, and at least one of the plurality of input ports of the multimode combiner. One is preferably not optically connected to the excitation laser light source.
 この場合、ファイバのNAの違いにより励起用レーザ光源への戻り光を低減する効果に加え、ファイバが分岐されていることによる戻り光低減の効果を得ることができるとともに、少なくとも一つの入力ポートが励起用レーザ光源に光学的に接続されていないので、戻り光の影響をより小さくすることができる。 In this case, in addition to the effect of reducing the return light to the excitation laser light source due to the difference in the NA of the fiber, the effect of reducing the return light due to the branching of the fiber can be obtained, and at least one input port has Since it is not optically connected to the excitation laser light source, the influence of the return light can be further reduced.
 前記励起用レーザ光源に印加する入力電流の立ち上がり速度は、1ns~100nsであることが好ましい。この場合、レーザ共振器をパルス発振させることができる。 The rising speed of the input current applied to the excitation laser light source is preferably 1 ns to 100 ns. In this case, the laser resonator can be pulse-oscillated.
 上記パルスファイバレーザ光源は、前記光パルスの光出力を検出する検出部と、前記入力電流を前記励起用レーザ光源に印加する光源駆動部とをさらに備え、前記光源駆動部は、前記検出部による検出信号を基に前記入力電流を遮断することが好ましい。 The pulse fiber laser light source further includes a detection unit that detects an optical output of the optical pulse, and a light source driving unit that applies the input current to the excitation laser light source, and the light source driving unit is based on the detection unit. It is preferable to cut off the input current based on the detection signal.
 この場合、高出力ピーク値をもつ光パルスをパルス列として発生することができる光電変換効率の高いパルスファイバレーザ光源を簡単な構成により実現することができる。 In this case, a pulse fiber laser light source with high photoelectric conversion efficiency capable of generating an optical pulse having a high output peak value as a pulse train can be realized with a simple configuration.
 前記検出部は、前記ファイバ部材の途中に光学的に接続された分岐ファイバから前記光パルスの光出力を検出することが好ましい。 It is preferable that the detection unit detects an optical output of the optical pulse from a branch fiber optically connected in the middle of the fiber member.
 この場合、ピーク値を含む光パルスの発生を的確に把握することができるので、さらに簡単な装置の構成で単一の高出力ピーク値をもつ光パルスをパルス列として発生することができる。 In this case, since the generation of an optical pulse including a peak value can be accurately grasped, an optical pulse having a single high output peak value can be generated as a pulse train with a simpler device configuration.
 上記パルスファイバレーザ光源は、前記レーザ共振器から出射される光パルスを増幅する増幅器をさらに備え、前記増幅器は、増幅用レーザ光源と、レーザ活性物質を含み、偏波保持構造を有する増幅用ファイバと、前記増幅用レーザ光源と前記増幅用ファイバとを光学的に結合するコンバイナとを備え、前記増幅用ファイバは、前記レーザ共振器から出射される光パルスを入射されるとともに、前記コンバイナを介して前記増幅用レーザ光源から励起光を入射され、前記励起用レーザ光源の駆動電流と、前記増幅用レーザ光源の駆動電流とは、所定のパルス幅及び所定の立ち上がり速度で同期して変調されることが好ましい。 The pulse fiber laser light source further includes an amplifier for amplifying an optical pulse emitted from the laser resonator, and the amplifier includes an amplification laser light source, a laser active material, and an amplification fiber having a polarization maintaining structure. And a combiner that optically couples the amplification laser light source and the amplification fiber, and the amplification fiber receives an optical pulse emitted from the laser resonator and passes through the combiner. Then, excitation light is incident from the amplification laser light source, and the drive current of the excitation laser light source and the drive current of the amplification laser light source are modulated in synchronization with a predetermined pulse width and a predetermined rising speed. It is preferable.
 この場合、ピークパワーの大きな光パルスを得ることができるので、金属のレーザトリミング等を加工用途にパルスファイバレーザ光源を用いることができる。 In this case, since a light pulse with a large peak power can be obtained, a pulse fiber laser light source can be used for processing such as metal laser trimming.
 前記増幅用レーザ光源の駆動電流の立ち下がりタイミングは、前記励起用レーザ光源の駆動電流のたち下がりタイミングより早いことが好ましい。 The fall timing of the drive current of the amplification laser light source is preferably earlier than the fall timing of the drive current of the excitation laser light source.
 この場合、増幅器からの出力光波形における立ち下がり時の裾を小さくすることができるので、例えば、スキャニングミラーを使用してレーザ加工する際に、加工速度及び加工精度を高めることができる。 In this case, since the trailing edge of the output light waveform from the amplifier can be reduced, for example, when laser processing is performed using a scanning mirror, the processing speed and processing accuracy can be increased.
 本発明に係る波長変換レーザ光源は、上記いずれかに記載のパルスファイバレーザ光源と、前記パルスファイバレーザ光源から出射される基本波光を高調波光に変換する波長変換素子とを備え、前記基本波光の集光位置は、前記波長変換素子の素子端面から0~10mmの位置である。 A wavelength conversion laser light source according to the present invention includes any one of the pulse fiber laser light source described above and a wavelength conversion element that converts the fundamental light emitted from the pulse fiber laser light source into a harmonic light. The condensing position is a position of 0 to 10 mm from the end face of the wavelength conversion element.
 この波長変換レーザ光源においては、パルスファイバレーザ光源をパルス化し、効率よく波長変換することができるとともに、波長変換素子の結晶破壊を防止することができるので、より信頼性の高い波長変換レーザ光源を実現できる。 In this wavelength conversion laser light source, a pulsed fiber laser light source can be pulsed and wavelength conversion can be performed efficiently, and crystal destruction of the wavelength conversion element can be prevented. Therefore, a more reliable wavelength conversion laser light source can be obtained. realizable.
 本発明に係る他の波長変換レーザ光源は、上記のいずれかに記載のパルスファイバレーザ光源と、前記パルスファイバレーザ光源から出射される基本波光を高調波光に変換する波長変換素子とを備え、前記波長変換素子の長さは、0~10mmである。 Another wavelength conversion laser light source according to the present invention includes the pulse fiber laser light source according to any one of the above, and a wavelength conversion element that converts fundamental light emitted from the pulse fiber laser light source into harmonic light, The length of the wavelength conversion element is 0 to 10 mm.
 この波長変換レーザ光源においては、パルスファイバレーザ光源をパルス化し、効率よく波長変換することができるとともに、波長変換素子の結晶破壊を防止することができるので、より信頼性の高い波長変換レーザ光源を実現できる。 In this wavelength conversion laser light source, a pulsed fiber laser light source can be pulsed and wavelength conversion can be performed efficiently, and crystal destruction of the wavelength conversion element can be prevented. Therefore, a more reliable wavelength conversion laser light source can be obtained. realizable.
 前記波長変換素子は、実効的非線形光学定数が10pm/V以上である非線形光学結晶を含むことが好ましい。この場合、波長変換素子における緑色高出力の飽和及び結晶破壊を防止することができる。 The wavelength conversion element preferably includes a nonlinear optical crystal having an effective nonlinear optical constant of 10 pm / V or more. In this case, it is possible to prevent green high-power saturation and crystal destruction in the wavelength conversion element.
 本発明に係る2次元画像表示装置は、上記いずれかに記載の波長変換レーザ光源と、前記波長変換レーザ光源からのレーザ光を用いて画像を表示する表示部と、前記波長変換レーザ光源を制御するコントローラとを備える。 A two-dimensional image display device according to the present invention controls the wavelength-converted laser light source according to any one of the above, a display unit that displays an image using laser light from the wavelength-converted laser light source, and the wavelength-converted laser light source. Controller.
 この2次元画像表示装置においては、視感度の高い緑色のレーザ出力光を得ることができ、色再現性の良いディスプレイとして、さらに原色に近い色表現をすることができる。 In this two-dimensional image display device, green laser output light with high visibility can be obtained, and as a display with good color reproducibility, color representation close to the primary color can be achieved.
 本発明に係る液晶表示装置は、液晶表示パネルと、上記いずれかに記載の波長変換レーザ光源と、前記波長変換レーザ光源からのレーザ光を用いて前記液晶表示パネルを照明するバックライト照明装置とを備える。 A liquid crystal display device according to the present invention includes a liquid crystal display panel, the wavelength conversion laser light source according to any one of the above, and a backlight illumination device that illuminates the liquid crystal display panel using laser light from the wavelength conversion laser light source. Is provided.
 この液晶表示装置においては、単一の高出力ピーク値をもつ光電変換効率の高いパルスファイバレーザ光源を用いているので、高輝度で色再現性に優れ、簡単な構成で低消費電力の安定した画像表示装置を実現することができる。 In this liquid crystal display device, a pulsed fiber laser light source having a single high output peak value and high photoelectric conversion efficiency is used, so that it has high brightness, excellent color reproducibility, a simple configuration and low power consumption and stable An image display device can be realized.
 本発明に係るレーザ加工装置は、上記いずれかに記載の波長変換レーザ光源と、前記波長変換レーザ光源から出射するレーザ光を加工対象に導く光学系とを備える。 A laser processing apparatus according to the present invention includes the wavelength conversion laser light source according to any one of the above and an optical system that guides laser light emitted from the wavelength conversion laser light source to a processing target.
 このレーザ加工装置においては、ビーム品質が高いレーザ光を安定的に生成することができるので、レーザマーキングやレーザピーニングなど種々のレーザ加工を行う高効率なレーザ加工装置を実現することができる。 Since this laser processing apparatus can stably generate laser light with high beam quality, it is possible to realize a highly efficient laser processing apparatus that performs various laser processing such as laser marking and laser peening.
 本発明に係るファイバ付レーザ光源は、上記いずれかに記載の波長変換レーザ光源と、前記波長変換レーザ光源から出射するレーザ光を導光する導光ファイバ部材とを備える。 A fiber-attached laser light source according to the present invention includes any one of the wavelength conversion laser light sources described above and a light guide fiber member that guides laser light emitted from the wavelength conversion laser light source.
 このファイバ付レーザ光源においては、導光ファイバ部材の先端から任意の照射面にレーザ光を照射することができるので、手術等に用いるファイバ付レーザ光源を実現することができる。 In this laser light source with a fiber, laser light can be irradiated onto an arbitrary irradiation surface from the tip of the light guide fiber member, so that a laser light source with a fiber used for surgery or the like can be realized.
 本発明のパルスファイバレーザ光源によれば、高効率且つ高ピークパワーのパルス光源を得られるため、加工用途のレーザ光や波長変換レーザ光源の基本波として使用することにより、レーザ応用装置そのものの効率を向上することが可能になるとともに、温度特性も合わせて改善されるため、外気温等が変化した場合においても、安定して高効率なパルス光源として使用することが可能となる。特に、ポンプ用LDの冷却にペルチェ素子等の冷却機構を必要とせず、ヒートシンクと冷却ファンによる強制空冷のみで、室温~40℃又は室温~50℃程度の環境で使用できるパルスファイバレーザ光源を実現することが可能となるため、トータルの投入電力から光出力への変換効率を向上させることが可能となる。 According to the pulse fiber laser light source of the present invention, a pulse light source with high efficiency and high peak power can be obtained. Therefore, even when the outside air temperature or the like changes, it can be used as a stable and highly efficient pulse light source. In particular, a cooling system such as a Peltier element is not required for cooling the pump LD, and a pulsed fiber laser light source that can be used in an environment of room temperature to 40 ° C or room temperature to 50 ° C is realized only by forced air cooling using a heat sink and a cooling fan. Therefore, the conversion efficiency from the total input power to the optical output can be improved.

Claims (17)

  1.  励起光を出射する励起用レーザ光源と、
     レーザ活性物質を含み、前記励起用レーザ光源から励起光を入射されるファイバ部材と、前記ファイバ部材を挟む形で前記ファイバ部材に光学的に接続されている一組のファイバグレーティングとを含むレーザ共振器とを備え、
     前記ファイバ部材には励起光が実質的に到達しない領域が設けられており、
     前記励起用レーザ光源を駆動する入力電流は、前記レーザ共振器から出射される光パルスの第1ピークが形成され且つ第2ピークが形成されないように遮断されることを特徴とするパルスファイバレーザ光源。
    An excitation laser light source that emits excitation light;
    Laser resonance including a fiber member containing a laser active substance and receiving excitation light from the excitation laser light source, and a set of fiber gratings optically connected to the fiber member with the fiber member interposed therebetween Equipped with
    The fiber member is provided with a region where excitation light does not substantially reach,
    A pulsed fiber laser light source characterized in that an input current for driving the excitation laser light source is blocked so that a first peak of an optical pulse emitted from the laser resonator is formed and a second peak is not formed. .
  2.  前記入力電流を遮断した後に、前記入力電流によって前記励起用レーザ光源が再び駆動されることにより、前記レーザ共振器は、複数の光パルスを繰り返し出射することを特徴とする請求項1に記載のパルスファイバレーザ光源。 2. The laser resonator according to claim 1, wherein the laser resonator repeatedly emits a plurality of light pulses when the pumping laser light source is driven again by the input current after the input current is cut off. Pulse fiber laser light source.
  3.  前記ファイバ部材は、
     第1及び第2のファイバと、
     前記第1及び第2のファイバの間に配置され、励起光を吸収する励起光吸収機構とを含むことを特徴とする請求項1又は2に記載のパルスファイバレーザ光源。
    The fiber member is
    First and second fibers;
    3. The pulse fiber laser light source according to claim 1, further comprising an excitation light absorption mechanism that is disposed between the first and second fibers and absorbs excitation light. 4.
  4.  前記励起用レーザ光源と前記レーザ共振器とを光学的に結合するステップインデックス型マルチモードファイバをさらに備え、
     前記ステップインデックス型マルチモードファイバのNAは、前記励起用レーザ光源の出射側ファイバのNA以上で且つ前記レーザ共振器の入射側ファイバの励起光に対するNA以下であることを特徴とする請求項1~3のいずれかに記載のパルスファイバレーザ光源。
    A step index type multimode fiber that optically couples the excitation laser light source and the laser resonator;
    The NA of the step index type multimode fiber is not less than the NA of the exit side fiber of the excitation laser light source and not more than the NA of the excitation light of the incident side fiber of the laser resonator. 4. The pulse fiber laser light source according to any one of 3 above.
  5.  前記励起用レーザ光源と前記レーザ共振器とを光学的に結合するマルチモードコンバイナをさらに備え、
     前記マルチモードコンバイナの複数の入力ポートのNAは、前記励起用レーザ光源の出射側ファイバのNA以上であり、前記マルチモードコンバイナの出力ポートのNAは、前記レーザ共振器の入射側ファイバの励起光に対するNA以下であり、
     前記マルチモードコンバイナの複数の入力ポートのうち少なくとも一つは、前記励起用レーザ光源に光学的に接続されていないことを特徴とする請求項1~3のいずれかに記載のパルスファイバレーザ光源。
    A multi-mode combiner that optically couples the excitation laser light source and the laser resonator;
    The NA of the plurality of input ports of the multimode combiner is equal to or greater than the NA of the output side fiber of the excitation laser light source, and the NA of the output port of the multimode combiner is the excitation light of the incident side fiber of the laser resonator. NA or less for
    The pulse fiber laser light source according to any one of claims 1 to 3, wherein at least one of the plurality of input ports of the multimode combiner is not optically connected to the excitation laser light source.
  6.  前記励起用レーザ光源に印加する入力電流の立ち上がり速度は、1ns~100nsであることを特徴とする請求項1~5のいずれかに記載のパルスファイバレーザ光源。 6. The pulse fiber laser light source according to claim 1, wherein the rising speed of the input current applied to the excitation laser light source is 1 ns to 100 ns.
  7.  前記光パルスの光出力を検出する検出部と、
     前記入力電流を前記励起用レーザ光源に印加する光源駆動部とをさらに備え、
     前記光源駆動部は、前記検出部による検出信号を基に前記入力電流を遮断することを特徴とする請求項1~6のいずれかに記載のパルスファイバレーザ光源。
    A detector for detecting the light output of the light pulse;
    A light source driving unit for applying the input current to the excitation laser light source;
    7. The pulsed fiber laser light source according to claim 1, wherein the light source driving unit cuts off the input current based on a detection signal from the detection unit.
  8.  前記検出部は、前記ファイバ部材の途中に光学的に接続された分岐ファイバから前記光パルスの光出力を検出することを特徴とする請求項7に記載のパルスファイバレーザ光源。 The pulse fiber laser light source according to claim 7, wherein the detection unit detects an optical output of the optical pulse from a branched fiber optically connected in the middle of the fiber member.
  9.  前記レーザ共振器から出射される光パルスを増幅する増幅器をさらに備え、
     前記増幅器は、
     増幅用レーザ光源と、
     レーザ活性物質を含み、偏波保持構造を有する増幅用ファイバと、
     前記増幅用レーザ光源と前記増幅用ファイバとを光学的に結合するコンバイナとを備え、
     前記増幅用ファイバは、前記レーザ共振器から出射される光パルスを入射されるとともに、前記コンバイナを介して前記増幅用レーザ光源から励起光を入射され、
     前記励起用レーザ光源の駆動電流と、前記増幅用レーザ光源の駆動電流とは、所定のパルス幅及び所定の立ち上がり速度で同期して変調されることを特徴とする請求項1~8のいずれかに記載のパルスファイバレーザ光源。
    An amplifier for amplifying an optical pulse emitted from the laser resonator;
    The amplifier is
    An amplification laser light source;
    An amplifying fiber containing a laser active material and having a polarization maintaining structure;
    A combiner for optically coupling the amplification laser light source and the amplification fiber;
    The amplification fiber receives a light pulse emitted from the laser resonator and receives excitation light from the amplification laser light source via the combiner,
    9. The drive current of the excitation laser light source and the drive current of the amplification laser light source are modulated in synchronization with a predetermined pulse width and a predetermined rising speed. The pulse fiber laser light source described in 1.
  10.  前記増幅用レーザ光源の駆動電流の立ち下がりタイミングは、前記励起用レーザ光源の駆動電流のたち下がりタイミングより早いことを特徴とする請求項9に記載のパルスファイバレーザ光源。 10. The pulse fiber laser light source according to claim 9, wherein the drive current fall timing of the amplification laser light source is earlier than the drive current fall timing of the excitation laser light source.
  11.  請求項1~10のいずれかに記載のパルスファイバレーザ光源と、
     前記パルスファイバレーザ光源から出射される基本波光を高調波光に変換する波長変換素子とを備え、
     前記基本波光の集光位置は、前記波長変換素子の素子端面から0~10mmの位置であることを特徴とする波長変換レーザ光源。
    A pulse fiber laser light source according to any one of claims 1 to 10,
    A wavelength conversion element that converts the fundamental light emitted from the pulse fiber laser light source into harmonic light, and
    The wavelength conversion laser light source characterized in that the converging position of the fundamental wave light is a position of 0 to 10 mm from the end face of the wavelength conversion element.
  12.  請求項1~10のいずれかに記載のパルスファイバレーザ光源と、
     前記パルスファイバレーザ光源から出射される基本波光を高調波光に変換する波長変換素子とを備え、
     前記波長変換素子の長さは、0~10mmであることを特徴とする波長変換レーザ光源。
    A pulse fiber laser light source according to any one of claims 1 to 10,
    A wavelength conversion element that converts the fundamental light emitted from the pulse fiber laser light source into harmonic light, and
    The wavelength conversion laser light source, wherein the wavelength conversion element has a length of 0 to 10 mm.
  13.  前記波長変換素子は、実効的非線形光学定数が10pm/V以上である非線形光学結晶を含むことを特徴とする請求項11又は12に記載の波長変換レーザ光源。 The wavelength conversion laser light source according to claim 11 or 12, wherein the wavelength conversion element includes a nonlinear optical crystal having an effective nonlinear optical constant of 10 pm / V or more.
  14.  請求項11~13のいずれかに記載の波長変換レーザ光源と、
     前記波長変換レーザ光源からのレーザ光を用いて画像を表示する表示部と、
     前記波長変換レーザ光源を制御するコントローラとを備えることを特徴とする2次元画像表示装置。
    A wavelength-converted laser light source according to any one of claims 11 to 13,
    A display unit for displaying an image using laser light from the wavelength conversion laser light source;
    And a controller for controlling the wavelength conversion laser light source.
  15.  液晶表示パネルと、
     請求項11~13のいずれかに記載の波長変換レーザ光源と、
     前記波長変換レーザ光源からのレーザ光を用いて前記液晶表示パネルを照明するバックライト照明装置とを備えることを特徴とする液晶表示装置。
    A liquid crystal display panel;
    A wavelength-converted laser light source according to any one of claims 11 to 13,
    A liquid crystal display device comprising: a backlight illumination device that illuminates the liquid crystal display panel using laser light from the wavelength conversion laser light source.
  16.  請求項11~13のいずれかに記載の波長変換レーザ光源と、
     前記波長変換レーザ光源から出射するレーザ光を加工対象に導く光学系とを備えることを特徴とするレーザ加工装置。
    A wavelength-converted laser light source according to any one of claims 11 to 13,
    An optical system for guiding a laser beam emitted from the wavelength conversion laser light source to a processing target.
  17.  請求項11~13のいずれかに記載の波長変換レーザ光源と、
     前記波長変換レーザ光源から出射するレーザ光を導光する導光ファイバ部材とを備えることを特徴とするファイバ付レーザ光源。
    A wavelength-converted laser light source according to any one of claims 11 to 13,
    A laser light source with a fiber, comprising: a light guide fiber member that guides laser light emitted from the wavelength conversion laser light source.
PCT/JP2009/001826 2008-04-25 2009-04-22 Pulsed fiber laser light source, wavelength conversion laser light source, two-dimensional image display device, liquid crystal display device, laser machining device and laser light source provided with fiber WO2009130894A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008115049A JP2011134735A (en) 2008-04-25 2008-04-25 Pulsed fiber laser beam source and wavelength conversion laser beam source
JP2008-115049 2008-04-25
JP2008290534A JP2011134736A (en) 2008-11-13 2008-11-13 Pulse fiber laser device, image display device and processing device
JP2008-290534 2008-11-13

Publications (1)

Publication Number Publication Date
WO2009130894A1 true WO2009130894A1 (en) 2009-10-29

Family

ID=41216635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001826 WO2009130894A1 (en) 2008-04-25 2009-04-22 Pulsed fiber laser light source, wavelength conversion laser light source, two-dimensional image display device, liquid crystal display device, laser machining device and laser light source provided with fiber

Country Status (1)

Country Link
WO (1) WO2009130894A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016170A1 (en) * 2009-08-03 2011-02-10 パナソニック株式会社 Wavelength conversion laser and image display device
WO2011102378A1 (en) * 2010-02-22 2011-08-25 株式会社フジクラ Fiber laser apparatus
JP2012079966A (en) * 2010-10-04 2012-04-19 Miyachi Technos Corp Fiber laser processing device and laser diode power supply unit for excitation
CN103021826A (en) * 2011-09-27 2013-04-03 住友重机械工业株式会社 Laser annealing device and laser annealing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03282432A (en) * 1990-03-30 1991-12-12 Ushio Inc Double wave generating device
JPH05107573A (en) * 1991-10-17 1993-04-30 Fujitsu Ltd Optical amplifier
JPH0758396A (en) * 1993-08-13 1995-03-03 Nec Corp Laser oscillator
JPH11274659A (en) * 1998-03-25 1999-10-08 Laser Atom Separation Eng Res Assoc Of Japan Color element laser device
JP2001352116A (en) * 2000-06-07 2001-12-21 Nikon Corp Laser device, aligner using the same, and exposing method
JP2002511660A (en) * 1998-04-16 2002-04-16 スリーディー システムズ インコーポレーテッド Lateral pumping laser
JP2002167297A (en) * 2000-11-29 2002-06-11 Hitachi Metals Ltd Single crystal of lithium tantalate and optical device using it
JP2003086873A (en) * 2001-09-10 2003-03-20 Hamamatsu Photonics Kk Passive q switch laser
JP2005174993A (en) * 2003-12-08 2005-06-30 Mitsubishi Cable Ind Ltd Pulse fiber laser equipment
JP2008235806A (en) * 2007-03-23 2008-10-02 Fujikura Ltd Optical pulse generator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03282432A (en) * 1990-03-30 1991-12-12 Ushio Inc Double wave generating device
JPH05107573A (en) * 1991-10-17 1993-04-30 Fujitsu Ltd Optical amplifier
JPH0758396A (en) * 1993-08-13 1995-03-03 Nec Corp Laser oscillator
JPH11274659A (en) * 1998-03-25 1999-10-08 Laser Atom Separation Eng Res Assoc Of Japan Color element laser device
JP2002511660A (en) * 1998-04-16 2002-04-16 スリーディー システムズ インコーポレーテッド Lateral pumping laser
JP2001352116A (en) * 2000-06-07 2001-12-21 Nikon Corp Laser device, aligner using the same, and exposing method
JP2002167297A (en) * 2000-11-29 2002-06-11 Hitachi Metals Ltd Single crystal of lithium tantalate and optical device using it
JP2003086873A (en) * 2001-09-10 2003-03-20 Hamamatsu Photonics Kk Passive q switch laser
JP2005174993A (en) * 2003-12-08 2005-06-30 Mitsubishi Cable Ind Ltd Pulse fiber laser equipment
JP2008235806A (en) * 2007-03-23 2008-10-02 Fujikura Ltd Optical pulse generator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Conference on Lasers and Electro-Optics Europe, 2003, 2003.06.22", article L. TORDELLA ET AL.: "An integrated Nd3+:Cr4+ passively Q-switched all-fiber laser", pages: 606 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016170A1 (en) * 2009-08-03 2011-02-10 パナソニック株式会社 Wavelength conversion laser and image display device
CN102124616A (en) * 2009-08-03 2011-07-13 松下电器产业株式会社 Wavelength conversion laser and image display device
US8351108B2 (en) 2009-08-03 2013-01-08 Panasonic Corporation Wavelength conversion laser and image display device
CN102124616B (en) * 2009-08-03 2013-08-21 松下电器产业株式会社 Wavelength conversion laser and image display device
JP5380461B2 (en) * 2009-08-03 2014-01-08 パナソニック株式会社 Wavelength conversion laser and image display device
WO2011102378A1 (en) * 2010-02-22 2011-08-25 株式会社フジクラ Fiber laser apparatus
JPWO2011102378A1 (en) * 2010-02-22 2013-06-17 株式会社フジクラ Fiber laser equipment
JP2012079966A (en) * 2010-10-04 2012-04-19 Miyachi Technos Corp Fiber laser processing device and laser diode power supply unit for excitation
CN103021826A (en) * 2011-09-27 2013-04-03 住友重机械工业株式会社 Laser annealing device and laser annealing method
CN103021826B (en) * 2011-09-27 2016-06-29 住友重机械工业株式会社 Laser anneal device and laser anneal method

Similar Documents

Publication Publication Date Title
US7542491B2 (en) Wavelength converter and two-dimensional image display device
JP5211062B2 (en) Fiber laser light source
JP5231990B2 (en) Illumination light source and laser projection apparatus
US8270440B2 (en) Laser light source and optical device
US8073022B2 (en) Laser light source device and image display device
JP5096379B2 (en) Solid-state laser device, display device, and wavelength conversion element
WO2006006701A1 (en) Coherent light source and optical device using the same
JP5191692B2 (en) Laser light source device and image display device
JP5096171B2 (en) Laser light source device, image display device, and illumination device
JP2001083557A (en) Laser device
US6711187B2 (en) Rapidly oscillating laser light source
JP5151018B2 (en) Light source device
WO2009130894A1 (en) Pulsed fiber laser light source, wavelength conversion laser light source, two-dimensional image display device, liquid crystal display device, laser machining device and laser light source provided with fiber
JP2001085771A (en) Laser device
JP2011134735A (en) Pulsed fiber laser beam source and wavelength conversion laser beam source
JP2011134736A (en) Pulse fiber laser device, image display device and processing device
JP6508058B2 (en) Light source device and wavelength conversion method
JP5380461B2 (en) Wavelength conversion laser and image display device
JPH09162470A (en) 2-wavelength laser oscillator
US7489437B1 (en) Fiber laser red-green-blue (RGB) light source
JP2004157217A (en) Wavelength converting laser beam source
JP2008010720A (en) Fiber laser device
US7697577B2 (en) Wavelength conversion apparatus and two-dimensional image display apparatus
JP4977531B2 (en) Wavelength conversion device and two-dimensional image display device
JP2009212108A (en) Laser oscillation method, laser, laser processing method and laser measurement method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09735177

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09735177

Country of ref document: EP

Kind code of ref document: A1