JPH05267746A - Ferromagnetic magnetoresistance element - Google Patents

Ferromagnetic magnetoresistance element

Info

Publication number
JPH05267746A
JPH05267746A JP4065025A JP6502592A JPH05267746A JP H05267746 A JPH05267746 A JP H05267746A JP 4065025 A JP4065025 A JP 4065025A JP 6502592 A JP6502592 A JP 6502592A JP H05267746 A JPH05267746 A JP H05267746A
Authority
JP
Japan
Prior art keywords
film
pattern
electrodes
alloy
hard bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4065025A
Other languages
Japanese (ja)
Other versions
JP3047607B2 (en
Inventor
Keizo Inoue
敬三 井上
Hiroshi Yoshikawa
寛 吉川
Masaaki Kaneshige
昌明 金栄
Takuji Nakagawa
卓二 中川
Yoshifumi Ogiso
美文 小木曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP4065025A priority Critical patent/JP3047607B2/en
Publication of JPH05267746A publication Critical patent/JPH05267746A/en
Application granted granted Critical
Publication of JP3047607B2 publication Critical patent/JP3047607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To obtain a ferromagnetic magnetoresistance element, which is provided with electrodes which are superior in bondability, such as solderability, and wherein the compositional deviation of a hard bias film is not generated, by a method wherein a deposited film consisting of a specified Co-Ni alloy is formed on the lead-out part of a ferromagnetic magnetoresistance film pattern and this deposited film is formed by patterning as an electrode which is used also as a hard bias bar in combination. CONSTITUTION:A ferromagnetic magnetoresistance film pattern is formed on the main surface on one side of the main surfaces of an insulating substrate 1, a deposited film consisting of a CoXNi1-X alloy (where, 80wt.%<=X<=95wt.%), such as an Ni-25% of Co alloy, is formed on the lead-out part of this pattern by a deposition method in a magnetic field, then, a magnetism-sensing part 2 consisting of a rectangular pattern is formed by photolithography. Subsequently, Ti layers are respectively deposited on both end parts of the part 2 as base electrodes, Co-15% of Ni layers are respectively deposited on the upper layers of the Ti layers, these layers are patterned to form lead-out electrodes 3 and the electrodes 3 are magnetized in the longitudinal direction of the part 2. Thereby, as the electrodes, which are superior in bondability, such as solderability, are formed, the connection of a ferromagnetic magnetoresistance element with an external circuit is facilitated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、強磁性体の磁気抵抗
効果を利用して磁界を検出する強磁性磁気抵抗素子に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferromagnetic magnetoresistive element which detects a magnetic field by utilizing the magnetoresistive effect of a ferromagnetic material.

【0002】[0002]

【従来の技術】従来の強磁性磁気抵抗素子は、磁化方向
と電流方向とのなす角度により抵抗率が変化する強磁性
磁気抵抗効果を有するNi−Fe系合金またはNi−C
o系合金の薄膜を絶縁基板上に形成し、フォトリソグラ
フィにより磁界感磁部と引き出し電極部を形成し、必要
に応じて基板表面に保護膜を形成することにより構成し
ている。そして、動作磁界点を調整するため、または一
軸異方性を補完あるいは付与するため、磁界感磁部の表
面にその磁気容易軸方向に平行にハードバイアス層を形
成している。このハードバイアス層の材料としては、従
来よりCo−P系、Fe−Cr系、フェライト系などが
用いられている。
2. Description of the Related Art A conventional ferromagnetic magnetoresistive element is a Ni--Fe alloy or Ni--C having a ferromagnetic magnetoresistive effect in which the resistivity changes depending on the angle formed by the magnetization direction and the current direction.
This is configured by forming a thin film of an o-based alloy on an insulating substrate, forming a magnetic field sensitive portion and a lead electrode portion by photolithography, and forming a protective film on the surface of the substrate if necessary. Then, in order to adjust the operating magnetic field point or to complement or give uniaxial anisotropy, a hard bias layer is formed on the surface of the magnetic field sensitive section in parallel with the easy axis direction of the magnetic field. As a material of this hard bias layer, Co-P type, Fe-Cr type, ferrite type, etc. have been conventionally used.

【0003】[0003]

【発明が解決しようとする課題】ところが、前述した従
来のハードバイアス層の材料では、いずれも半田付け性
が低く、また真空蒸着法では、蒸着回数が増すごとにイ
ンゴットの組成ずれが大きくなり、したがってハードバ
イアス層の組成ずれも大きくなって、所期の特性が得ら
れなくなるという問題があった。
However, any of the materials for the conventional hard bias layers described above has low solderability, and in the vacuum deposition method, the composition deviation of the ingot increases as the number of depositions increases. Therefore, there is a problem that the compositional deviation of the hard bias layer becomes large and the desired characteristics cannot be obtained.

【0004】この発明の目的は、良好なハードバイアス
効果を有するハードバイアスバーとして、また半田付け
性などのボンディング性の良好な電極として作用する蒸
着膜を形成して、前述の問題を解消した強磁性磁気抵抗
素子を提供することにある。
An object of the present invention is to form a vapor-deposited film that acts as a hard bias bar having a good hard bias effect and as an electrode having a good bonding property such as soldering property, to solve the above-mentioned problems. It is to provide a magnetic magnetoresistive element.

【0005】[0005]

【課題を解決するための手段】この発明の強磁性磁気抵
抗素子は、絶縁基板の一方の主面に強磁性磁気抵抗膜パ
ターンを形成し、この強磁性磁気抵抗膜パターンの引き
出し部に、CoX Ni(1-X) 合金 (但し80wt%≦
X≦95wt%)からなる蒸着膜を形成するとともに、
この蒸着膜をハードバイアスバーとして着磁したことを
特徴とする。
According to the ferromagnetic magnetoresistive element of the present invention, a ferromagnetic magnetoresistive film pattern is formed on one main surface of an insulating substrate, and a Co X Ni (1-X) alloy (80wt% ≤
X ≦ 95 wt%), and at the same time,
The vapor-deposited film is magnetized as a hard bias bar.

【0006】[0006]

【作用】この発明の強磁性磁気抵抗素子では、絶縁基板
の一方の主面に強磁性磁気抵抗膜パターンが形成され、
この強磁性磁気抵抗膜パターンの引き出し部に形成され
る蒸着膜は、CoX Ni(1-X) 合金(ただし80wt%
≦X≦95wt%)からなり、この蒸着膜はハードバイ
アスバーとして着磁されている。
In the ferromagnetic magnetoresistive element of the present invention, the ferromagnetic magnetoresistive film pattern is formed on one main surface of the insulating substrate,
The vapor-deposited film formed on the lead-out portion of this ferromagnetic magnetoresistive film pattern is a Co X Ni (1-X) alloy (however, 80 wt%
≦ X ≦ 95 wt%), and this deposited film is magnetized as a hard bias bar.

【0007】このようにCoNi合金の蒸着膜は半田付
けなどのボンディング性が良好であり、ボンディング用
電極として用いることができる。また、発明者らの実験
により見いだした結果によれば、CoNi合金を前記組
成条件で真空蒸着することにより、蒸着毎に得られる蒸
着膜の組成変化が少なく、そのため磁気異方性の大きな
保磁力の小さな強磁性磁気抵抗膜が安定して得られる。
As described above, the vapor-deposited film of CoNi alloy has a good bonding property such as soldering and can be used as a bonding electrode. Further, according to the results found by the experiments of the inventors, by performing vacuum deposition of the CoNi alloy under the above composition conditions, the composition change of the deposited film obtained by each deposition is small, and therefore the coercive force with large magnetic anisotropy is obtained. It is possible to stably obtain a ferromagnetic magnetoresistive film having a small size.

【0008】[0008]

【実施例】この発明の第1の実施例に係る強磁性磁気抵
抗素子の構造を図1に示す。図1において(A)は部分
平面図、(B)は(A)におけるパターン方向の中央断
面図である。図1において、まず絶縁性ガラス基板1の
上面に、Ni−25%Co合金を磁場中蒸着法により膜
厚500Å成膜し、次いでフォトリソグラフィにより磁
気容易軸を長手方向として線幅20μm長さ1mmの短
冊状パターンからなる感磁部2を形成する。続いて、感
磁部2の両端部に、下地電極としてTiを500Å蒸着
し、その上層にCo−15%Niを3000Å蒸着し、
これをパターニングして引き出し電極3を形成する。ま
た、引き出し電極3は感磁部2の長手方向の向きに着磁
する。図中の矢印はその着磁方向を示す。その後、必要
に応じて電極3の上部にたとえばAu層を形成して、A
uワイヤーによるワイヤーボンディング性を高めてもよ
い。
1 shows the structure of a ferromagnetic magnetoresistive element according to the first embodiment of the present invention. In FIG. 1, (A) is a partial plan view and (B) is a central sectional view in the pattern direction in (A). In FIG. 1, first, a Ni-25% Co alloy is deposited on the upper surface of the insulating glass substrate 1 to a film thickness of 500Å by a magnetic field vapor deposition method, and then a line width of 20 μm and a length of 1 mm with the easy magnetic axis as the longitudinal direction by photolithography. The magnetic sensitive portion 2 having a strip-shaped pattern is formed. Then, 500 liters of Ti is deposited as a base electrode on both ends of the magnetic sensing part 2, and 3000 liters of Co-15% Ni is deposited on the upper layer thereof.
This is patterned to form the extraction electrode 3. Further, the extraction electrode 3 is magnetized in the longitudinal direction of the magnetic sensing part 2. The arrow in the figure indicates the magnetization direction. After that, an Au layer, for example, is formed on the electrode 3 if necessary, and A
You may improve the wire bondability by u wire.

【0009】次に、図1に示した試料を用い、ハードバ
イアス膜兼電極膜材料としてCo−P系、Fe−Cr
系、フェライト系を用いた場合を比較例として、蒸着回
数による特性変化の例を図5に、また磁気抵抗効果特性
の例を図6および図7に示す。
Next, using the sample shown in FIG. 1, as a hard bias film / electrode film material, Co-P type, Fe-Cr
5 and an example of the magnetoresistive effect characteristic are shown in FIGS. 6 and 7 as a comparative example, in which the case of using a system and a ferrite system is used as a comparative example.

【0010】図5において横軸は、同一材料について1
0個の試料を作成したときの蒸着回数(序数)、縦軸は
強磁性磁気抵抗素子の磁気抵抗効果特性から求めた保磁
力Hcである。この保磁力は、具体的には強磁性磁気抵
抗素子に加える磁界の強さおよび向きを変化させたとき
に現れる抵抗値のピークのずれにより測定した。このよ
うに従来のCo−P系、Fe−Cr系およびフェライト
系では、蒸着を行うごとに得られる強磁性磁気抵抗膜の
保磁力は増大するが、本願発明の実施例(Co−Ni)
では保磁力はほとんど増大しない。
In FIG. 5, the horizontal axis represents 1 for the same material.
The number of vapor depositions (ordinal number) when 0 samples were prepared, and the vertical axis represents the coercive force Hc obtained from the magnetoresistive effect characteristics of the ferromagnetic magnetoresistive element. Specifically, this coercive force was measured by the shift of the peak of the resistance value that appeared when the strength and direction of the magnetic field applied to the ferromagnetic magnetoresistive element were changed. As described above, in the conventional Co-P-based, Fe-Cr-based, and ferrite-based materials, the coercive force of the ferromagnetic magnetoresistive film obtained each time vapor deposition is increased, but the embodiment of the present invention (Co-Ni)
Then, the coercive force hardly increases.

【0011】図6および図7において横軸は信号磁界強
度、縦軸は素子の抵抗値である。ここで印加する磁界方
向は図1において紙面に平行で感磁部2に流れる電流方
向に直角な方向である。このようにハードバイアス膜の
一軸異方性が低下し、ハードバイアス効果が低下すれ
ば、磁界0からずれた点で抵抗値が最大となる2つのピ
ークが生じ、磁気抵抗特性にヒステリシスが生じること
がわかる。このようなヒステリシス性は強磁性磁気抵抗
膜内の異方性分散などに起因するものであると考えられ
る。
6 and 7, the horizontal axis represents the signal magnetic field strength and the vertical axis represents the resistance value of the element. The direction of the magnetic field applied here is a direction parallel to the paper surface in FIG. 1 and perpendicular to the direction of the current flowing through the magnetic sensing portion 2. Thus, if the uniaxial anisotropy of the hard bias film is reduced and the hard bias effect is reduced, two peaks having the maximum resistance value are generated at a point deviated from the magnetic field 0, which causes hysteresis in the magnetoresistive characteristic. I understand. It is considered that such a hysteresis property is caused by anisotropic dispersion in the ferromagnetic magnetoresistive film.

【0012】次に、第2の実施例に係る強磁性磁気抵抗
素子の構造を図2に示す。(A)はその部分平面図、
(B)は(A)におけるパターン方向の断面図である。
図2において、まずグレーズドアルミナ基板1のグレー
ズ面上にNi−18%Fe合金を磁場中蒸着法により膜
厚300Å成膜し、次いでフォトリソグラフィにより、
磁気容易軸を短辺方向として線幅50μm、長さ500
μmの短冊状パターンからなる感磁部2を形成する。続
いて、感磁部2の上部に、感磁部の幅に長さを同一とし
た幅5μmのCo−18%Ni合金を2000Å蒸着
し、15μmピッチで図に示すようにパターン4を配列
するとともに、感磁部の両端部に電極3をパターンニン
グし、これらを感磁部の磁気容易軸方向に着磁する。図
中の矢印はその着磁方向を示す。このことによって、パ
ターン4をハードバイアスバー、電極3をハードバイア
スバー兼引き出し電極として構成する。
Next, the structure of the ferromagnetic magnetoresistive element according to the second embodiment is shown in FIG. (A) is a partial plan view thereof,
(B) is a sectional view in the pattern direction in (A).
In FIG. 2, first, a Ni-18% Fe alloy was formed on the glaze surface of the glaze alumina substrate 1 by a magnetic field vapor deposition method to a film thickness of 300Å, and then by photolithography.
Magnetic easy axis in the short side direction line width 50 μm, length 500
The magnetic sensing portion 2 having a strip-shaped pattern of μm is formed. Then, a Co-18% Ni alloy having a width of 5 μm and a width of 5 μm is deposited on the upper portion of the magnetic sensing unit 2 by 2000Å, and the pattern 4 is arranged at a pitch of 15 μm as shown in the figure. At the same time, the electrodes 3 are patterned on both ends of the magnetic sensitive portion, and these are magnetized in the magnetic easy axis direction of the magnetic sensitive portion. The arrow in the figure indicates the magnetization direction. As a result, the pattern 4 is configured as a hard bias bar, and the electrode 3 is configured as a hard bias bar / drawing electrode.

【0013】次に、第3の実施例に係る強磁性磁気抵抗
素子の構造を図3に示す。(A)はその部分平面図、
(B)は(A)におけるパターンの中央部を通る断面図
である。図3において、まず熱酸化シリコン基板1の絶
縁面上にNi−50%Co合金を磁場中蒸着法により膜
厚400Å成膜し、フォトリソグラフィにより磁気容易
軸を45°方向として線幅60μm長さ300μmの短
冊状パターンからなる感磁部2を形成する。続いて、C
o−17%Ni合金を3000Å、Auを1000Å成
膜し、感磁部2の幅に高さを同一とし、斜辺を感磁部2
の磁気容易軸に平行とした底辺5μmの平行四辺形状の
パターン4を10μmピッチで配置するとともに、感磁
部2の両端部に電極3を形成し、これらを感磁部の磁気
容易軸方向に着磁する。図中の矢印はその着磁方向を示
す。なお、パターン4および電極3はエッチング法また
はリフトオフ法によりパターンニングすることができ
る。以上のようにして、パターン4をハードバイアスバ
ー、電極3をハードバイアスバー兼引き出し電極として
構成する。
Next, the structure of the ferromagnetic magnetoresistive element according to the third embodiment is shown in FIG. (A) is a partial plan view thereof,
(B) is a cross-sectional view through the central portion of the pattern in (A). In FIG. 3, first, a Ni-50% Co alloy is deposited on the insulating surface of the thermally oxidized silicon substrate 1 by a vapor deposition method in a magnetic field to form a film having a thickness of 400Å, and a line width of 60 μm is formed by photolithography with an easy axis of 45 °. The magnetic sensing portion 2 having a strip pattern of 300 μm is formed. Then C
3000 Å of o-17% Ni alloy and 1000 Å of Au are formed, the width is the same as the width of the magnetic sensitive portion 2, and the hypotenuse is the magnetic sensitive portion 2
The parallelogram-shaped pattern 4 having a base of 5 μm parallel to the magnetic easy axis of is arranged at a pitch of 10 μm, and the electrodes 3 are formed at both ends of the magnetic sensitive section 2. These are arranged in the magnetic easy axis direction of the magnetic sensitive section. Magnetize. The arrow in the figure indicates the magnetization direction. The pattern 4 and the electrode 3 can be patterned by an etching method or a lift-off method. As described above, the pattern 4 is configured as a hard bias bar, and the electrode 3 is configured as a hard bias bar / drawing electrode.

【0014】次に、第4の実施例に係る強磁性磁気抵抗
素子の構造を図4に示す。(A)はその部分平面図、
(B)は(A)におけるパターン方向中央部の断面図で
ある。
Next, the structure of the ferromagnetic magnetoresistive element according to the fourth embodiment is shown in FIG. (A) is a partial plan view thereof,
(B) is a cross-sectional view of the central portion in the pattern direction in (A).

【0015】図4において、まず絶縁性ガラス基板1上
にNi−18%Fe合金を磁場中蒸着法により膜厚30
0Å成膜し、フォトリソグラフィにより、磁気容易軸を
短辺方向として線幅50μm、長さ500μmの短冊状
パターンからなる感磁部2を形成する。続いて、Si−
N膜5を被覆し、感磁部2の両端部に窓部を形成する。
In FIG. 4, first, a Ni-18% Fe alloy having a thickness of 30 is formed on an insulating glass substrate 1 by a magnetic field vapor deposition method.
A film having a thickness of 0 Å is formed, and by photolithography, the magnetic sensitive portion 2 having a strip-shaped pattern having a line width of 50 μm and a length of 500 μm is formed with the magnetic easy axis as the short side direction. Then, Si-
The N film 5 is covered, and windows are formed at both ends of the magnetic sensing part 2.

【0016】その後、Co−18%Ni合金2000
Å、Au1000Åからなる蒸着膜を成膜し、感磁部2
の幅に長さを同一とした幅5μmのパターンを15μm
ピッチでパターン4を配置するとともに、感磁部2の両
端部に電極3を形成し、これらを感磁部の磁気容易軸方
向に着磁する。図中の矢印はその着磁方向を示す。これ
により、パターン4をハードバイアスバー、電極3をハ
ードバイアスバー兼引き出し電極として構成する。
After that, Co-18% Ni alloy 2000
Å, Au1000Å vapor deposition film is formed, the magnetic sensitive section 2
Width of 5 μm with the same length as the width of
The patterns 4 are arranged at a pitch, and the electrodes 3 are formed at both ends of the magnetic sensitive portion 2, and these are magnetized in the magnetic easy axis direction of the magnetic sensitive portion. The arrow in the figure indicates the magnetization direction. As a result, the pattern 4 is configured as a hard bias bar, and the electrode 3 is configured as a hard bias bar / drawing electrode.

【0017】[0017]

【発明の効果】この発明の強磁性磁気抵抗素子によれ
ば、組成ずれの少ないハードバイアス膜が得られるた
め、良好なハードバイアスを付与した強磁性磁気抵抗素
子が安定して得られる。また、半田付け性などのボンデ
ィング性に優れた電極が形成されるため、外部回路との
接続が容易となる。さらに、電極形成によりハードバイ
アスが付与されることになるため、素子製造上のプロセ
スが簡略化される。
According to the ferromagnetic magnetoresistive element of the present invention, a hard bias film having a small composition deviation can be obtained, so that a ferromagnetic magnetoresistive element to which a good hard bias is applied can be stably obtained. Further, since an electrode having excellent bonding property such as solderability is formed, connection with an external circuit becomes easy. Furthermore, since the hard bias is applied by forming the electrodes, the process for manufacturing the device is simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例に係る強磁性磁気抵抗
素子の構造を示す図であり、(A)は部分平面図、
(B)は(A)におけるパターン中央部の断面図であ
る。
FIG. 1 is a diagram showing a structure of a ferromagnetic magnetoresistive element according to a first embodiment of the present invention, (A) is a partial plan view,
(B) is a cross-sectional view of the central portion of the pattern in (A).

【図2】この発明の第2の実施例に係る強磁性磁気抵抗
素子の構造を示す図であり、(A)は部分平面図、
(B)は(A)におけるパターン中央部の断面図であ
る。
FIG. 2 is a view showing a structure of a ferromagnetic magnetoresistive element according to a second embodiment of the present invention, (A) is a partial plan view,
(B) is a cross-sectional view of the central portion of the pattern in (A).

【図3】この発明の第3の実施例に係る強磁性磁気抵抗
素子の構造を示す図であり、(A)は部分平面図、
(B)は(A)におけるパターン中央部の断面図であ
る。
FIG. 3 is a diagram showing a structure of a ferromagnetic magnetoresistive element according to a third embodiment of the present invention, (A) is a partial plan view,
(B) is a cross-sectional view of the central portion of the pattern in (A).

【図4】この発明の第4の実施例に係る強磁性磁気抵抗
素子の構造を示す図であり、(A)は部分平面図、
(B)は(A)におけるパターン中央部の断面図であ
る。
FIG. 4 is a view showing a structure of a ferromagnetic magnetoresistive element according to a fourth embodiment of the present invention, (A) is a partial plan view,
(B) is a cross-sectional view of the central portion of the pattern in (A).

【図5】蒸着材料を替えて図1に示す電極3を形成した
場合の、蒸着回数に対する保磁力の変化を示す図であ
る。
5 is a diagram showing a change in coercive force with respect to the number of vapor depositions when the electrode 3 shown in FIG. 1 is formed by changing the vapor deposition material.

【図6】本発明の実施例に係る磁気抵抗効果の特性図で
ある。
FIG. 6 is a characteristic diagram of a magnetoresistive effect according to an example of the present invention.

【図7】従来の強磁性磁気抵抗素子に係る磁気抵抗効果
の特性図である。
FIG. 7 is a characteristic diagram of a magnetoresistive effect in a conventional ferromagnetic magnetoresistive element.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中川 卓二 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内 (72)発明者 小木曽 美文 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takuji Nakagawa 2 26-10 Tenjin, Nagaokakyo, Kyoto Prefecture Murata Manufacturing Co., Ltd. (72) Inventor Yoshifumi Ogiso 2 26-10 Tenjin, Nagaokakyo, Kyoto Murata Manufacturing

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】絶縁基板の一方の主面に強磁性磁気抵抗膜
パターンを形成し、この強磁性磁気抵抗膜パターンの引
き出し部に、CoX Ni(1-X) 合金 (但し80wt%
≦X≦95wt%)からなる蒸着膜を形成するととも
に、この蒸着膜をハードバイアスバーとして着磁したこ
とを特徴とする強磁性磁気抵抗素子。
1. A ferromagnetic magnetoresistive film pattern is formed on one main surface of an insulating substrate, and a Co X Ni (1-X) alloy (80 wt%
≦ X ≦ 95 wt%), and a ferromagnetic magnetoresistive element characterized by being formed by magnetizing the deposited film as a hard bias bar.
JP4065025A 1992-03-23 1992-03-23 Ferromagnetic magnetoresistive element Expired - Fee Related JP3047607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4065025A JP3047607B2 (en) 1992-03-23 1992-03-23 Ferromagnetic magnetoresistive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4065025A JP3047607B2 (en) 1992-03-23 1992-03-23 Ferromagnetic magnetoresistive element

Publications (2)

Publication Number Publication Date
JPH05267746A true JPH05267746A (en) 1993-10-15
JP3047607B2 JP3047607B2 (en) 2000-05-29

Family

ID=13275026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4065025A Expired - Fee Related JP3047607B2 (en) 1992-03-23 1992-03-23 Ferromagnetic magnetoresistive element

Country Status (1)

Country Link
JP (1) JP3047607B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7466521B2 (en) 2006-04-25 2008-12-16 Hitachi Global Storage Technologies Netherlands B.V. EMR structure with bias control and enhanced linearity of signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7466521B2 (en) 2006-04-25 2008-12-16 Hitachi Global Storage Technologies Netherlands B.V. EMR structure with bias control and enhanced linearity of signal

Also Published As

Publication number Publication date
JP3047607B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
CA1068412A (en) Magnetoresistive sandwich including sensor electrically parallel with electrical shunt and magnetic biasing layers
US6191577B1 (en) Magnetic sensor exhibiting large change in resistance at low external magnetic field
US5764448A (en) Magnetic read head having a multilayer magnetoresistant element and a concentrator, as well as its production process
US6872467B2 (en) Magnetic field sensor with augmented magnetoresistive sensing layer
JP2000251223A (en) Spin valve magnetoresistance sensor and thin-film magnetic head
GB2109992A (en) Magnetoelectric conversion element
JPH0950613A (en) Magnetoresistive effect element and magnetic field detecting device
US5258884A (en) Magnetoresistive read transducer containing a titanium and tungsten alloy spacer layer
JP3089828B2 (en) Ferromagnetic magnetoresistive element
EP0663661A1 (en) Magnetically capped dual magnetoresistive reproduce head and method of making same
EP1221622A2 (en) Magneto resistive sensor
JP3047607B2 (en) Ferromagnetic magnetoresistive element
CA1105743A (en) Alloy for magnetoresistive element and method of manufacturing the same
KR19990045422A (en) Magnetoresistance effect magnetic head
JPH07297465A (en) Huge magnetic reluctance sensor with insulation pinned layer
JPS6064484A (en) Ferromagnetic magnetoresistance effect alloy film
KR920001129B1 (en) Magnetic resistance effect magnetic head
JPH07296339A (en) Dual-element reluctance sensor
JP2669376B2 (en) Magnetoresistive head
JP2000150235A (en) Spin valve magnetoresistive sensor and thin-film magnetic head
JP3590291B2 (en) Magnetoresistive element
JP2806549B2 (en) Magnetoresistance effect element
US5800935A (en) Magnetoresistive head
WO2022191065A1 (en) Magnetic sensor and method of manufacturing magnetic sensor
JP2850584B2 (en) Method of manufacturing magnetoresistive element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees