JPH05267112A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05267112A
JPH05267112A JP6410992A JP6410992A JPH05267112A JP H05267112 A JPH05267112 A JP H05267112A JP 6410992 A JP6410992 A JP 6410992A JP 6410992 A JP6410992 A JP 6410992A JP H05267112 A JPH05267112 A JP H05267112A
Authority
JP
Japan
Prior art keywords
groove
forming
semiconductor device
manufacturing
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6410992A
Other languages
Japanese (ja)
Inventor
Taku Warashina
卓 藁科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6410992A priority Critical patent/JPH05267112A/en
Publication of JPH05267112A publication Critical patent/JPH05267112A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve the exposing accuracy of a minute pattern by preliminarily forming a groove corresponding to a boundary line in a chip region where a semiconductor integrated circuit is formed on the surface before the initial heat treatment for forming the semiconductor integrated circuit is formed, and decreasing or preventing the warp generated in heat treatment. CONSTITUTION:Grooves 3 are formed along the boundaries of a plurality of chip regions marked on the surface of a silicon wafer 1. The width is determined by the thickness of a diamond cutter for forming the groove. It is effective to select a depth d1 so that the depth is equal to or larger than the thickness of an impurity diffusing layer, which is formed later on the surface of the silicon wafer 1. The groove 3 is formed with the diamond cutter or by anisotropic etching using potassium hydroxide solution as etching agent. Thus, the accumulated stress, which causes warping, is dispersed. As a result, restoring force becomes excellent, and the warping can be decreased or eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体集積回路が形成さ
れる基板に熱処理した際に発生する反りを低減ないしは
防止する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reducing or preventing warpage that occurs when a substrate on which a semiconductor integrated circuit is formed is heat-treated.

【0002】[0002]

【従来の技術】例えば,シリコンウエハの表面に不純物
を拡散させたり熱酸化膜を形成したりするための熱処理
は1000℃程度の高温度の炉中で行われる。このような熱
処理は, 通常, 支持具中に10〜20枚のウエハを隙間をあ
けて積層した状態で行われる。したがって, 各々のウエ
ハ表面に対する熱輻射が必ずしも均一ではないために,
表面に温度分布が生じる。この温度分布が大きいと, ウ
エハ内部に熱応力転位が生じる。図6は, 熱応力転位が
生じたシリコンウエハの(100) 面のX線トポグラフを示
す模式図であって, ウエハ1の中央およびその周辺の四
隅における一点鎖線で示した領域AおよびBに多数の転
位が発生している(徳山他編著 "VLSI製造技術", p.64,
日経BP社刊より引用)。
2. Description of the Related Art For example, heat treatment for diffusing impurities or forming a thermal oxide film on the surface of a silicon wafer is performed in a furnace at a high temperature of about 1000.degree. Such heat treatment is usually performed in a state where 10 to 20 wafers are stacked in a support with a gap. Therefore, since the heat radiation to each wafer surface is not always uniform,
Temperature distribution occurs on the surface. If this temperature distribution is large, thermal stress dislocations occur inside the wafer. FIG. 6 is a schematic diagram showing an X-ray topography of the (100) plane of a silicon wafer in which thermal stress dislocations have occurred. Dislocation has occurred (Tokuyama et al., "VLSI Manufacturing Technology", p.64,
Quoted from Nikkei BP).

【0003】熱応力転位によってウエハに反りが生じ
る。図6のような分布の転位が発生したウエハは, 例え
ば鞍型のような複雑な反りを示す。その結果, 例えばフ
ォトリソグラフ工程において, 露光台上に固定されたウ
エハが平坦にならず, 精確なパターンを形成できない。
また, 上記のようなウエハの固定や処理工程間における
移動のためのウエハの保持手段として真空吸引が完全に
行われないため, ウエハの位置ずれや移動の失敗あるい
は破損等が生じる。
Warpage occurs in the wafer due to thermal stress dislocation. A wafer in which dislocations having a distribution as shown in FIG. 6 have a complicated warp such as a saddle shape. As a result, for example, in the photolithography process, the wafer fixed on the exposure table does not become flat and an accurate pattern cannot be formed.
Further, since vacuum suction is not completely performed as a wafer holding means for fixing the wafer or moving it between processing steps as described above, the wafer may be displaced, the movement may fail, or the wafer may be damaged.

【0004】[0004]

【発明が解決しようとする課題】熱応力転位の発生を低
減するために, いわゆるランピング法が用いられる(同
上p.68参照)。すなわち,ウエハを1000℃程度高温度の
炉中に出し入れする際の昇温速度または降温速度を緩や
かにするために, 800 〜900 ℃程度の低温炉中で10分間
程度予熱または予冷する工程を設ける方法である。しか
しながら, 上記ランピング法により, 温度範囲700 〜90
0 ℃を経過する時間が長くなるため, シリコン中の残留
酸素原子が析出しやすく, この酸素原子の析出によって
転位や微小欠陥が発生する問題がある。
The so-called ramping method is used to reduce the occurrence of thermal stress dislocations (see p.68, ibid.). That is, a step of preheating or precooling for about 10 minutes in a low temperature furnace of 800 to 900 ° C is provided in order to slow the temperature rising or cooling rate when loading and unloading wafers into and out of the furnace at a high temperature of 1000 ° C. Is the way. However, due to the ramping method described above, the temperature range 700-90
Since the time to pass 0 ° C becomes long, residual oxygen atoms in silicon are likely to precipitate, and there is a problem that dislocations and minute defects are generated by the precipitation of these oxygen atoms.

【0005】本発明は, ウエハを1000℃程度の高温炉中
に直接に出し入れしても反りが生じない方法を提供する
ことを目的とする。
An object of the present invention is to provide a method in which a wafer does not warp even if it is directly put in or taken out of a high temperature furnace of about 1000 ° C.

【0006】[0006]

【課題を解決するための手段】上記目的は, 半導体基板
の表面に画定された複数の領域であって,各々に半導体
集積回路が形成される長方形のチップ領域の境界線に対
応する溝を該半導体集積回路が形成するための最初の熱
処理が行われる前に該半導体基板の裏面にあらかじめ形
成する工程を含むことを特徴とする本発明に係る半導体
装置の製造方法, または, 上記において, 前記基板裏面
を基準とする前記溝の深さを前記基板表面に形成される
不純物拡散層の厚さに実質的に等しい値に制御すること
を特徴とする本発明に係る半導体装置の製造方法, また
は, 上記において, 前記半導体集積回路の形成における
熱処理によって前記半導体基板表面に所定値以上の反り
が生じる可能性がある領域に存在する前記チップ領域の
境界に対応する前記溝を選択的に形成することを特徴と
する本発明に係る半導体装置の製造方法のいずれかによ
って達成される。
The above object is to provide a plurality of regions defined on the surface of a semiconductor substrate, each of which has a groove corresponding to a boundary line of a rectangular chip region in which a semiconductor integrated circuit is formed. A method of manufacturing a semiconductor device according to the present invention, which comprises a step of forming the semiconductor substrate on the back surface of the semiconductor substrate before the first heat treatment for forming the semiconductor integrated circuit, or, in the above, the substrate. A method for manufacturing a semiconductor device according to the present invention, characterized in that the depth of the groove with respect to the back surface is controlled to a value substantially equal to the thickness of the impurity diffusion layer formed on the surface of the substrate, or In the above, the groove corresponding to the boundary of the chip region existing in a region where warpage of a predetermined value or more may occur on the surface of the semiconductor substrate due to heat treatment in forming the semiconductor integrated circuit It is accomplished by any of a method of manufacturing a semiconductor device according to the present invention, wherein the selectively formed.

【0007】[0007]

【作用】シリコンウエハ等の基板の少なくとも表面に溝
を設けることにより, 反りの原因となる集積した応力が
分散され, その結果,復元力が優勢となり, 反りが低減
ないしは消滅する。
[Function] By providing a groove on at least the surface of a substrate such as a silicon wafer, the accumulated stress that causes warpage is dispersed, and as a result, the restoring force becomes dominant and the warpage is reduced or eliminated.

【0008】[0008]

【実施例】図1は本発明の第1の実施例の説明図であっ
て,同図(a) は平面図, 同図(b)および(c) は拡大部分
断面図である。例えば直径6インチのシリコンウエハ1
の表面に画定された複数のチップ領域2の境界線に沿っ
て溝3を形成する。溝3の幅(w) および深さ(d1)は, そ
れぞれ, 100 μm および20μm 程度である。幅(w)は,
例えば溝3を形成するためのダイヤモンドカッターの厚
さで決まる。深さ(d 1)は, シリコンウエハ1表面に後に
形成される不純物拡散層の厚さに等しいかそれより大き
く選ぶのが有効である。溝3の形成は, 例えばダイヤモ
ンドカッターまたは周知のリソグラフ技術を用いて行え
ばよい。とくに, 例えば水酸化カリウム溶液をエッチン
グ剤として用いる異方性エッチングによって形成され
る, 図1(c) に示すようなV字形断面を有する溝30も有
効である。
FIG. 1 is an explanatory view of the first embodiment of the present invention.
Figure (a) is a plan view, and Figures (b) and (c) are enlarged parts.
FIG. For example, a silicon wafer 1 with a diameter of 6 inches
Along the boundary line of a plurality of chip areas 2 defined on the surface of
To form the groove 3. Width (w) and depth (d) of groove 31) Is
They are about 100 μm and 20 μm, respectively. The width (w) is
For example, the thickness of the diamond cutter for forming the groove 3
It depends on Depth (d 1) Is after the silicon wafer 1 surface
Greater than or equal to the thickness of the impurity diffusion layer to be formed
It is effective to choose the right one. The groove 3 can be formed, for example, with a diamond
Can be done using a hand-cutter or well-known lithographic technique.
Good. In particular, for example, etch potassium hydroxide solution
Formed by anisotropic etching used as a coating agent
Groove 3 with a V-shaped cross section as shown in Figure 1 (c)0Also
It is effective.

【0009】図2は本発明の第2の実施例を説明するた
めの部分断面図であって, シリコンウエハ1の表面およ
び裏面に前記実施例と同様の溝3および4をそれぞれ形
成した場合である。溝3および4の幅および深さ(d1
よびd2) は前記実施例と同じ基準で決めればよい。溝3
および4の形成についても, 前記実施例と同様の方法を
適宜用いて行えばよい。
FIG. 2 is a partial cross-sectional view for explaining a second embodiment of the present invention, in which grooves 3 and 4 similar to those in the above-mentioned embodiment are formed on the front surface and the back surface of a silicon wafer 1, respectively. is there. The widths and depths (d 1 and d 2 ) of the grooves 3 and 4 may be determined on the same basis as in the above-mentioned embodiment. Groove 3
Also for formation of 4 and 4, the same method as in the above-mentioned embodiment may be appropriately used.

【0010】図3は本発明の第3の実施例を説明するた
めの平面図であって, 例えば図6を参照して説明したよ
うに熱応力転位により反りが発生し易い領域AおよびB
(一点鎖線で示してある)にのみ, 前記実施例と同様の
溝3を形成した場合である。点線は,溝3が形成されな
い境界線を示す。選択的に溝3が形成される上記のよう
な領域は, あらかじめ調査した反りの発生状況に基づい
て決めればよい。
FIG. 3 is a plan view for explaining a third embodiment of the present invention. For example, as described with reference to FIG. 6, regions A and B where warpage is likely to occur due to thermal stress dislocations.
This is the case where the groove 3 similar to that in the above-mentioned embodiment is formed only in (shown by the one-dot chain line). The dotted line indicates the boundary line where the groove 3 is not formed. The above-mentioned region where the groove 3 is selectively formed may be determined based on the warpage occurrence state investigated in advance.

【0011】図4は本発明の第4の実施例を説明するた
めの部分断面図である。すなわち,図1のようにシリコ
ンウエハ1表面に縦横方向にそれぞれ延在するように形
成された溝3(図4(a) には溝31および32として示して
ある)の交点に, シリコンウエハ1を貫通する穴6を形
成することによって, シリコンウエハ1内部の応力をよ
り効果的に分散させることができる。このような貫通穴
6は, 図2のようなシリコンウエハ1の表面および裏面
の双方に形成された溝3および4(図4(b) では裏面側
に縦横方向に延在する溝41および42として示してある)
の交点に形成してもよい。
FIG. 4 is a partial sectional view for explaining a fourth embodiment of the present invention. That is, as shown in FIG. 1, at the intersections of the grooves 3 (shown as grooves 3 1 and 3 2 in FIG. 4 (a)) formed so as to extend in the vertical and horizontal directions on the surface of the silicon wafer 1, the silicon By forming the holes 6 penetrating the wafer 1, the stress inside the silicon wafer 1 can be more effectively dispersed. Such through holes 6, the silicon wafer 1 of the front and back surfaces of both the grooves 3 and formed of 4 (see FIG. 4 (b) grooves 4 1 and extending in vertical and horizontal direction on the back side in such as Fig. 2 4 2 )
It may be formed at the intersection.

【0012】図5は本発明の第5の実施例を説明するた
めの平面図であって,シリコンウエハ1の中央部に例え
ば円形の切り欠き7を形成した場合である。切り欠き7
は,熱処理によってシリコンウエハ1に球面状の反りが
発生する場合に有効である。
FIG. 5 is a plan view for explaining the fifth embodiment of the present invention, in which a circular notch 7 is formed in the central portion of the silicon wafer 1. Cutout 7
Is effective when the silicon wafer 1 is spherically warped by heat treatment.

【0013】[0013]

【発明の効果】本発明によれば, シリコンウエハ等の半
導体基板の直径に関係なく, 熱処理により発生する反り
の低減ないし防止が可能となり, 大口径の基板に対する
微細パターンの露光精度が向上され, また, 基板の搬送
を確実に行うことができる。その結果, 高密度・高性能
の半導体集積回路の開発ならびに製造歩留まり向上に対
して効果がある。
According to the present invention, regardless of the diameter of a semiconductor substrate such as a silicon wafer, it is possible to reduce or prevent warpage caused by heat treatment, and improve the exposure accuracy of a fine pattern on a large-diameter substrate. In addition, it is possible to reliably carry the substrate. As a result, it is effective for the development of high-density and high-performance semiconductor integrated circuits and the improvement of manufacturing yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施例説明図FIG. 1 is an explanatory diagram of a first embodiment of the present invention.

【図2】 本発明の第2の実施例説明図FIG. 2 is an explanatory diagram of a second embodiment of the present invention.

【図3】 本発明の第3の実施例説明図FIG. 3 is an explanatory diagram of a third embodiment of the present invention.

【図4】 本発明の第4の実施例説明図FIG. 4 is an explanatory diagram of a fourth embodiment of the present invention.

【図5】 本発明の第5の実施例説明図FIG. 5 is an explanatory diagram of a fifth embodiment of the present invention.

【図6】 従来の問題点を説明するための参考図FIG. 6 is a reference diagram for explaining conventional problems.

【符号の説明】[Explanation of symbols]

1 シリコンウエハ 2 チップ領域 3, 30, 31, 32, 4 溝, 6 貫通穴 7 切り欠き1 Silicon Wafer 2 Chip Area 3, 30 0 , 3 1 , 3 2, 4 Groove, 6 Through Hole 7 Notch

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の表面に画定された複数の領
域であって,各々に半導体集積回路が形成されるチップ
領域の境界線に対応する溝を該半導体集積回路が形成す
るための最初の熱処理が行われる前に該表面にあらかじ
め形成する工程を含むことを特徴とする半導体装置の製
造方法。
1. A first region for forming a plurality of regions defined on a surface of a semiconductor substrate, each groove corresponding to a boundary line of a chip region in which the semiconductor integrated circuit is formed. A method of manufacturing a semiconductor device, which comprises a step of forming on the surface in advance before heat treatment is performed.
【請求項2】 前記半導体基板の裏面に前記溝に対応す
る別の溝を前記最初の熱処理の前にあらかじめ形成する
工程を含むことを特徴とする請求項1記載の半導体装置
の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, further comprising a step of forming another groove corresponding to the groove on the back surface of the semiconductor substrate before the first heat treatment.
【請求項3】 前記溝の深さを前記基板表面に形成され
る不純物拡散層の厚さに実質的に等しい値に制御するこ
とを特徴とする請求項1または2記載の半導体装置の製
造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein the depth of the groove is controlled to a value substantially equal to the thickness of the impurity diffusion layer formed on the surface of the substrate. ..
【請求項4】 前記半導体集積回路の形成における熱処
理によって前記半導体基板表面に所定値以上の反りが生
じる可能性がある領域に存在する前記チップ領域の境界
に対応する前記溝を選択的に形成することを特徴とする
請求項1または2記載の半導体装置の製造方法。
4. The groove corresponding to the boundary of the chip region existing in a region where a warp of a predetermined value or more may occur on the surface of the semiconductor substrate by heat treatment in the formation of the semiconductor integrated circuit is selectively formed. The method for manufacturing a semiconductor device according to claim 1, wherein
【請求項5】 前記チップ領域の境界線の交点に前記半
導体基板を貫通する穴を形成する工程を含むことを特徴
とする請求項1または2記載の半導体装置の製造方法。
5. The method of manufacturing a semiconductor device according to claim 1, further comprising the step of forming a hole penetrating the semiconductor substrate at an intersection of boundaries of the chip regions.
【請求項6】 前記半導体基板を選択的にエッチングす
ることによって前記溝を形成することを特徴とする請求
項1または2記載の半導体装置の製造方法。
6. The method of manufacturing a semiconductor device according to claim 1, wherein the groove is formed by selectively etching the semiconductor substrate.
【請求項7】 前記半導体基板を選択的に切削すること
によって前記溝を形成することを特徴とする請求項1ま
たは2記載の半導体装置の製造方法。
7. The method of manufacturing a semiconductor device according to claim 1, wherein the groove is formed by selectively cutting the semiconductor substrate.
JP6410992A 1992-03-19 1992-03-19 Manufacture of semiconductor device Withdrawn JPH05267112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6410992A JPH05267112A (en) 1992-03-19 1992-03-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6410992A JPH05267112A (en) 1992-03-19 1992-03-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05267112A true JPH05267112A (en) 1993-10-15

Family

ID=13248582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6410992A Withdrawn JPH05267112A (en) 1992-03-19 1992-03-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05267112A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580831A (en) * 1993-07-28 1996-12-03 Fujitsu Limited Sawcut method of forming alignment marks on two faces of a substrate
JP2007317950A (en) * 2006-05-26 2007-12-06 Toyota Motor Corp Manufacturing method for semiconductor substrate, and the semiconductor substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580831A (en) * 1993-07-28 1996-12-03 Fujitsu Limited Sawcut method of forming alignment marks on two faces of a substrate
JP2007317950A (en) * 2006-05-26 2007-12-06 Toyota Motor Corp Manufacturing method for semiconductor substrate, and the semiconductor substrate

Similar Documents

Publication Publication Date Title
US5693976A (en) MOSFET device having denuded zones for forming alignment marks
US4131487A (en) Gettering semiconductor wafers with a high energy laser beam
JP2998330B2 (en) SIMOX substrate and method of manufacturing the same
JPH05267112A (en) Manufacture of semiconductor device
JPH11186119A (en) Manufacture of semiconductor substrate
US5506154A (en) Process for preheat treatment of semiconductor wafers
JPH0345526B2 (en)
JPH0414811A (en) Silicon single-crystal substrate
US7632735B2 (en) Process for manufacturing silicon-on-insulator substrate
JP2005026644A (en) Soi substrate, semiconductor substrate, and its manufacturing method
JPH0384931A (en) Gettering of semiconductor substrate
JPS6127900B2 (en)
KR20090110086A (en) Semiconductor Wafer and Method for Manufacturing the same
JP2915893B1 (en) Diffusion wafer manufacturing method and diffusion wafer
JPS6167933A (en) Semiconductor substrate and manufacture thereof
JP3024193B2 (en) Semiconductor substrate manufacturing method
EP0308588B1 (en) Semiconductor-on-insulator fabrication method
JP3019812B2 (en) Method of manufacturing wiring of semiconductor integrated circuit
JPH0493031A (en) Semiconductor silicon substrate
JPS59175729A (en) Semiconductor substrate grinding apparatus
KR940005504B1 (en) Forming method of field oxide film by pbl
JPH02211617A (en) Manufacture of semiconductor device
JPH0714756A (en) Wafer
JPS6313324A (en) Manufacture of substrate
JPS61198637A (en) Manufacture of semiconductor single crystal wafer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608