JPH05267013A - Power resistor - Google Patents

Power resistor

Info

Publication number
JPH05267013A
JPH05267013A JP4065069A JP6506992A JPH05267013A JP H05267013 A JPH05267013 A JP H05267013A JP 4065069 A JP4065069 A JP 4065069A JP 6506992 A JP6506992 A JP 6506992A JP H05267013 A JPH05267013 A JP H05267013A
Authority
JP
Japan
Prior art keywords
zinc oxide
temperature
resistance
titanium
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4065069A
Other languages
Japanese (ja)
Other versions
JP3210063B2 (en
Inventor
Motomasa Imai
基真 今井
Naoki Shudo
直樹 首藤
Iwao Mitsuishi
巌 三石
Fumio Ueno
文雄 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP06506992A priority Critical patent/JP3210063B2/en
Publication of JPH05267013A publication Critical patent/JPH05267013A/en
Application granted granted Critical
Publication of JP3210063B2 publication Critical patent/JP3210063B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the change due to surge absorption in the resistance value of zinc oxide particles as a sintered body having a particular amount of titanium solid solution. CONSTITUTION:A sintered oxide body mainly comprising zinc oxide is made as a resistance body for electric power where zinc oxide particles have 0.005 to 0.1mol% solid solution of titanium when converted to titanium oxide. The title power resistor 1 for electric power is formed to a disk shape or the like by using a mixture of zinc oxide powder and a predetermined amount of titanium oxide powder, and this moldings is baked at 1200 to 1500 deg.C in the atmosphere. The temperature rising rate during baking is 50 to 200 deg.C/hr and the temperature falling rate of 200 to 300 deg.C/hr to the predetermined temperature during falling. And quick cooling is performed after the predetermined temperature. Both the main surfaces of a sintered body 2 obtained are polished, flame- coated and baked to form an electrode 3. Consequently, a power resistor having a low resistance temperature coefficient and a small resistance changing rate by surge absorption can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は過大なサージを吸収する
ために好適な電力用抵抗体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power resistor suitable for absorbing an excessive surge.

【0002】[0002]

【従来の技術】現在、遮断器等の電流制御用、電動機の
始動・回生に伴う各種制御用、また、送電系統の異常発
生時に於ける接地用として、種々の電力用抵抗器が用い
られている。これら抵抗器は、金属抵抗体、セラミック
抵抗体、種々の複合体により構成されている。
2. Description of the Related Art Currently, various electric power resistors are used for controlling currents such as circuit breakers, various controls associated with starting and regeneration of electric motors, and grounding when an abnormality occurs in a power transmission system. There is. These resistors are composed of metal resistors, ceramic resistors, and various composites.

【0003】例えば、高電圧用遮断器には、開閉時に発
生する開閉サージを吸収したり遮断容量を増加させるた
めに遮断接点と並列に投入抵抗器を接続している。これ
らの目的に用いられる抵抗器の従来の抵抗体には、例え
ば特開昭58−139401号公報に記載されているよ
うな、炭素粒子分散型セラミック抵抗体が用いられてい
る。この抵抗体は、絶縁性成分たる酸化アルミニウム結
晶中に、導電性成分たるカーボン粉末を分散させ粘土で
焼き固めたもので、100〜2500Ω・cmの抵抗率を
持つ。
For example, a closing resistor is connected to a high voltage circuit breaker in parallel with a breaking contact in order to absorb a switching surge generated at the time of switching and increase a breaking capacity. As a conventional resistor of a resistor used for these purposes, for example, a carbon particle-dispersed ceramic resistor as described in JP-A-58-139401 is used. This resistor is obtained by dispersing carbon powder, which is a conductive component, in aluminum oxide crystal, which is an insulating component, and baking it with clay, and has a resistivity of 100 to 2500 Ω · cm.

【0004】この炭素粒子分散型セラミック抵抗体は、
カーボン粉末分散量を調整することで抵抗率を変化させ
ることができる利点はあるが、気孔率が10〜30%と
高く緻密性に劣るため、以下の問題がある。すなわち、
第1に、体積当りの熱容量が2J/cm3 ・K程度と小さ
いために、放電耐量が小さい。その結果、サージの吸収
による発熱にともなう温度上昇が著しい。第2に、開閉
サージ吸収時にカーボン粉末間で放電を起こして、貫通
放電をしてしまう。第3に高い温度にさらすと抵抗値を
制御している炭素粒子が酸化され、抵抗値の変動が大き
い。第4に抵抗温度係数が負である。そのため、投入抵
抗器用抵抗体として使用した場合、開閉サージ吸収によ
って抵抗体の温度上昇が起こると、抵抗体の抵抗率が小
さくなって熱暴走し、開閉サージを吸収しきれない。以
上の様な問題により、高電圧用遮断器の抵抗体として、
特開昭58−139401号公報に記載された従来の抵
抗体は問題が多い。
This carbon particle dispersed type ceramic resistor is
Although there is an advantage that the resistivity can be changed by adjusting the amount of dispersed carbon powder, the porosity is as high as 10 to 30% and the denseness is inferior, so that the following problems occur. That is,
First, the heat capacity per volume is 2 J / cm 3 -Since it is as small as K, the discharge withstand capability is small. As a result, the temperature rise due to heat generation due to the absorption of surge is remarkable. Secondly, when the switching surge is absorbed, a discharge occurs between the carbon powders, resulting in a through discharge. Thirdly, when exposed to a high temperature, the carbon particles controlling the resistance value are oxidized and the resistance value fluctuates greatly. Fourth, the temperature coefficient of resistance is negative. Therefore, when used as a resistor for a closing resistor, when the temperature of the resistor rises due to absorption of the switching surge, the resistivity of the resistor becomes small and thermal runaway occurs, and the switching surge cannot be completely absorbed. Due to the above problems, as a resistor of the high voltage circuit breaker,
The conventional resistor disclosed in JP-A-58-139401 has many problems.

【0005】さらに、近年の技術開発による遮断器の小
型化に伴い、開閉サージ吸収用投入抵抗器の小型化が要
求されている。投入抵抗器を小型化するためには、使用
される抵抗体の単位体積当りの熱容量が不可欠である。
従来の抵抗体の2J/cm3 ・Kという熱容量では、これ
以上投入抵抗器を小型化することは困難である。
Further, with the recent miniaturization of circuit breakers due to technological development, miniaturization of closing resistors for absorbing switching surges is required. In order to miniaturize the closing resistor, the heat capacity per unit volume of the resistor used is indispensable.
2 J / cm 3 of conventional resistor ・ With a heat capacity of K, it is difficult to make the closing resistor smaller.

【0006】この様な問題に対しては、例えば、酸化亜
鉛セラミックのように単位体積当りの熱容量が約2.8
J/cm3 ・Kと大きく、抵抗温度係数が正であるセラミ
ック抵抗体を用いれば解決される。
[0006] For such a problem, for example, the heat capacity per unit volume is about 2.8 like zinc oxide ceramics.
J / cm 3 -The problem can be solved by using a ceramic resistor having a large K and a positive temperature coefficient of resistance.

【0007】酸化亜鉛セラミックスは、通常、単独では
その抵抗温度係数が負であるが、ある種の酸化物を添加
することで、抵抗温度係数が正になることが知られてい
る。例えば、酸化亜鉛に、酸化チタン(TiO2 )、酸
化ニッケル(NiO)を添加することで、抵抗率、抵抗
温度係数を広く調整することが行われている(Solid-St
ate Electronics Pergamon Press 6, 111 (1963),US
P−2892988,USP−2933586)。
[0007] Zinc oxide ceramics usually have a negative temperature coefficient of resistance, but it is known that the temperature coefficient of resistance becomes positive when an oxide of some kind is added. For example, by adding titanium oxide (TiO 2 ) and nickel oxide (NiO) to zinc oxide, the resistivity and temperature coefficient of resistance have been widely adjusted (Solid-St
ate Electronics Pergamon Press 6, 111 (1963), US
P-2892988, USP-2933586).

【0008】しかし上記抵抗体には以下のような問題が
ある。すなわち、開閉サージを吸収することによって、
抵抗体は瞬時(おおよそ0.01秒)に100℃以上の
温度上昇をする。この加熱冷却サイクルが繰り返される
ことによって、抵抗体の抵抗率が変化してしまう。例え
ば上記抵抗体では、一回の加熱冷却サイクルで、抵抗率
は1〜2%ほど増加する。したがって、加熱冷却サイク
ルが100回繰り返されれば、その抵抗率は、元の抵抗
率の3〜7倍にもなってしまう。
However, the above resistor has the following problems. That is, by absorbing the switching surge,
The resistor instantly raises the temperature by 100 ° C. or more (approximately 0.01 seconds). By repeating this heating / cooling cycle, the resistivity of the resistor changes. For example, in the above resistor, the resistivity increases by 1 to 2% in one heating / cooling cycle. Therefore, if the heating / cooling cycle is repeated 100 times, the resistivity becomes 3 to 7 times the original resistivity.

【0009】この様な状況から、酸化亜鉛セラミックス
は、抵抗率及び抵抗率の温度変化等の電気的な特性、及
び熱容量の様な熱的性質が知られていたものの、サージ
吸収用の抵抗体としては、問題を有し未だ用いられてい
ない。
Under these circumstances, although zinc oxide ceramics are known for their electrical properties such as resistivity and temperature change of resistivity, and thermal properties such as heat capacity, they are resistors for surge absorption. However, it has a problem and has not been used yet.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記従来の
問題点を解決するためになされたもので、熱容量が大き
く、サージ吸収による抵抗値変化が小さく、抵抗温度係
数が正の電力用低抗体を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned conventional problems, and has a large heat capacity, a small change in resistance value due to surge absorption, and a low temperature coefficient for electric power having a positive resistance temperature coefficient. It is intended to provide an antibody.

【0011】[0011]

【課題を解決するための手段及び作用】本発明は(Zn
O)を主成分とする焼結体において、酸化亜鉛粒子がチ
タンを酸化チタン(TiO2 )に換算して0.005〜
0.1モル%固溶することを特徴とする電力用低抗体で
ある。
The present invention provides (Zn
In a sintered body containing O) as a main component, zinc oxide particles convert titanium into titanium oxide (TiO 2 ) in an amount of 0.005 to
It is a low antibody for electric power which is characterized by forming a solid solution of 0.1 mol%.

【0012】本発明の電力用低抗体は、例えば以下のよ
うにして作製することができる。酸化亜鉛粉末に所定量
の酸化チタン粉末を加え、所定量の水およびバインダー
を加え、粉砕媒体として、ZrO2 ボールを用い、ボー
ルミル中所定時間の粉砕混合を行う。得られた混合物を
乾燥後、造粒し、金型により円板状などに成形する。成
形体は電気炉により大気中1200〜1500℃の温度
で所定時間焼成する。焼成時の昇温速度は50〜200
℃/時、降温は所定の温度まで20〜300℃/時で、
所定温度からは急冷(炉内放冷)を行った。得られた焼
結体の両主面を研磨し、溶射、焼き付けなどの手段によ
り電極を形成して電流−電圧特性が直線性を持つ抵抗体
とする。素子の側面は必要に応じて、樹脂系あるいは無
機系の高抵抗層を焼き付けもしくは溶射等により形成す
ることができる。この電力用抵抗体の特性は次の様に評
価した。比抵抗は常温における値であり、抵抗温度係数
は、常温の抵抗値と100℃の抵抗値の変化を1℃あた
りの変化率で示した。また、抵抗変化率は同一条件で試
作した直径20mφの試料に200J/ccに相当する
衝撃波を20回印加した後の抵抗値変化を初期値に対す
る百分率で表したものである。素子特性と低抗体との関
連を調べるために、低抗体の構造および組成分布を調査
した。得られた焼結体の構成相をXRDにより調べたと
ころ、主相としての酸化亜鉛相の他にZn2 TiO4
が認められた。EDX付きのSEM観察によれば、上記
焼結体の構造は、亜鉛を主成分とする粒子とその粒界に
チタン、亜鉛を構成成分とする粒子が認められた。従っ
て、得られた焼結体は、酸化亜鉛を主成分とする粒子と
酸化チタン、酸化亜鉛を成分とするスピネル粒子により
構成される。低抗体の導電性は酸化亜鉛粒子およびその
粒界に大きく依存すると考えられ、製造条件を変化させ
たときの酸化亜鉛粒子の組成の変化などは素子特性と密
接な関係にあると考えられる。酸化亜鉛粒子、スピネル
粒子の複合体である低抗体から、酸による選択エッチン
グの手法を用いて酸化亜鉛粒子成分を分離抽出し、その
組成を化学分析により求めた。酸化亜鉛粒子に固溶する
酸化チタンの量が0.005モル%以上で抵抗温度係数
が正の値になり、また、0.1モル%以下で抵抗変化率
が小さく、低抗体の性能として十分である関係を得た。
したがって、結晶体は原料を上記所定の割合になるよ
うに配合、混合を行った後、この粉末を成形し、この成
形体を焼成、所定温度から急冷することにより得られる
が、特に、酸化亜鉛粒子に固溶する酸化チタンの量が
0.005モル%〜0.1モル%の範囲内にある時に所
望の特性のものが得られる。焼成温度は1300℃〜1
500℃が好ましく、また、最高温度保持後の降温速度
は20℃/時〜300℃/時が好ましい。急冷開始温度
は1200〜900℃が好ましい。焼成温度が高い時に
は、降温速度は小さく、急冷開始温度は低い関係が好ま
しく、逆に、焼成温度が低い時には降温速度を大きく、
急冷開始温度を高くすることが好ましい。このような冷
却パターンの選択により酸化亜鉛粒子に固溶する酸化チ
タン量を所定量に制御することができる。なお、これら
のプロセス条件は、焼結体の全体組成により調整する必
要がある。
The low power antibody of the present invention can be produced, for example, as follows. A predetermined amount of titanium oxide powder is added to the zinc oxide powder, a predetermined amount of water and a binder are added, and ZrO 2 balls are used as a grinding medium, and grinding and mixing are performed for a predetermined time in a ball mill. After the obtained mixture is dried, it is granulated and molded into a disk shape or the like with a mold. The formed body is fired in the atmosphere at a temperature of 1200 to 1500 ° C. for a predetermined time in an electric furnace. The temperature rising rate during firing is 50 to 200
℃ / hour, the temperature drop is 20 ~ 300 ℃ / hour to a predetermined temperature,
From the predetermined temperature, rapid cooling (cooling in the furnace) was performed. Both main surfaces of the obtained sintered body are polished and electrodes are formed by means such as thermal spraying or baking to obtain a resistor having a linear current-voltage characteristic. The side surface of the element can be formed by baking or thermal spraying a resin or inorganic high resistance layer, if necessary. The characteristics of this power resistor were evaluated as follows. The specific resistance is a value at room temperature, and the temperature coefficient of resistance is represented by a change rate per 1 ° C. between changes in the resistance value at room temperature and the resistance value at 100 ° C. In addition, the resistance change rate is a rate of change in resistance value after applying a shock wave corresponding to 200 J / cc 20 times to a sample with a diameter of 20 mφ manufactured under the same conditions as a percentage of the initial value. To investigate the relationship between device characteristics and low antibody, the structure and composition distribution of low antibody were investigated. When the constituent phases of the obtained sintered body were examined by XRD, Zn 2 TiO 4 phase was found in addition to the zinc oxide phase as the main phase. According to SEM observation with EDX, in the structure of the above-mentioned sintered body, particles containing zinc as a main component and particles containing titanium and zinc as constituent components were observed at the grain boundaries. Therefore, the obtained sintered body is composed of particles containing zinc oxide as the main component and spinel particles containing titanium oxide and zinc oxide as the components. It is considered that the conductivity of the low antibody largely depends on the zinc oxide particles and their grain boundaries, and it is considered that changes in the composition of the zinc oxide particles when the manufacturing conditions are changed are closely related to the device characteristics. Zinc oxide particle components were separated and extracted from the low antibody, which is a complex of zinc oxide particles and spinel particles, using the method of selective etching with acid, and the composition was determined by chemical analysis. If the amount of titanium oxide dissolved in the zinc oxide particles is 0.005 mol% or more, the temperature coefficient of resistance becomes positive, and if it is 0.1 mol% or less, the resistance change rate is small, which is sufficient for low antibody performance. Got a relationship that is.
Therefore, the crystalline body is obtained by blending and mixing the raw materials so that the above predetermined ratio is obtained, then molding this powder, firing the molded body, and quenching from a predetermined temperature. When the amount of titanium oxide solid-dissolved in the particles is in the range of 0.005 mol% to 0.1 mol%, the one having desired characteristics is obtained. The firing temperature is 1300 ° C to 1
The temperature is preferably 500 ° C., and the rate of temperature decrease after the maximum temperature is maintained is preferably 20 ° C./hour to 300 ° C./hour. The quenching start temperature is preferably 1200 to 900 ° C. When the firing temperature is high, the cooling rate is small, and the rapid cooling start temperature is preferably low. Conversely, when the firing temperature is low, the cooling rate is large,
It is preferable to increase the quenching start temperature. By selecting such a cooling pattern, the amount of titanium oxide dissolved in the zinc oxide particles can be controlled to a predetermined amount. Note that these process conditions need to be adjusted depending on the overall composition of the sintered body.

【0013】本発明に係わる低抗体は、以上のような酸
化亜鉛基セラミックからなる焼結体の両端面に形成され
た一対の電極を有する。この電極は、アルミニウムまた
はニッケルなどから構成することが望ましい。この電極
は、焼結体の両端面に溶射またはスパッタリングなどに
より、形成される。またこの抵抗体は、側面での沿面放
電を防止するために、絶縁性のガラスやガラスセラミッ
クからなる絶縁相を有することが好ましい。
The low antibody according to the present invention has a pair of electrodes formed on both end faces of a sintered body made of the above zinc oxide-based ceramic. This electrode is preferably made of aluminum or nickel. This electrode is formed on both end surfaces of the sintered body by thermal spraying or sputtering. In addition, this resistor preferably has an insulating phase made of insulating glass or glass ceramic in order to prevent creeping discharge on the side surface.

【0014】なお、この発明の一様態に係わる遮断器用
低抗体を図1に示す。低抗体は、酸化亜鉛を主体とし、
チタン成分を含有する中空円筒上の焼結体と、その両端
面に形成された一対の電極(上面のみ図示)を備えてい
る。さらに抵抗体の側面には絶縁層が形成される。
A low antibody for a circuit breaker according to one embodiment of the present invention is shown in FIG. Low antibodies are mainly zinc oxide,
It is provided with a hollow cylindrical sintered body containing a titanium component, and a pair of electrodes (only the upper surface is shown) formed on both end surfaces thereof. Further, an insulating layer is formed on the side surface of the resistor.

【0015】[0015]

【実施例】以下、本発明の実施例について図1を参照し
て説明する。
Embodiments of the present invention will be described below with reference to FIG.

【0016】図1に示す様に、この低抗体は、酸化チタ
ンを含有する酸化亜鉛からなる中空の円筒上の焼結体を
有する。この焼結体の両端面にはアルミニウム電極が形
成されている。さらに、この焼結体の側面にはホウケイ
酸ガラスからなる絶縁層が形成されている。この電力用
低抗体は、以下の様に、製造された。
As shown in FIG. 1, this low antibody has a hollow cylindrical sintered body made of zinc oxide containing titanium oxide. Aluminum electrodes are formed on both end surfaces of this sintered body. Further, an insulating layer made of borosilicate glass is formed on the side surface of this sintered body. This low-power antibody was manufactured as follows.

【0017】酸化亜鉛(ZnO)粉末に、酸化チタン
(TiO2 )粉末を表1に示す割合で秤量、純水溶媒
中、樹脂製ボールミルとジルコニア製粉砕媒体を用い
て、24時間湿式混合した。純水を除去した後、バイン
ダーとしてPVA水溶液を所定量添加混合し、ふるいを
通して造粒粉とした。この造粒粉を、成形圧500kg/
cm2 の圧力で金型成形して外径148mmφ、内径48mm
φ、高さ32mmの中空円筒状の成形体とした。この成形
体を、酸化アルミニウム製容器の中に入れ、空気中12
00〜1400℃の温度で2時間保持後、降温速度20
〜300℃/時で所定温度まで降温し(1表)、その
後、炉中放冷による急冷を行った。この焼結体の側面
に、ホウケイ酸ガラス粉末を塗布した後、焼き付けて、
絶縁相を形成した。その後、この焼結体の両端面を研削
加工して、外径127mmφ、内径41mmφ、高さ25.
4mmの寸法とし、洗浄後に端面にアルミニウム電極を溶
射により形成して、低抗体を得た。焼結体の酸化亜鉛粒
子の成分は、以下に示す選択エッチング法により、分離
抽出し、化学分析を行った。焼結体は粉砕を行い、粉末
状の試料とした。試料1gに対して5%の酢酸、5の乳
酸の混合液を50mlの割合で加え、90分間、超音波を
印加しながらZnO粒子を溶解した。溶解物をフィルタ
ーでろ過した後、ICP発光分光法でチタンの定量を行
った。これら低抗体の製作条件と分析結果および特性と
の関係を表1に併せて示す。投入低抗体としては、抵抗
率が1.5×10〜104 Ω・cm、抵抗温度係数は絶対
値で0.5%以下、符号は正が好ましい。また、サージ
吸収による抵抗変化率は10%以下が適する。表1よ
り、酸化亜鉛粒子に固溶する酸化チタンの量が0.00
5モル%以上で抵抗温度係数が正の値になり、また、
0.1モル%以下で繰り返しサージ印加に対する抵抗値
変化が小さく低抗体として十分である関係を得た。実施
例の周辺組成を実施例と同様な方法で作製し、2種の抵
抗体を得た。これら比較例の低抗体の成分比と特性の関
係を表1に示す。
Zinc oxide (ZnO) powder, titanium oxide
(TiO2) The powder is weighed in the ratio shown in Table 1, pure water solvent
Medium, using resin ball mill and zirconia grinding medium
And wet-mixed for 24 hours. After removing the pure water,
Add a predetermined amount of PVA aqueous solution as a der
It was made into a granulated powder through. This granulated powder is pressed at a molding pressure of 500 kg /
cm2 Outer diameter 148mmφ, inner diameter 48mm
A hollow cylindrical molded body having a φ and a height of 32 mm was prepared. This molding
Place the body in a container made of aluminum oxide and place it in air 12
After holding at a temperature of 00 to 1400 ° C for 2 hours, the temperature decrease rate is 20
The temperature is lowered to a predetermined temperature at ~ 300 ° C / hour (Table 1), and
After that, rapid cooling was performed by cooling in the furnace. Side of this sintered body
Then, after applying borosilicate glass powder, bake,
An insulating phase was formed. After that, grind both end faces of this sintered body
Processed, outer diameter 127 mmφ, inner diameter 41 mmφ, height 25.
The size is 4 mm, and the aluminum electrode is melted on the end face after cleaning.
It was formed by injection to obtain low antibody. Zinc oxide particles in sintered body
The child components are separated by the selective etching method shown below.
Extracted and subjected to chemical analysis. The sintered body is crushed and powdered
Sample. 5% acetic acid and 5 milk per 1 g sample
Add 50 ml of the acid mixture and sonicate for 90 minutes.
The ZnO particles were dissolved while applying the voltage. Filter lysate
Filter and then quantify titanium by ICP emission spectroscopy.
It was. The production conditions, analysis results and characteristics of these low antibodies
The relationship is also shown in Table 1. As a low antibody input, resistance
Rate is 1.5 × 10-10Four Ω ・ cm, temperature coefficient of resistance is absolute
The value is preferably 0.5% or less, and the sign is preferably positive. Also surge
The resistance change rate due to absorption is suitably 10% or less. Table 1
The amount of titanium oxide dissolved in the zinc oxide particles is 0.00
If it is 5 mol% or more, the temperature coefficient of resistance becomes a positive value.
Resistance value against repeated surge application at 0.1 mol% or less
We obtained a relationship with little change and sufficient as a low antibody. Implementation
The peripheral composition of the example was prepared in the same manner as in the example, and two kinds of resistance were prepared.
An antibody was obtained. The relationship between the component ratio and characteristics of the low antibody of these comparative examples
Table 1 shows the members.

【0018】酸化亜鉛粒子に固溶する酸化チタンの量が
この本願発明の範囲未満であると抵抗温度係数が負の値
で絶対値が大きくなる。また0.1モル%を超えるとで
は抵抗変化率が10%を超えるためやはり電力用の投入
低抗体として不適当である。
When the amount of titanium oxide dissolved in the zinc oxide particles is less than the range of the present invention, the temperature coefficient of resistance is negative and the absolute value is large. On the other hand, if it exceeds 0.1 mol%, the rate of change in resistance exceeds 10%, so that it is also unsuitable as a low antibody input for electric power.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】以上のように、本発明によれば、抵抗値
の制御性が良好で、抵抗温度係数が小さく、サージ吸収
による抵抗変化率が小さな電力用低抗体を提供すること
ができる。
As described above, according to the present invention, it is possible to provide a low antibody for electric power which has a good controllability of resistance value, a small temperature coefficient of resistance and a small resistance change rate due to surge absorption.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…電力用低抗体 2…焼結体 3…電極 4…絶縁層 1 ... Low antibody for electric power 2 ... Sintered body 3 ... Electrode 4 ... Insulating layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上野 文雄 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Fumio Ueno 1 Komukai Toshiba Town, Kawasaki City, Kanagawa Prefecture Toshiba Research Institute Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】酸化亜鉛(ZnO)を主成分とする酸化物
焼結体において、酸化亜鉛粒子がチタンを酸化チタン
(TiO2 )に換算して0.005〜0.1モル%固溶
することを特徴とする電力用抵抗体。
1. In an oxide sintered body containing zinc oxide (ZnO) as a main component, zinc oxide particles form 0.005 to 0.1 mol% solid solution of titanium in terms of titanium oxide (TiO 2 ). A power resistor characterized by the above.
JP06506992A 1992-03-23 1992-03-23 Power resistor Expired - Fee Related JP3210063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06506992A JP3210063B2 (en) 1992-03-23 1992-03-23 Power resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06506992A JP3210063B2 (en) 1992-03-23 1992-03-23 Power resistor

Publications (2)

Publication Number Publication Date
JPH05267013A true JPH05267013A (en) 1993-10-15
JP3210063B2 JP3210063B2 (en) 2001-09-17

Family

ID=13276297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06506992A Expired - Fee Related JP3210063B2 (en) 1992-03-23 1992-03-23 Power resistor

Country Status (1)

Country Link
JP (1) JP3210063B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7063435B2 (en) * 2019-07-04 2022-05-09 Smc株式会社 Sensor fixtures and fluid pressure cylinders

Also Published As

Publication number Publication date
JP3210063B2 (en) 2001-09-17

Similar Documents

Publication Publication Date Title
JPH04219359A (en) Electrically conductive zinc oxide sintered compact
JP3212672B2 (en) Power resistor
CN105198409B (en) A kind of preparation method of the barium-strontium titanate-based glass complex phase ceramic of high energy storage density
JP3210063B2 (en) Power resistor
CN114195490B (en) Preparation method of ceramic resistor, ceramic resistor and electronic circuit device
JP5337073B2 (en) Current-voltage nonlinear resistor and method for manufacturing the same
Puyané et al. High performance varistor discs obtained from chemically synthesized doped zinc oxide powder
JP3183933B2 (en) Power resistor
JP3580650B2 (en) Power resistor, method of manufacturing the same, and power circuit breaker
JPH07147204A (en) Metal oxide based resistor, power resistor, and power breaker
JP3488595B2 (en) Power resistors and power resistors
JP3461266B2 (en) Power resistors and power circuit breakers
JP3425271B2 (en) Power resistor, method of manufacturing the same, and power circuit breaker
JP3422889B2 (en) Power resistors and power resistors
JP2000100602A (en) Power resistor body, manufacture thereof and power circuit breaker
JP3256672B2 (en) Power resistor
JPH1036168A (en) Production of ceramic linear resistor
JPH03297101A (en) Power resistor and manufacture thereof
JPH06181102A (en) Manufacture of ptc resistor
JPS6355904A (en) Oxide resistor
JPH03159201A (en) Oxide resistor
JP3151443B2 (en) Ceramic resistor and its manufacturing method
JPH0817604A (en) Power resistor and its manufacture
JPH10261504A (en) Power resistor, its manufacture, power circuit breaker and neutral-point grounded resistor
JPH07230902A (en) Semiconductor ceramic element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees