JPH05266688A - Charge transfer device - Google Patents

Charge transfer device

Info

Publication number
JPH05266688A
JPH05266688A JP4062910A JP6291092A JPH05266688A JP H05266688 A JPH05266688 A JP H05266688A JP 4062910 A JP4062910 A JP 4062910A JP 6291092 A JP6291092 A JP 6291092A JP H05266688 A JPH05266688 A JP H05266688A
Authority
JP
Japan
Prior art keywords
transfer
charge
electrodes
charge transfer
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4062910A
Other languages
Japanese (ja)
Inventor
Kenji Sato
健二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Yamagata Ltd
Original Assignee
NEC Yamagata Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Yamagata Ltd filed Critical NEC Yamagata Ltd
Priority to JP4062910A priority Critical patent/JPH05266688A/en
Publication of JPH05266688A publication Critical patent/JPH05266688A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To enable execution of driving without causing deterioration in a transfer efficiency even when the driving is executed by a fast clock pulse, by a structure wherein charge transfer areas just below transfer electrodes widen continuously and gradually for each transfer electrode along the direction of transfer of a charge. CONSTITUTION:Transfer electrodes 51 and 71 are disposed alternately on a P-type silicon substrate 1 with a gate insulation film 4 interlaid and clock pulses phi1 and phi2 are impressed alternately on sets of these electrodes. Transfer areas constructed of N-type diffused layers 2a and 3a divided by a field oxide film 10 and a P-type channel stopper 9 are made to have a structure wherein flat surfaces of the areas are so shaped as to widen continuously and gradually for each transfer electrode along the direction of transfer of a charge. By this structure, deterioration of a transfer efficiency can be suppressed even when driving is executed by a clock pulse of a high frequency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電荷転送装置の構造に
関する。
FIELD OF THE INVENTION The present invention relates to the structure of charge transfer devices.

【0002】[0002]

【従来の技術】電荷転送装置は、電気信号や入射光等の
情報入力を電荷の形で蓄積し、その電荷を多数の転送電
極によって順次転送し、これを電気信号として取り出す
ことができることから、撮像装置やメモリ、その他の信
号処理装置等に広く使用されている。
2. Description of the Related Art A charge transfer device is capable of accumulating information inputs such as electric signals and incident light in the form of electric charges, successively transferring the electric charges by a large number of transfer electrodes, and taking out the electric signals. It is widely used in imaging devices, memories, and other signal processing devices.

【0003】図4(a)は従来の2相電荷結合装置(C
CD)の平面図、図4(b)は図4(a)のX−X線断
面図である。
FIG. 4A shows a conventional two-phase charge coupled device (C
FIG. 4B is a plan view of CD) and FIG. 4B is a sectional view taken along line XX of FIG.

【0004】例えば、P型シリコン基板1の一主面に薄
いゲート酸化膜4を介して転送電極(バリア電極7i,
…およびストレージ電極5i,…)が配置され、バリア
電極7iとストレージ電極5iの組に交互にクロックパ
ルスφ1,φ2が与えられるようになっている。転送領
域はP型シリコン基板1の表面部に選択的に形成された
第1のN型拡散層2(不純物濃度5×1015/cm2
およびバリア電極下の第2のN型拡散層3(不純物濃度
3×1015〜4×1015/cm2 )からなっている。そ
うして、転送領域の幅は一定になっている。
For example, a transfer electrode (barrier electrode 7i, is formed on one main surface of the P-type silicon substrate 1 via a thin gate oxide film 4).
, And storage electrodes 5i, ...) are arranged, and clock pulses φ1 and φ2 are alternately applied to the set of barrier electrode 7i and storage electrode 5i. The transfer region is the first N-type diffusion layer 2 (impurity concentration 5 × 10 15 / cm 2 ) selectively formed on the surface of the P-type silicon substrate 1.
And the second N-type diffusion layer 3 (impurity concentration 3 × 10 15 to 4 × 10 15 / cm 2 ) below the barrier electrode. As a result, the width of the transfer area is constant.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の電荷転
送装置に図5に示すようなクロックパルスφ1,φ2を
印加すると転送領域の表面ポテンシャルψは、図6に示
すようになり、時刻t=t1において、ストレージ電極
5j下の電荷81は、t=t2において、ストレージ電
極5k下に転送されることになる。
When the clock pulses φ1 and φ2 as shown in FIG. 5 are applied to the above-mentioned conventional charge transfer device, the surface potential ψ of the transfer region becomes as shown in FIG. 6, and time t = The charges 81 under the storage electrode 5j at t1 are transferred to the storage electrode 5k under t = t2.

【0006】ところで、従来の電荷転送装置では、転送
領域が電荷の転送方向に沿って幅が一定の構造を有して
いるため各転送電極直下のポテンシャル4は、図6に示
すように、ほぼ一定であるが、転送電極に例えば、15
MHz程度の速いクロックパルスを与えた場合、転送効
率が90%程度まで劣化するという欠点があった。
By the way, in the conventional charge transfer device, since the transfer region has a structure in which the width is constant along the charge transfer direction, the potential 4 immediately below each transfer electrode is almost as shown in FIG. It is constant, but for example, 15
When a fast clock pulse of about MHz is applied, there is a drawback that the transfer efficiency deteriorates to about 90%.

【0007】[0007]

【課題を解決するための手段】本発明は、一導電型半導
体基板の表面部に区画された転送領域と、前記転送領域
をゲート絶縁膜を介して選択的に被覆する転送電極群と
を有する電荷転送装置において、前記転送領域の幅が前
記各転送電極毎に電荷転送方向に沿って未広がりになっ
ているというものである。
The present invention has a transfer region defined on the surface of a semiconductor substrate of one conductivity type, and a transfer electrode group for selectively covering the transfer region via a gate insulating film. In the charge transfer device, the width of the transfer region is not yet spread along the charge transfer direction for each of the transfer electrodes.

【0008】[0008]

【実施例】次に本発明について図面を参照して説明す
る。
The present invention will be described below with reference to the drawings.

【0009】図1(a)は、本発明の一実施例である2
相駆動の電荷結合装置(CCD)を示す平面図、図1
(b)は図1(a)のXa−Xb線断面図、図1(c)
は図1(a)のY−Y線断面図である。
FIG. 1A shows an embodiment of the present invention 2
FIG. 1 is a plan view showing a phase-driven charge-coupled device (CCD).
1B is a sectional view taken along line Xa-Xb of FIG. 1A, and FIG.
FIG. 2 is a sectional view taken along the line YY of FIG.

【0010】P型シリコン基板1の表面部に、不純物濃
度5.0×1015/cm2 の第1のN型拡散層2aを設
け、その表面にゲート酸化膜4を介して転送電極が配置
されている。すなわち、バリア電極7iとストレージ電
極5iの組が交互に配置されこれらの組には交互にクロ
ックパルスφ1,φ2が印加される。バリア電極7i,
7j,…の下部には不純物濃度が3.0×1015〜4.
0×1015/cm2 の第2のN型拡散層3aが設けられ
ている。
A first N-type diffusion layer 2a having an impurity concentration of 5.0 × 10 15 / cm 2 is provided on the surface of the P-type silicon substrate 1, and a transfer electrode is arranged on the surface thereof via a gate oxide film 4. Has been done. That is, pairs of barrier electrodes 7i and storage electrodes 5i are alternately arranged, and clock pulses φ1 and φ2 are alternately applied to these pairs. Barrier electrode 7i,
7j, ... has an impurity concentration of 3.0 × 10 15 to 4.
A second N-type diffusion layer 3a of 0 × 10 15 / cm 2 is provided.

【0011】転送領域は、フィールド酸化膜10とその
下のP+ 型チャネルストッパ9で区画された第1,第2
のN型拡散層であるが、その平面形状は電荷の転送方向
に沿って転送電極毎、連続的に徐々に広がる構造を有し
ている。第1,第2のN型拡散層は底辺の長さW1=
7.5μm,上辺の長さW2=5μm,高さL=4μm
の台形状になっている。
The transfer region is divided into a field oxide film 10 and a P + -type channel stopper 9 below the first and second transfer regions.
The N-type diffusion layer has a structure in which its planar shape is such that it gradually and continuously spreads along with the charge transfer direction for each transfer electrode. The first and second N-type diffusion layers have a bottom length W1 =
7.5 μm, upper side length W2 = 5 μm, height L = 4 μm
It has a trapezoidal shape.

【0012】図2に、転送電極に一定の電圧を印加した
ときの転送領域における表面ポテンシャルψの分布を示
す。横軸は転送領域の幅方向(Y−Y線と平行な方向)
にとってある。
FIG. 2 shows the distribution of the surface potential ψ in the transfer region when a constant voltage is applied to the transfer electrode. The horizontal axis is the width direction of the transfer area (direction parallel to the YY line)
For

【0013】転送方向(Xa−Xb線方向。)に垂直な
方向に沿った表面ポテンシャルψは、転送領域の中心部
では深いが、ナローチャンネル効果の影響により、中心
部から離れるに従い浅くなる。
The surface potential ψ along the direction perpendicular to the transfer direction (Xa-Xb line direction) is deep at the center of the transfer region, but becomes shallower as it moves away from the center due to the effect of the narrow channel effect.

【0014】又、転送領域が広くなるほど、ナローチャ
ンネル効果の影響を受けにくくなるため、全体的に深く
なる。
Also, the wider the transfer area, the less likely it is to be affected by the narrow channel effect, and the deeper it is as a whole.

【0015】この結果、幅広部の表面ポテンシャルψ1
と幅狭部の表面ポテンシャルψ2の間にはポテンシャル
差Δψが生じる。従って、電荷の転送方向に加速電界が
生じる。
As a result, the surface potential ψ1 of the wide portion is
A potential difference Δψ occurs between the surface potential ψ2 and the surface potential ψ2 of the narrow portion. Therefore, an acceleration electric field is generated in the charge transfer direction.

【0016】図3に、各転送電極にクロックパルスφ
1,φ2(図5に示す)を印加したときの電荷転送方向
の表面ポテンシャルを示す。クロック・パルスφ1,φ
2のパルス高を5Vとすると、0.25V/μm程度の
加速電界ができる。従来例と同様に時刻t1においてス
トレージ電極5j下にあった電荷81は時刻t2ではス
トレージ電極5k下に転送される。
In FIG. 3, a clock pulse φ is applied to each transfer electrode.
6 shows the surface potential in the charge transfer direction when 1 and φ2 (shown in FIG. 5) are applied. Clock pulse φ1, φ
When the pulse height of 2 is 5 V, an accelerating electric field of about 0.25 V / μm is generated. As in the conventional example, the electric charges 81 under the storage electrode 5j at the time t1 are transferred to the storage electrode 5k under the time t2.

【0017】本実施例では従来の1.5倍の同波数15
MHzのクロックパルスで駆動しても転送効率の劣化は
認められなかった。
In the present embodiment, the same wave number of 1.5 times that of the conventional one is 15
No deterioration in transfer efficiency was observed even when driven by a MHz clock pulse.

【0018】[0018]

【発明の効果】以上説明したように、本発明は、転送電
極直下の電荷転送領域が電荷の転送方向に沿って、転送
電極毎に連続的に徐々に広くなる構造を有しているの
で、高い周波数のクロックパルスで駆動しても転送効率
の劣化を抑えることができるという効果を有する。
As described above, the present invention has a structure in which the charge transfer region immediately below the transfer electrode is gradually and gradually widened for each transfer electrode along the charge transfer direction. Even if it drives with a high frequency clock pulse, it has the effect that the deterioration of the transfer efficiency can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す平面図(図1
(a))、図1(a)のXa−Xb線断面図(図1
(b))および図1(a)のY−Y線断面図(図1
(c))である。
FIG. 1 is a plan view showing an embodiment of the present invention (see FIG.
(A)), sectional view taken along line Xa-Xb of FIG.
(B)) and the YY line sectional view of FIG.
(C)).

【図2】本発明の一実施例の転送領域の幅方向の表面ポ
テンシャル分布を示す図である。
FIG. 2 is a diagram showing a surface potential distribution in a width direction of a transfer region according to an embodiment of the present invention.

【図3】本発明の一実施例の動作説明に使用するポテン
シャル図である。
FIG. 3 is a potential diagram used for explaining the operation of the embodiment of the present invention.

【図4】従来の2相駆動CCDを示す平面図(図4
(a))および断面図(図4(b))である。
FIG. 4 is a plan view showing a conventional two-phase drive CCD (see FIG.
It is (a)) and sectional drawing (FIG.4 (b)).

【図5】2相駆動のCCDのクロック・パルスを示すタ
イミング図である。
FIG. 5 is a timing diagram showing clock pulses of a two-phase drive CCD.

【図6】従来の2相駆動CCDの動作説明に使用するポ
テンシャル図である。
FIG. 6 is a potential diagram used for explaining the operation of a conventional two-phase driving CCD.

【符号の説明】[Explanation of symbols]

1 P型シリコン基板 2,2a 第1のN型拡散層 3,3a 第2のN型拡散層 4 ゲート絶縁膜 5i,5j,5k ストレージ電極 6 層間絶縁膜 7i,7j,7k バリア電極 81,82 電荷 9 P+ 型チャネルストッパ 10 フィールド酸化膜 φ1,φ2 クロック・パルス ψ 表面ポテンシャル1 P-type silicon substrate 2, 2a First N-type diffusion layer 3, 3a Second N-type diffusion layer 4 Gate insulating film 5i, 5j, 5k Storage electrode 6 Inter-layer insulating film 7i, 7j, 7k Barrier electrode 81, 82 Charge 9 P + type channel stopper 10 Field oxide film φ1, φ2 Clock pulse ψ Surface potential

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一導電型半導体基板の表面部に区画され
た転送領域と、前記転送領域をゲート絶縁膜を介して選
択的に被覆する転送電極群とを有する電荷転送装置にお
いて、前記転送領域の幅が前記各転送電極毎に電荷転送
方向に沿って未広がりになっていることを特徴とする電
荷転送装置。
1. A charge transfer device comprising: a transfer region partitioned into a surface portion of a one-conductivity-type semiconductor substrate; and a transfer electrode group selectively covering the transfer region via a gate insulating film. The charge transfer device is characterized in that the width of each of the transfer electrodes does not spread along the charge transfer direction.
【請求項2】 転送領域が一導電型半導体基板の表面部
が選択的に形成された他導電型不純物拡散層である請求
項1記載の電荷転送装置。
2. The charge transfer device according to claim 1, wherein the transfer region is an impurity diffusion layer of another conductivity type in which a surface portion of the one conductivity type semiconductor substrate is selectively formed.
JP4062910A 1992-03-19 1992-03-19 Charge transfer device Pending JPH05266688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4062910A JPH05266688A (en) 1992-03-19 1992-03-19 Charge transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4062910A JPH05266688A (en) 1992-03-19 1992-03-19 Charge transfer device

Publications (1)

Publication Number Publication Date
JPH05266688A true JPH05266688A (en) 1993-10-15

Family

ID=13213888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4062910A Pending JPH05266688A (en) 1992-03-19 1992-03-19 Charge transfer device

Country Status (1)

Country Link
JP (1) JPH05266688A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115855A (en) * 2014-12-16 2016-06-23 キヤノン株式会社 Solid state image pickup device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115855A (en) * 2014-12-16 2016-06-23 キヤノン株式会社 Solid state image pickup device

Similar Documents

Publication Publication Date Title
GB1470191A (en) Charge coupled devices
JPS6156630B2 (en)
US6111279A (en) CCD type solid state image pick-up device
JPH05266688A (en) Charge transfer device
JPH0695536B2 (en) Charge transfer device
JPH07161970A (en) Solid-state image pickup device
JPH06120262A (en) Charge transfer device
US5075747A (en) Charge transfer device with meander channel
JPS5850032B2 (en) Hand tie souchi
JP3206009B2 (en) Charge coupled device, method of manufacturing the same, and method of driving the same
JP3048011B2 (en) Charge-coupled device
JP3060649B2 (en) Semiconductor device and driving method thereof
JPS61289659A (en) Solid-state image pickup device
JP2586455B2 (en) Solid-state imaging device
JP2716182B2 (en) Charge-coupled device
JP4673053B2 (en) Charge transfer device
JP2595924B2 (en) Solid-state imaging device
JPH025473A (en) Solid state image sensor and manufacture thereof
JPS63313862A (en) Charge transfer device
JPH0821711B2 (en) Charge transfer device
JPS6197860A (en) Charge transfer device
JPH036836A (en) Charge transfer device
JPH0585041U (en) Charge transfer device
JPH05219449A (en) Charge transfer device
JPS597226B2 (en) Charge injection method into charge-coupled devices

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990323