JPH052658B2 - - Google Patents

Info

Publication number
JPH052658B2
JPH052658B2 JP57176079A JP17607982A JPH052658B2 JP H052658 B2 JPH052658 B2 JP H052658B2 JP 57176079 A JP57176079 A JP 57176079A JP 17607982 A JP17607982 A JP 17607982A JP H052658 B2 JPH052658 B2 JP H052658B2
Authority
JP
Japan
Prior art keywords
reaction
exchange resin
cation exchange
methylstyrene
carbinol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57176079A
Other languages
Japanese (ja)
Other versions
JPS5967231A (en
Inventor
Yoshihiro Ikeda
Harushige Sugawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP17607982A priority Critical patent/JPS5967231A/en
Publication of JPS5967231A publication Critical patent/JPS5967231A/en
Publication of JPH052658B2 publication Critical patent/JPH052658B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高い選択率でメチルフエニルカルビノ
ール類であるジメチルフエニルカルビノールを対
応する芳香族オレフインであるα−メチルスチレ
ンへ脱水する方法に関する。 メチルフエニルカルビノール類は対応するフエ
ニルメチルハイドロパーオキシドを原料としてオ
レフインをエポキシ化する際の重要な中間生成物
であり、最も代表的には、プロピレンとエチルベ
ンゼンハンドロパーオキシドからプロピレンオキ
シドと共に生成するメチルフエニルカルビノー
ル、又、クメンハイドロパーオキシド経由による
フエノール製造過程で副生するジメチルフエニル
カルビノール等が挙げられる。 これらのメチルフエニルカルビノール類を原料
として対応する芳香族オレフイン類を製造する方
法としては、メチルフエニルカルビノール類を(1)
硫酸、有機カルボン酸、有機スルホン酸、アルカ
リ金属の酸性硫酸塩の如き酸触媒の存在下液相で
脱水する方法、(2)気相でチタニア等の金属酸化物
触媒の存在下脱水する方法が知られている。 (1)の方法の例としては、特公昭31−9875で有機
カルボン酸の存在下加熱する方法が、又特公昭49
−45853でNaHSO3含有水溶液を触媒として脱水
蒸留する方法が、更に特開昭55−102521では有機
フルホン酸又はそのエステルを触媒として脱水す
る方法がそれぞれ提案されている。これら方法に
おける代表的な酸触媒は硫酸であり、この場合は
脱水反応後アルカリで中和を行なう等後処理工程
が必要になると共に中和にともなう副生物が生じ
る欠点を有する。加えて、生成する芳香族オレフ
イン化合物の収量が低い欠点もある。又有機スル
ホン酸を用いる例でもみられるように収量増加の
ため減圧下で反応させ生成する芳香族オレフイン
類を留去する等繁雑な操作を必要とする問題もあ
る。 (2)の方法の例としては、特公昭49−5323、特公
昭52−39017等でみられる如く、チタニア触媒を
用いて気相で脱水する方法が開示されている。こ
れらの方法では気相で反応を行なうため高温が必
要となり、熱回収のため多大な熱交換器等の設備
が必要になる等工業上改良が望まれている。 本発明者らは工業的に有利なメチルフエニルカ
ルビノール類の脱水方法に関して鋭意検討した結
果、強酸型陽イオン交換樹脂を触媒として用いる
ことにより低温で、容易にかつ高い選択率で対応
する芳香族オレフイン化合物を得ることができる
ことを見出し、本発明に到達した。 すなわち、本発明は、ジメチルフエニルカルビ
ノールを強酸型陽イオン交換樹脂の存在下、反応
温度0〜120℃で接触脱水反応せしめて、α−メ
チルスチレンとすることを特徴とするジメチルフ
エニルカルビノールの脱水方法である。 以下本発明をさらに詳細に説明する。 本発明でいう強酸型陽イオン交換樹脂とは、強
酸性を有する陽イオン交換樹脂であり、スチレン
系スルホン酸型イオン交換樹脂に代表される。 スチレン系スルホン酸型陽イオン交換樹脂はス
チレンとジビニルベンゼン等の不飽和化合物を共
重合させて得られる樹脂をスルホン化したもので
あり、ジビニルベンゼンの量比の異なる樹脂を用
いることが出来る。 本発明は上記のジメチルフエニルカルビノール
を上記の強酸型陽イオン交換樹脂を触媒として脱
水反応させる。 この反応は、一般に、常圧又は加圧下液−固反
応で実施され、その反応温度は0〜120℃、好ま
しくは20〜100℃である。即ち0℃以下の反応温
度では反応の進行が余りにも遅く反応に時間がか
かりすぎて不利であり、反対に120℃以上の温度
では、反応速度は大きくなり反応時間は短くてす
むが、生成する芳香族オレフイン化合物の二量
化、三量化等の重合反応が進み、結果的に芳香族
オレフイン化合物の選択率の低下が顕著であり不
利であるだけでなく、触媒の劣化が進む不利もあ
る。従つて上記反応温度の範囲で用いる強酸型陽
イオン交換樹脂の種類及び触媒の量に応じて適宜
温度の条件を選定する方がよい。 反応には溶媒を用いる必要はないが、不活性な
炭化水素を溶媒として用いることもでき、この溶
媒としては原料であるジメチルフエニルカルビノ
ールに対応する飽和アルキルベンゼン類が好適で
ある。反応に用いる強酸型陽イオン交換樹脂の使
用量は厳密な意味での限定はないが、反応原料に
対して約1〜50wt%使用すればよい。ここでい
う反応原料とはジメチルフエニルカルビノールと
溶媒の合計量を意味し、ジメチルフエニルカルビ
ノールの濃度に応じて強酸型陽イオン交換樹脂の
使用量を適宜選定すればよい。反応に要する時間
は強酸型陽イオン交換樹脂の種類及び触媒の量、
及び反応温度に応じて決まつてくるが、一般的に
回分法の場合で10分から12時間であり、連続法で
はそれに相当するLHSV(1/hr)で操作すれば
よい。 生成したα−メチルスチレンの回収は公知の方
法により容易に出来る。すなわち、強酸型陽イオ
ン交換樹脂をロ過等の固液分離操作により分離
し、そのまま又は必要に応じて重合禁止剤を添加
して蒸留することにより高純度のα−メチルスチ
レンを得ることができる。 本発明方法によれば、従来の硫酸等の酸触媒存
在下の脱水反応に比べて目的生成物であるα−メ
チルスチレンの二量体、三量体等の生成が大幅に
低減し、目的生成物が低温で高い選択率で容易に
得られる。又従来、必要であつた酸の中和や塩の
除去といつた繁雑な操作をなくし簡単な固液分離
操作のみの後処理で目的生成物の精製工程に付す
ることができる等工業的な効果は大きい。 以下実施例により本発明の特徴を例示するが、
これらの例における%は特に断らない限りモル%
を示す。更に組成分析は内部標準法によるガスク
ロマト分析によるものである。 ここで、メチルフエニルカルビノール類の転化
率、芳香族オレフイン類の選択率は次の式から導
き出される。 メチルフエニルカルビノール類転化率(%) =反応前のメチルフエニルカルビノール類(モル)−反
応後のメチルフエニルカルビノール類(モル)/反応前の
メチルフエニルカルビノール類(モル)×
100 芳香族オレフイン類選択率(%) =生成した芳香族オレフイン類(モル)/反応前のメチル
フエニルカルビノール類(モル)−反応後のメチルフエニ
ルカルビノール類(モル)×100 実施例 1 温度計、攪拌機及び還流管を有する300mlのガ
ラス製フラスコに25.9wt%のジメチルフエニルカ
ルビノールのクメン溶液を140gとスチレン型陽
イオン交換樹脂(Rohm & Haas社製アンバ
ーリスト15)35gとを加え、50℃まで昇温後、2
時間50℃で反応させた。氷冷により冷却後、スチ
レン型陽イオン交換樹脂を過後、反応生成物を
分析したところ、ジメチルフエニルカルビノール
転化率95.9%、α−メチルスチレン選択率98.3%
の結果を得た。副生物としては主にα−メチルス
チレンダイマーが検出された。 実施例 2 実施例−1と同様のガラス製フラスコに、
10.0wt%のジメチルフエニルカルビノールのクメ
ン溶液を150gと、スチレン型陽イオン交換樹脂
(アンバーリスト15)15gとを加え、20℃で3時
間反応させた。スチレン型陽イオン交換樹脂を
過後反応生成物を分析したところ、ジメチルフエ
ニルカルビノール転化率95.5%、α−メチルスチ
レン選択率95.5%の結果を得た。 実施例 3〜9 反応温度、反応時間、陽イオン交換樹脂添加量
を表−1に示したとうりに変えた以外は実施例−
2と同様の方法により反応を行ない表−1に示し
た結果を得た。
The present invention relates to a method for dehydrating dimethylphenylcarbinol, a methylphenylcarbinol, to α-methylstyrene, a corresponding aromatic olefin, with high selectivity. Methylphenyl carbinols are important intermediates in the epoxidation of olefins starting from the corresponding phenylmethyl hydroperoxides, most typically with propylene oxide from propylene and ethylbenzene handroperoxide. Examples include methylphenyl carbinol produced and dimethylphenyl carbinol produced as a by-product in the process of producing phenol via cumene hydroperoxide. As a method for producing the corresponding aromatic olefins using these methylphenylcarbinols as raw materials, methylphenylcarbinols (1)
(2) a method of dehydration in the liquid phase in the presence of an acid catalyst such as sulfuric acid, an organic carboxylic acid, an organic sulfonic acid, or an acidic sulfate of an alkali metal, and (2) a method of dehydration in the gas phase in the presence of a metal oxide catalyst such as titania. Are known. Examples of the method (1) include the method of heating in the presence of an organic carboxylic acid in Japanese Patent Publication No. 31-9875;
-45853 proposes a method of dehydration distillation using an aqueous solution containing NaHSO 3 as a catalyst, and JP-A-55-102521 proposes a method of dehydration using an organic sulfonic acid or its ester as a catalyst. A typical acid catalyst used in these methods is sulfuric acid, which requires a post-treatment step such as neutralization with an alkali after the dehydration reaction, and has the disadvantage that by-products are produced as a result of the neutralization. In addition, there is also the drawback that the yield of aromatic olefin compounds produced is low. Furthermore, as seen in examples using organic sulfonic acids, there is also the problem of requiring complicated operations such as distilling off the aromatic olefins produced by the reaction under reduced pressure in order to increase the yield. As an example of the method (2), a method of dehydration in a gas phase using a titania catalyst is disclosed, such as in Japanese Patent Publication No. 49-5323 and Japanese Patent Publication No. 52-39017. These methods require high temperatures because the reaction is carried out in the gas phase, and require a large amount of equipment such as heat exchangers for heat recovery, so industrial improvements are desired. The present inventors have conducted intensive studies on an industrially advantageous dehydration method for methylphenyl carbinols, and found that by using a strong acid type cation exchange resin as a catalyst, aromatic aromas can be easily produced at low temperatures and with high selectivity. The inventors have discovered that it is possible to obtain group olefin compounds, and have arrived at the present invention. That is, the present invention provides dimethyl phenyl carbinol, which is produced by subjecting dimethyl phenyl carbinol to α-methylstyrene by subjecting it to a catalytic dehydration reaction at a reaction temperature of 0 to 120° C. in the presence of a strongly acidic cation exchange resin. This is a method of dehydrating Knoll. The present invention will be explained in more detail below. The strong acid type cation exchange resin referred to in the present invention is a cation exchange resin having strong acidity, and is typified by a styrene-based sulfonic acid type ion exchange resin. The styrene-based sulfonic acid type cation exchange resin is a sulfonated resin obtained by copolymerizing styrene and an unsaturated compound such as divinylbenzene, and resins having different amounts of divinylbenzene can be used. In the present invention, the above-mentioned dimethylphenyl carbinol is subjected to a dehydration reaction using the above-mentioned strong acid type cation exchange resin as a catalyst. This reaction is generally carried out as a liquid-solid reaction under normal pressure or increased pressure, and the reaction temperature is 0 to 120°C, preferably 20 to 100°C. In other words, at a reaction temperature of 0°C or lower, the reaction progresses too slowly and takes too long, which is disadvantageous.On the other hand, at a temperature of 120°C or higher, the reaction rate increases and the reaction time can be shortened, but the formation of Polymerization reactions such as dimerization and trimerization of the aromatic olefin compound proceed, resulting in a significant decrease in the selectivity of the aromatic olefin compound, which is not only disadvantageous, but also has the disadvantage of accelerated deterioration of the catalyst. Therefore, it is better to select temperature conditions appropriately within the above reaction temperature range depending on the type of strong acid type cation exchange resin used and the amount of catalyst. Although it is not necessary to use a solvent in the reaction, an inert hydrocarbon can also be used as a solvent, and saturated alkylbenzenes corresponding to the raw material dimethylphenyl carbinol are suitable as the solvent. The amount of the strong acid type cation exchange resin used in the reaction is not strictly limited, but it may be used in an amount of about 1 to 50 wt% based on the reaction raw materials. The reaction raw material here means the total amount of dimethylphenyl carbinol and the solvent, and the amount of the strong acid type cation exchange resin to be used may be appropriately selected depending on the concentration of dimethylphenyl carbinol. The time required for the reaction depends on the type of strong acid type cation exchange resin, the amount of catalyst,
Although it is determined depending on the reaction temperature, it is generally 10 minutes to 12 hours in the case of a batch method, and it is sufficient to operate at the corresponding LHSV (1/hr) in a continuous method. The produced α-methylstyrene can be easily recovered by known methods. That is, highly pure α-methylstyrene can be obtained by separating a strong acid type cation exchange resin by a solid-liquid separation operation such as filtration, and distilling it as is or with the addition of a polymerization inhibitor if necessary. . According to the method of the present invention, compared to the conventional dehydration reaction in the presence of an acid catalyst such as sulfuric acid, the production of dimers, trimers, etc. of α-methylstyrene, which is the target product, is significantly reduced, and the target product is can be easily obtained with high selectivity at low temperatures. In addition, the complicated operations such as acid neutralization and salt removal that were conventionally required are eliminated, and the desired product can be subjected to the purification process with only a simple solid-liquid separation operation. The effect is great. The features of the present invention will be illustrated by examples below.
Percentages in these examples are mole% unless otherwise specified.
shows. Further, the compositional analysis was performed by gas chromatography using an internal standard method. Here, the conversion rate of methylphenyl carbinols and the selectivity of aromatic olefins are derived from the following equation. Conversion rate of methylphenylcarbinols (%) = Methylphenylcarbinols before reaction (moles) - Methylphenylcarbinols after reaction (moles) / Methylphenylcarbinols before reaction (moles) ×
100 Aromatic olefin selectivity (%) = Produced aromatic olefins (mol) / Methylphenyl carbinols (mol) before reaction - Methylphenyl carbinols (mol) after reaction x 100 Example 1. In a 300 ml glass flask equipped with a thermometer, stirrer, and reflux tube, add 140 g of a 25.9 wt% dimethylphenyl carbinol cumene solution and 35 g of a styrene-type cation exchange resin (Amberlyst 15, manufactured by Rohm & Haas). In addition, after raising the temperature to 50℃,
The reaction was carried out at 50°C for an hour. After cooling with ice and passing through a styrene-type cation exchange resin, the reaction product was analyzed, and the conversion rate of dimethylphenyl carbinol was 95.9%, and the selectivity of α-methylstyrene was 98.3%.
The results were obtained. α-methylstyrene dimer was mainly detected as a by-product. Example 2 In a glass flask similar to Example-1,
150 g of a 10.0 wt % dimethylphenyl carbinol cumene solution and 15 g of a styrene-type cation exchange resin (Amberlyst 15) were added and reacted at 20° C. for 3 hours. Analysis of the reaction product after passing through the styrene-type cation exchange resin revealed that the conversion rate of dimethylphenyl carbinol was 95.5% and the selectivity of α-methylstyrene was 95.5%. Examples 3 to 9 Examples 3 to 9 except that the reaction temperature, reaction time, and amount of cation exchange resin added were changed as shown in Table 1.
The reaction was carried out in the same manner as in 2, and the results shown in Table 1 were obtained.

【表】 実施例 10 スチレン型陽イオン交換樹脂のRohm &
Haas社製アンバーリスト15に代えてBayer社製
SPC−108を用いた以外は実施例−1と全く同様
の方法により反応を行なつたところ、ジメチルフ
エニルカルビノール転化率96.7%、α−メチルス
チレン選択率94.2%の結果を得た。 比較例 1 実施例−1と同様のガラス製フラスコに24.0wt
%のジメチルフエニルカルビノールのクメン溶液
を150gと濃硫酸0.8gとを加え、40℃まで昇温後、
1.5時間40℃で反応させた。氷冷により冷却し、
40%NaOHで中和後、反応生成物を分析したと
ころ、ジメチルフエニルカルビノール転化率59.7
%、α−メチルスチレン選択率89.5%の結果を得
た。陽イオン交換樹脂を用いた場合と対比させる
と硫酸を触媒として用いると、低温で反応させた
にもかかわらずα−メチルスチレンダイマーの生
成量が多い結果しか得られなかつた。 比較例 2 濃硫酸の添加量を0.5gとし、反応温度を60℃で
1時間反応させた以外は比較例−1と同様の方法
により反応を行なつたところ、ジメチルフエニル
カルビノール転化率22.6%、α−メチルスチレン
選択率86.4%の結果を得た。陽イオン交換樹脂を
用いた場合と対比するとジメチルフエニルカルビ
ノールの転化率が低いにもかかわらずα−メチル
スチレンダイマーの生成量が増加した。 比較例 3 実施例−1と同様のガラス製フラスコに、
20.5wt%のジメチルフエニルカルビノールのクメ
ン溶液を150gに酸触媒として12−モリブドリン
酸(H3PMo12O40・30H2O)2.5gとを加え、40℃
まで昇温後、2時間40℃で反応させた。氷冷によ
り冷却し、40%NaOHで中和後、反応生成物を
分析したところ、ジメチルフエニルカルビノール
転化率53.2%、α−メチルスチレン選択率48.3%
の結果を得た。 陽イオン交換樹脂を用いた場合と対比すると低
温であるにもかかわらずα−メチルスチレンダイ
マーの生成量が著しく増大した。 実施例 11 実施例−1と同様のガラス製フラスコに、
10.0wt%のα−メチルフエニルカルビノールのエ
チルベンゼン溶液を150gとスチレン型陽イオン
交換樹脂(アンバーリスト15)15gとを加え、
100℃で3時間反応させた。スチレン型陽イオン
交換樹脂を過後反応生成物を分析したところ、
α−メチルフエニルカルビノール転化率97.2%、
スチレン選択率90.1%の結果を得た。
[Table] Example 10 Styrene type cation exchange resin Rohm &
Manufactured by Bayer in place of Haas Amberlyst 15
The reaction was carried out in exactly the same manner as in Example 1 except that SPC-108 was used, and results were obtained with a dimethylphenyl carbinol conversion rate of 96.7% and an α-methylstyrene selectivity of 94.2%. Comparative Example 1 24.0wt in the same glass flask as Example-1
% dimethylphenyl carbinol in cumene solution and 0.8 g of concentrated sulfuric acid were added, and after raising the temperature to 40℃,
The reaction was carried out at 40°C for 1.5 hours. Cooled with ice,
After neutralization with 40% NaOH, the reaction product was analyzed and the conversion rate of dimethylphenyl carbinol was 59.7.
%, α-methylstyrene selectivity of 89.5% was obtained. In contrast to the case where a cation exchange resin was used, when sulfuric acid was used as a catalyst, only a large amount of α-methylstyrene dimer was produced even though the reaction was carried out at a low temperature. Comparative Example 2 A reaction was carried out in the same manner as in Comparative Example 1, except that the amount of concentrated sulfuric acid added was 0.5 g and the reaction temperature was 60°C for 1 hour. As a result, the conversion rate of dimethylphenyl carbinol was 22.6. %, α-methylstyrene selectivity of 86.4% was obtained. Compared to the case where a cation exchange resin was used, the amount of α-methylstyrene dimer produced increased despite the low conversion rate of dimethylphenyl carbinol. Comparative Example 3 In a glass flask similar to Example-1,
2.5 g of 12-molybdophosphoric acid (H 3 PMo 12 O 40 30 H 2 O) as an acid catalyst was added to 150 g of 20.5 wt% dimethylphenyl carbinol in cumene solution, and the mixture was heated at 40°C.
After raising the temperature to 40°C, the reaction was carried out for 2 hours at 40°C. After cooling with ice and neutralizing with 40% NaOH, the reaction product was analyzed, and the conversion rate of dimethylphenyl carbinol was 53.2%, and the selectivity of α-methylstyrene was 48.3%.
The results were obtained. Compared to the case where a cation exchange resin was used, the amount of α-methylstyrene dimer produced increased significantly despite the low temperature. Example 11 In a glass flask similar to Example-1,
Add 150 g of a 10.0 wt% ethylbenzene solution of α-methylphenyl carbinol and 15 g of a styrene-type cation exchange resin (Amberlyst 15),
The reaction was carried out at 100°C for 3 hours. When we analyzed the reaction products after using styrene type cation exchange resin, we found that
α-methylphenyl carbinol conversion rate 97.2%,
A result of styrene selectivity of 90.1% was obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 ジメチルフエニルカルビノールを強酸型陽イ
オン交換樹脂の存在下、反応温度0〜120℃で接
触脱水反応せしめて、α−メチルスチレンとする
ことを特徴とするジメチルフエニルカルビノール
の脱水方法。
1. A method for dehydrating dimethylphenyl carbinol, which comprises subjecting dimethylphenyl carbinol to a catalytic dehydration reaction at a reaction temperature of 0 to 120° C. in the presence of a strong acid type cation exchange resin to obtain α-methylstyrene.
JP17607982A 1982-10-08 1982-10-08 Method for dehydrating methylphenylcarbinol Granted JPS5967231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17607982A JPS5967231A (en) 1982-10-08 1982-10-08 Method for dehydrating methylphenylcarbinol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17607982A JPS5967231A (en) 1982-10-08 1982-10-08 Method for dehydrating methylphenylcarbinol

Publications (2)

Publication Number Publication Date
JPS5967231A JPS5967231A (en) 1984-04-16
JPH052658B2 true JPH052658B2 (en) 1993-01-13

Family

ID=16007347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17607982A Granted JPS5967231A (en) 1982-10-08 1982-10-08 Method for dehydrating methylphenylcarbinol

Country Status (1)

Country Link
JP (1) JPS5967231A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519247A (en) * 1978-07-28 1980-02-09 Sumitomo Chem Co Ltd Preparation of high-purity styrene by dehydration reaction of alpha-phenylethyl alcohol
JPS55102521A (en) * 1979-01-31 1980-08-05 Sumitomo Chem Co Ltd Improved method for preparation of styrene
JPS5695132A (en) * 1980-10-31 1981-08-01 Sumitomo Chem Co Ltd Preparation of high purity styrene by dehydration of alpha-phenylethyl alcohol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519247A (en) * 1978-07-28 1980-02-09 Sumitomo Chem Co Ltd Preparation of high-purity styrene by dehydration reaction of alpha-phenylethyl alcohol
JPS55102521A (en) * 1979-01-31 1980-08-05 Sumitomo Chem Co Ltd Improved method for preparation of styrene
JPS5695132A (en) * 1980-10-31 1981-08-01 Sumitomo Chem Co Ltd Preparation of high purity styrene by dehydration of alpha-phenylethyl alcohol

Also Published As

Publication number Publication date
JPS5967231A (en) 1984-04-16

Similar Documents

Publication Publication Date Title
KR100763216B1 (en) Method for producing high-purity diisobutene
RU2282625C2 (en) Oxirane compounds preparing
JP5027815B2 (en) Method for producing high yield bisphenol-A
HU177078B (en) Process for preparing pure methyl-tert.butyl-ether
US6518474B1 (en) Process for producing isobutylene from tertiary butyl alcohol
KR101822607B1 (en) Process for Producing a t-Butyl Phenol from a C4 Raffinate Stream
JPH05286879A (en) Production of high-purity phenol
US6388144B1 (en) Method for reducing methylbenzofuran levels in high purity phenol
KR100852565B1 (en) Hydrogenation of cleavage effluents in phenol production
JPS6058894B2 (en) Manufacturing method of tertiary alcohol
US6593491B2 (en) Production of tertiary butyl acetate
EP0322245B1 (en) Process for preparation of resorcinol
JPH052658B2 (en)
JP4098634B2 (en) Method for producing cumylphenol
RU2446138C1 (en) Method of producing isoprene
JPS58159434A (en) Manufacture of p-tertiary-octylphenol by phenol catalytic alkylation
JPH0330577B2 (en)
US3953526A (en) Synthesis of hydroquinone
EP0322247B1 (en) Decomposition of dihydroperoxide to resorcinol
JPH0244821B2 (en)
KR20060021338A (en) Integrated process for the production of bisphenol a from cumene hydroperoxide
KR20060006847A (en) Integrated process for the production of bisphenol a from cumene hydroperoxide
US3923909A (en) Oxidation of diethylbenzenes
JPS6212208B2 (en)
JP3957127B2 (en) Method for producing bisphenol A