JPH0526589A - Cooling device equipped with spiral heat pipe - Google Patents

Cooling device equipped with spiral heat pipe

Info

Publication number
JPH0526589A
JPH0526589A JP3161988A JP16198891A JPH0526589A JP H0526589 A JPH0526589 A JP H0526589A JP 3161988 A JP3161988 A JP 3161988A JP 16198891 A JP16198891 A JP 16198891A JP H0526589 A JPH0526589 A JP H0526589A
Authority
JP
Japan
Prior art keywords
heat
liquid
flow
pipe
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3161988A
Other languages
Japanese (ja)
Inventor
Akihiro Miyasaka
明宏 宮坂
Hiroaki Tsunoda
博明 角田
Katsuhiko Nakajima
克彦 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3161988A priority Critical patent/JPH0526589A/en
Publication of JPH0526589A publication Critical patent/JPH0526589A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To make the speed of the flow of steam, which is the flow of blocks of bubbles, quicker than the speed of the flow of liquid, which is the flow of the blocks of liquid, and divide the flow of the steam and liquid so as to be different. CONSTITUTION:In a cooling device, in which a heat receiving section 1 is connected to a heat dissipating section 5 through a heat pipe so as to form a loop, the heat pipe between the outlet port of the heat receiving section 1 and the inlet port of the heat dissipating section 5 is constituted of a spiral tube 3-4, whose inner wall is provided with a spiral groove. The liquid flows through the spiral groove on the inner wall of the spiral tube while the steam flows through the central part of the spiral tube. According to this method, the flow of the steam arrives at the heat dissipating section 5 sooner than the flow of liquid and, therefore, cooling efficiency is improved.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は発熱体で発生した熱を冷
媒を介して効率よく輸送するスパイラル型ヒートパイプ
を具備する冷却装置に関するものである。 【0002】 【従来の技術】発熱体を冷却するために用いる従来のル
ープ型ヒートパイプの構造例の断面図を図2に示す。図
2はループ型細管ヒートパイプであって、受熱部1、お
よび放熱部5は細管3−1外壁に接触して設置されてい
て、細管3−1内部には凝縮性の流体例えば水、フレオ
ン、アンモニヤなどが封入されており、細管3−1に流
体の流れを制御するための逆止め弁4が配設されてい
る。受熱部1からの発熱は受熱部1に接触した細管3−
1に伝わり内部の流体を急激に気化させて沸騰液2−1
となり、蒸発潜熱により受熱部を冷却する。蒸発潜熱を
含んだ気泡塊6−1は液体塊(気泡塊6−1を除いた流
体)6−2の間に存在するスラグ流になり放熱部5まで
移動し、放熱部5に接した細管部3−2内で徐々に気泡
が凝縮されて液体に変わる。このときに熱が放熱部5よ
り外部へ排熱される。流体が還流する動作原理としては
受熱部1と放熱部5間の温度差で発生する圧力差と逆止
め弁4の相互作用、および受熱部1に接した細管3−1
内における二相流体の沸騰により生じる圧力波の伝播作
用によって、細管3−1内の流体は逆止め弁4により規
制された方向に循環する。この際に受熱部1からの発熱
を放熱部5まで輸送することにより受熱部1を冷却す
る。 【0003】 【発明が解決しようとする問題点】図2のループ型細管
ヒートパイプにおいては、作動液が循環する際の受熱部
1と放熱部5間の気泡塊6−1は液体塊6−2と交互に
存在する状態で流れるため、気泡塊6−1の流れ、すな
わち蒸気流(速度と方向を意味する)2−2は液体塊6
−2の流れである液流(流速と方向を意味する)2−3
の速度と等しい速度で流れる。しかし、細管の3−1管
長が長い場合、または気径が大きくなる場合には、液体
塊6−2は細管3−1壁とで粘性による摩擦力が増大
し、摩擦力によって液体塊6−2の流動現象が生じなく
なる、したがって、気泡塊6−1も還流できなくなり、
受熱部1より入力される熱を輸送できなくなるという欠
点があった。 【0004】 【課題を解決するための手段】本発明は、少なくとも1
つ以上の管により環状に連結され、密閉空間が形成さ
れ、前記密閉空間内には所定量の凝縮性気液二相流体が
封入され、前記連結された環状管の所定の部分には受熱
部を他の部分には放熱部を配設して構成したループ型ヒ
ートパイプを設けた冷却装置において、前記環状管の少
く共受熱部の出口と放熱部の入口間のヒートパイプ管の
内壁にスパイラル状の溝を形成したことを特徴とする。 【0005】 【作用】本発明は、受熱部から放熱部までの区間に内壁
がスパイラル状の管を配設することにより、この区間の
気液二相流体が管壁に沿って流れ、かつ蒸気が管の中心
部を流れ、気液が独立の相を形成して流動するため、液
体流速の遅速に係わらず蒸発潜熱の含まれた蒸気流を迅
速に放熱部まで熱輸送させることより受熱部を冷却する
ことができる。かつ受熱部での作動液の沸騰による圧力
波と管壁の凹凸状態により生ずる圧力変動が作動液の推
進力となる。 【0006】 【実施例】図1は本発明のスパイラル型ヒートパイプを
具備する冷却装置の実施例を示す。図1において図2と
同一符号は同一機能を有する部品部分を示す。図1にお
いて3−2は放熱部の細管部、3−3は直管、3−4は
スパイラル管を示す。本発明の冷却装置の構成を説明す
る。直管3−3とスパイラル管3−4の二本の管によっ
て環状の密閉空間が形成されており、環状の所定の部分
には受熱部1と放熱部5、および流体の循環方向を制御
するための逆止め弁4が配置され、管内部には凝縮性の
作動液が封入されている。 【0007】本発明の冷却装置の動作を説明する。受熱
部1で沸騰して発生した気泡を含んだ気液二相流体はス
パイラル管3−4を経由して放熱部5に至り、凝縮され
て液体に相変化して直管3−3を経由して受熱部1まで
帰還する。この際、二相流体の状態は液がスパイラル管
壁に沿って流れ、蒸気は管中心部を通過する状態とな
り、液体と独立の流動を行なう。沸騰作動液は放熱部で
大部分が凝縮され液体になるため、放熱部5から受熱部
1までの区間は液体の粘性による圧力損失を小さくする
ように直管3−3を用いているが、液体の流速が大きい
場合にはスパイラル管3−4を用いても差しつかえな
い。流体の流動の発生は受熱部1における沸騰時の瞬時
による膨張と収縮により生じる圧力波、並びに流体が流
れるときのスパイラル管3−4内の凹凸による圧力変動
によって生じる。 【発明の効果】本発明は実施例の構成により前記のよう
に作動するから受熱部で発生した蒸気流は液体と独立し
て放熱部まで流動するため、液体の粘性によって二相流
が停滞することなく流れる。したがって、受熱部より与
えられた熱は高速に、かつ多量に放熱部まで熱輸送でき
るので冷却効率を向上できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device having a spiral heat pipe for efficiently transporting heat generated by a heating element through a refrigerant. FIG. 2 shows a cross-sectional view of a structural example of a conventional loop heat pipe used for cooling a heating element. FIG. 2 shows a loop type thin pipe heat pipe in which the heat receiving portion 1 and the heat radiating portion 5 are installed in contact with the outer wall of the thin pipe 3-1. Inside the thin pipe 3-1 is a condensable fluid such as water or Freon. , Ammonia, etc. are enclosed, and a check valve 4 for controlling the flow of fluid is arranged in the thin tube 3-1. The heat generated from the heat receiving unit 1 is the thin tube 3 which is in contact with the heat receiving unit 1.
1, the fluid inside is rapidly vaporized and the boiling liquid 2-1
And the heat receiving part is cooled by the latent heat of vaporization. The bubble lump 6-1 containing latent heat of vaporization becomes a slag flow existing between the liquid lumps (fluid excluding the bubble lump 6-1) 6-2, moves to the heat radiating unit 5, and is a thin tube in contact with the heat radiating unit 5. In the part 3-2, the bubbles are gradually condensed and turned into liquid. At this time, the heat is exhausted from the heat radiating portion 5 to the outside. As the operating principle of the fluid recirculation, the pressure difference caused by the temperature difference between the heat receiving part 1 and the heat radiating part 5 and the interaction of the check valve 4 and the thin tube 3-1 in contact with the heat receiving part 1
The fluid in the thin tube 3-1 circulates in the direction regulated by the check valve 4 by the propagating action of the pressure wave generated by the boiling of the two-phase fluid in the inside. At this time, the heat generated from the heat receiving section 1 is transported to the heat radiating section 5 to cool the heat receiving section 1. In the loop type thin pipe heat pipe of FIG. 2, a bubble mass 6-1 between the heat receiving part 1 and the heat radiating part 5 when the working fluid circulates is a liquid mass 6-. 2 flow alternately with each other, so that the flow of the bubble mass 6-1, that is, the vapor flow (meaning velocity and direction) 2-2, is the liquid mass 6
-2 liquid flow (meaning flow velocity and direction) 2-3
It flows at the same speed as. However, when the length of the thin tube 3-1 is long or when the air diameter is large, the liquid mass 6-2 increases the frictional force due to the viscosity between the liquid mass 6-2 and the wall of the thin capillary 3-1 and the liquid mass 6- The flow phenomenon of 2 does not occur, so that the bubble lump 6-1 cannot be refluxed,
There is a drawback that the heat input from the heat receiving unit 1 cannot be transported. The present invention provides at least one of the following:
One or more pipes are connected in an annular shape to form a closed space, a predetermined amount of condensable gas-liquid two-phase fluid is enclosed in the closed space, and a heat receiving portion is provided in a predetermined portion of the connected annular pipes. In a cooling device provided with a loop-type heat pipe configured by disposing a heat radiating portion in the other portion, a spiral is formed on the inner wall of the heat pipe tube between the outlet of the co-heat receiving portion and the heat radiating portion of the annular pipe. It is characterized by forming a groove. According to the present invention, by disposing a pipe having an inner wall having a spiral shape in a section from the heat receiving section to the heat radiating section, the gas-liquid two-phase fluid in this section flows along the tube wall and vapor. Flows in the central part of the tube, and the gas-liquid flows by forming an independent phase.Therefore, regardless of the slow flow velocity of the liquid, the vapor flow containing latent heat of vaporization is quickly transferred to the heat radiating part, and the heat receiving part Can be cooled. In addition, the pressure wave caused by the boiling of the hydraulic fluid in the heat receiving portion and the pressure fluctuation caused by the uneven state of the pipe wall become the propulsive force of the hydraulic fluid. FIG. 1 shows an embodiment of a cooling device having a spiral heat pipe according to the present invention. 1, the same reference numerals as those in FIG. 2 indicate parts having the same functions. In FIG. 1, 3-2 is a thin tube portion of the heat dissipation section, 3-3 is a straight tube, and 3-4 is a spiral tube. The configuration of the cooling device of the present invention will be described. An annular closed space is formed by the two pipes of the straight pipe 3-3 and the spiral pipe 3-4, and the heat receiving portion 1, the heat radiating portion 5 and the circulation direction of the fluid are controlled in a predetermined annular portion. A check valve 4 is provided for this purpose, and a condensable hydraulic fluid is sealed inside the pipe. The operation of the cooling device of the present invention will be described. The gas-liquid two-phase fluid containing bubbles generated by boiling in the heat receiving section 1 reaches the heat radiating section 5 via the spiral tube 3-4, is condensed and changes into a liquid, and passes through the straight tube 3-3. And returns to the heat receiving unit 1. At this time, in the state of the two-phase fluid, the liquid flows along the wall of the spiral pipe, and the vapor passes through the central portion of the pipe, and flows independently of the liquid. Most of the boiling hydraulic fluid is condensed into a liquid at the heat radiating portion, so the straight pipe 3-3 is used in the section from the heat radiating portion 5 to the heat receiving portion 1 so as to reduce the pressure loss due to the viscosity of the liquid. If the flow velocity of the liquid is high, the spiral tube 3-4 may be used. The flow of the fluid occurs due to the pressure wave generated by the instantaneous expansion and contraction of the heat receiving portion 1 at the time of boiling, and the pressure fluctuation due to the unevenness in the spiral pipe 3-4 when the fluid flows. Since the present invention operates as described above with the configuration of the embodiment, the vapor flow generated in the heat receiving portion flows to the heat radiating portion independently of the liquid, so the two-phase flow is stagnant due to the viscosity of the liquid. Flows without Therefore, the heat given from the heat receiving portion can be transported at high speed to the heat radiating portion in a large amount, so that the cooling efficiency can be improved.

【図面の簡単な説明】 【図1】本発明のスパイラル型ヒートパイプを具備する
冷却装置の一実施例を示す。 【図2】従来のループ型ヒートパイプを具備する冷却装
置を示す。 【符号の説明】 1 受熱部 2−1 沸騰液 2−2 蒸気流 2−3 液流 3−2 放熱部の細管部 3−3 直管 3−4 スパイラル管 4 逆止め弁 5 放熱部 6−1 気泡塊 6−2 液体塊
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an embodiment of a cooling device including a spiral heat pipe of the present invention. FIG. 2 shows a cooling device including a conventional loop heat pipe. [Explanation of Codes] 1 Heat receiving part 2-1 Boiling liquid 2-2 Vapor flow 2-3 Liquid flow 3-2 Heat dissipation thin tube part 3-3 Straight pipe 3-4 Spiral pipe 4 Check valve 5 Heat dissipation part 6- 1 Bubble mass 6-2 Liquid mass

Claims (1)

【特許請求の範囲】 【請求1】 少くとも1つ以上の管により環状に連結さ
れ、密閉空間が形成され、前記密閉空間内には所定量の
凝縮性気液二相流体が封入され、前記連結された環状管
の所定の部分には受熱部を、他の部分には放熱部を配設
して構成したループ型ヒートパイプを設けた冷却装置に
おいて、前記環状管の少く共受熱部と放熱部間のヒート
パイプ管の内壁にスパイラル状の溝を形成したことを特
徴とするスパイラル型ヒートパイプを具備する冷却装
置。
Claim: What is claimed is: 1. A closed space is formed by annularly connecting at least one or more pipes, and a predetermined amount of condensable gas-liquid two-phase fluid is enclosed in the closed space. In a cooling device provided with a loop-type heat pipe in which a heat receiving part is provided in a predetermined part of the connected annular pipes and a heat radiating part is provided in the other part, the heat receiving part and the heat receiving part of the annular pipe A cooling device comprising a spiral heat pipe, characterized in that a spiral groove is formed on the inner wall of the heat pipe tube between the parts.
JP3161988A 1991-04-08 1991-04-08 Cooling device equipped with spiral heat pipe Pending JPH0526589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3161988A JPH0526589A (en) 1991-04-08 1991-04-08 Cooling device equipped with spiral heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3161988A JPH0526589A (en) 1991-04-08 1991-04-08 Cooling device equipped with spiral heat pipe

Publications (1)

Publication Number Publication Date
JPH0526589A true JPH0526589A (en) 1993-02-02

Family

ID=15745904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3161988A Pending JPH0526589A (en) 1991-04-08 1991-04-08 Cooling device equipped with spiral heat pipe

Country Status (1)

Country Link
JP (1) JPH0526589A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225600A (en) * 1997-01-27 1997-09-02 Kobe Steel Ltd Continuous casting method
KR100438840B1 (en) * 2001-03-30 2004-07-05 삼성전자주식회사 Capillary pumped loop system
JP2015090247A (en) * 2013-11-06 2015-05-11 富士通株式会社 Loop heat pipe and information processing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225600A (en) * 1997-01-27 1997-09-02 Kobe Steel Ltd Continuous casting method
KR100438840B1 (en) * 2001-03-30 2004-07-05 삼성전자주식회사 Capillary pumped loop system
JP2015090247A (en) * 2013-11-06 2015-05-11 富士通株式会社 Loop heat pipe and information processing device

Similar Documents

Publication Publication Date Title
US7225861B2 (en) Bubble cycling heat exchanger
CN100552365C (en) Heat pipe
JP2859927B2 (en) Cooling device and temperature control device
CN100480611C (en) Heat pipe
CN100498184C (en) Heat pipe
Lin et al. Prospects of confined flow boiling in thermal management of microsystems
JP3158267B2 (en) Loop type meandering thin tube heat pipe
JPH10503580A (en) Energy transfer system between hot and cold heat sources
CN102042775A (en) Heat transfer device without phase transition and manufacturing method thereof
CN108253829A (en) The loop heat pipe of micro channel array auxiliary drive
Zhang et al. Experimental research on dynamic characteristics and control strategy of the pump-driven two-phase loop with dual evaporators
JPH0526589A (en) Cooling device equipped with spiral heat pipe
RU2675977C1 (en) Method of transmitting heat and heat transferring device for its implementation
WO2023035574A1 (en) Loop heat pipe-based heat dissipation device
KR200242427Y1 (en) A triple-pipe type heat exchanger adopting high efficiency heat-medium radiator and a boiler adopting the same
US20210372711A1 (en) Pressure capillary pump
Patel et al. A capillary tube pulsating heat pipe with asymmetric adiabatic channels for thermal management
JPH09222286A (en) Heat pipe type radiator for two-phase fluid loop type heat control system
JP2587886B2 (en) Capillary pipe
JP2005337336A (en) Liquefied gas evaporating device
JPH09178279A (en) Pulse tube type refrigerator
Wojtasik et al. The influence of geyser boiling on performance of the two-phase-closed thermosyphon filled with R134a
JPS63131962A (en) Solid absorption heat pump
SU439952A1 (en) Evaporative Cooling Device
JPS61110881A (en) Heat exchanger