JPH05265055A - Integrated optical element, optical switch and optical switch array - Google Patents

Integrated optical element, optical switch and optical switch array

Info

Publication number
JPH05265055A
JPH05265055A JP6307292A JP6307292A JPH05265055A JP H05265055 A JPH05265055 A JP H05265055A JP 6307292 A JP6307292 A JP 6307292A JP 6307292 A JP6307292 A JP 6307292A JP H05265055 A JPH05265055 A JP H05265055A
Authority
JP
Japan
Prior art keywords
optical
optical switch
layer
integrated
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6307292A
Other languages
Japanese (ja)
Inventor
Toshio Kirihara
俊夫 桐原
Hiroaki Inoue
宏明 井上
Mari Ogawa
真里 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6307292A priority Critical patent/JPH05265055A/en
Publication of JPH05265055A publication Critical patent/JPH05265055A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the process for forming the element and to decrease switching currents by integrating optical amplifiers and providing the P-N junctions formed by the growth of the same crystals in an optical amplifying part and an optical switching part. CONSTITUTION:The element constituted by integrating the optical amplifiers to carrier implantation type optical switches having a single bridge crossed structure is constituted of an optical waveguide 1, an optical switching current implantation part 2 and the optical amplifying part 3. The angle of an X branch is specified to be 10 deg. and the angle of a Y branch to be 5 deg.. This element is used as a unit cell constituting an optical switch array. The optical switching part is formed by growing the optical waveguide layer 22, a barrier layer 23, an optical amplifying part 24, a clad layer 25 and a gap layer 26 on a substrate 21. Since the P-N junction is formed by such crystal growth, the control of the joining position with sufficient accuracy is possible. An oxide film is deposited by evaporation over the entire surface to form an oxide mask by using photolithography only in the parts of the optical amplifying part 3 and the current implantation part 2 and the upper four layers exclusive of the optical amplifying part are successively removed by a selective etching method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光ファイバ通信及び光情
報処理分野に係わり、特に光導波路構造を持つ光素子を
集積化する際に好適な半導体光素子の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the field of optical fiber communication and optical information processing, and more particularly to a method for manufacturing a semiconductor optical device suitable for integrating optical devices having an optical waveguide structure.

【0002】[0002]

【従来の技術】従来、半導体光スイッチと光増幅器の集
積化については、特開平2−199430号公報におい
て論じられている。
2. Description of the Related Art Conventionally, integration of a semiconductor optical switch and an optical amplifier has been discussed in JP-A-2-199430.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、光ス
イッチと光増幅器を集積化する際の作成のしやすさの点
について配慮がなされておらず、光増幅部と光スイッチ
部とを順次作製しなければならないという問題に加え
て、Zn拡散による光スイッチ部の作製の再現性が悪いと
いう問題点があった。さらに従来技術は光スイッチ電流
注入部の横方向の電流閉じ込めの点にも配慮がなく、注
入された電流が有効なキャリアとして働く割合が少ない
ためにスイッチング電流の増加を招いていた。
In the above-mentioned prior art, no consideration is given to the ease of making when integrating the optical switch and the optical amplifier, and the optical amplifier and the optical switch are sequentially arranged. In addition to the problem of having to fabricate, there was a problem that the reproducibility of the fabrication of the optical switch section by Zn diffusion was poor. Furthermore, the prior art does not consider the current confinement in the lateral direction of the optical switch current injection portion, and causes a large proportion of the injected current to act as effective carriers, resulting in an increase in switching current.

【0004】本発明の目的は光スイッチと光増幅器の集
積する際の作製過程の簡略化と共にスイッチング電流の
低減をはかることにある。
An object of the present invention is to simplify the manufacturing process when the optical switch and the optical amplifier are integrated and reduce the switching current.

【0005】[0005]

【課題を解決するための手段】上記目的は、光増幅器部
分と共通な層構造を用いて光スイッチを構成することに
より、達成される。
The above object can be achieved by constructing an optical switch using a layer structure common to that of an optical amplifier portion.

【0006】[0006]

【作用】キャリア注入型光スイッチは、電流を注入する
と半導体の屈折率が低下する物理現象を利用し、電流注
入部を全反射ミラーとして使うことで実現されている。
全反射の角度θと媒質の屈折率差ΔNtrの関係はスネル
の法則から ΔNtr=Ne(1-cos[θ/2])..........(式1) の様にあたえられる。ここでNeは光導波路の等価屈折
率であり、Ne=βλ/2πであらわされる。βは伝搬定
数、λは波長である。この式から角度θを決めれば全反
射を満足するために必要な屈折率変化ΔNtrがきまる。
The carrier injection type optical switch is realized by utilizing the physical phenomenon that the refractive index of the semiconductor decreases when a current is injected, and using the current injection section as a total reflection mirror.
According to Snell's law, the relation between the angle θ of total reflection and the refractive index difference ΔNtr of the medium is given by ΔNtr = Ne (1-cos [θ / 2]) .......... (Equation 1) Be done. Here, Ne is the equivalent refractive index of the optical waveguide and is represented by Ne = βλ / 2π. β is a propagation constant and λ is a wavelength. If the angle θ is determined from this equation, the refractive index change ΔNtr required to satisfy total reflection is determined.

【0007】多層構造を持つ光導波路は等価屈折率によ
り特長づけることができる。光増幅器の層構造を用いて
光スイッチが構成できるか否かを判定するためには、光
導波路の多層構造による等価屈折率Nwgと、光増幅部と
共通な多層構造による光スイッチ部の等価屈折率Nswと
を比較すればよい。電流注入は光スイッチ部にだけ限定
するため、電流注入したときにはNwgは変化せずNswだ
けが減少する。電流注入により引き起こされる最大の屈
折率変化をΔNcmaxとする。スイッチングを実現するた
めには ΔNtr≦Nwg-(Nsw-ΔNcmax)..........(式2) なる関係を満たせばよい。従来構造から類推すれば少な
くともNwg=Nswのときには十分にスイッチングは可能
である。Nwg<NswからNwg>Nswになるに従って全反
射に要する屈折率変化量が減少するためにスイッチング
に要する電流を減らすことができる。またNwg>Nswの
条件では従来と同じ電流を流したときの屈折率変化が大
きくなるため全反射角を大きくとってもスイッチングが
可能になる。
An optical waveguide having a multilayer structure can be characterized by an equivalent refractive index. In order to determine whether or not an optical switch can be constructed using the layer structure of the optical amplifier, the equivalent refractive index Nwg due to the multilayer structure of the optical waveguide and the equivalent refractive index of the optical switch part due to the multilayer structure common to the optical amplifying part are used. Compare with the rate Nsw. Since current injection is limited to the optical switch section, Nwg does not change and Nsw only decreases when current is injected. Let ΔNcmax be the maximum change in refractive index caused by current injection. In order to realize the switching, it is sufficient to satisfy the relationship of ΔNtr ≦ Nwg- (Nsw-ΔNcmax) .... (Equation 2). By analogy with the conventional structure, sufficient switching is possible at least when Nwg = Nsw. As Nwg <Nsw changes to Nwg> Nsw, the amount of change in the refractive index required for total reflection decreases, so that the current required for switching can be reduced. Further, under the condition of Nwg> Nsw, the change in the refractive index becomes large when the same current as that in the conventional case is flowed, so that the switching becomes possible even if the total reflection angle is large.

【0008】ところで、Nwg>Nswのときには電流注入
が無い場合、即ちΔNcmax=0とおいたときにも(式2)を
満たす条件が存在し、初期状態から全反射を起こしてし
まい、電流によるスイッチングのオンオフができなくな
ってしまう。このためにNwg>Nswの場合には ΔNtr>Nwg-Nsw.....................(式3) という制限条件が必要である。
By the way, when Nwg> Nsw, there is a condition that satisfies (Equation 2) even when there is no current injection, that is, when ΔNcmax = 0, total reflection occurs from the initial state, and switching due to current is caused. I cannot turn it on and off. For this reason, when Nwg> Nsw, the limiting condition of ΔNtr> Nwg-Nsw ..... (Equation 3) is required.

【0009】従って、(式1)から(式3)の条件を満たす
NwgとNswを求めればよいことになる。図2の層構造を
使い、光導波層の膜厚をパラメータとして計算したNwg
とNswの結果を図3に示す。等価屈折率3.30として光導
波路部の光導波層の膜厚を0.8μmにとり、光スイッチ
部の光導波層の膜厚を0.3μmにとればNwg=Nswの条
件が満たされる。更に光スイッチ部の光導波層の膜厚を
薄くするか光導波路部の光導波層の膜厚を厚くすればN
wg>Nswの関係も満足できる。
Therefore, Nwg and Nsw satisfying the conditions of (Equation 1) to (Equation 3) should be obtained. Nwg calculated using the layer structure of FIG. 2 with the thickness of the optical waveguide layer as a parameter
And the results of Nsw are shown in FIG. If the equivalent refractive index is 3.30 and the thickness of the optical waveguide layer of the optical waveguide section is 0.8 μm and the thickness of the optical waveguide layer of the optical switch section is 0.3 μm, the condition of Nwg = Nsw is satisfied. Further, if the film thickness of the optical waveguide layer of the optical switch unit is made thinner or the film thickness of the optical waveguide layer of the optical waveguide unit is made thicker, N
The relationship of wg> Nsw can also be satisfied.

【0010】以上のことから光増幅器と共通な層構造を
使ってキャリア注入型光スイッチが実現でき、(式3)の
制限の元でNwg>Nswなる条件を満たせば電流の低減も
図れることが分かる。
From the above, a carrier injection type optical switch can be realized by using the layer structure common to the optical amplifier, and the current can be reduced if the condition of Nwg> Nsw is satisfied under the restriction of (Equation 3). I understand.

【0011】[0011]

【実施例】以下、本発明の一実施例を図1により説明す
る。図1は片渡交差構造を持つキャリア注入型光スイッ
チに光増幅器を集積した素子の上面図を表したものであ
る。光を導く光導波路1、光スイッチ電流注入部2及び
光増幅部3から構成されている。X分岐の角度は10°で
あり、Y分岐の角度は5°にとった。この素子は光スイ
ッチアレーを構成する際の単位セルとして用いることが
できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a top view of an element in which an optical amplifier is integrated in a carrier injection type optical switch having a single-pass crossing structure. It is composed of an optical waveguide 1 for guiding light, an optical switch current injection section 2 and an optical amplification section 3. The X-branch angle was 10 ° and the Y-branch angle was 5 °. This element can be used as a unit cell when forming an optical switch array.

【0012】光スイッチ部の断面構造A-A'を図2に示
す。以下、この図を使って素子作成法について述べる。
本実施例ではn型InP基板21にn型InGaAsP光導波層22(吸
収端波長λg =1.15μm)、n型InP障壁層23、n型InGaAs
P光増幅層24(吸収端波長λg =1.3μm)、p型InPクラ
ッド層25、p型InGaAsPキャップ層26の5層をMOCVD結晶
成長法により多層成長した。結晶成長でPN接合を形成す
るために接合位置を十分な精度では制御することができ
る。酸化膜を全体に蒸着し、光増幅部と光スイッチの電
流注入部の部分だけにフォトリソグラフィイを使って酸
化膜マスク形成し、光増幅部以外の部分の上部4層を順
次選択エッチング法により除去した。次に、先の酸化膜
マスクを使い酸化膜の無い部分にn型InGaAsP光導波層27
(吸収端波長λg =1.15μm)、半絶縁性のInPクラッド
層28の2層をMOCVD結晶成長法を用いて選択的に結晶成
長した。この後、フォトリソグラフィとRIEによるドラ
イエッチング技術を使い図1に示す形状の光導波路を形
成した。
A sectional structure AA 'of the optical switch portion is shown in FIG. Hereinafter, a method for manufacturing an element will be described with reference to this drawing.
In this embodiment, an n-type InP substrate 21 is provided with an n-type InGaAsP optical waveguide layer 22 (absorption edge wavelength λg = 1.15 μm), an n-type InP barrier layer 23, and an n-type InGaAs.
Five layers, that is, a P optical amplification layer 24 (absorption edge wavelength λg = 1.3 μm), a p-type InP clad layer 25, and a p-type InGaAsP cap layer 26, were multilayer-grown by the MOCVD crystal growth method. The junction position can be controlled with sufficient accuracy to form a PN junction by crystal growth. An oxide film is vapor-deposited on the entire surface, and an oxide film mask is formed only by photolithography on the optical amplification section and the current injection section of the optical switch. The upper four layers other than the optical amplification section are sequentially etched by a selective etching method. Removed. Next, using the above-mentioned oxide film mask, the n-type InGaAsP optical waveguide layer 27
Two layers of the semi-insulating InP clad layer 28 (absorption edge wavelength λg = 1.15 μm) were selectively grown by the MOCVD crystal growth method. After that, an optical waveguide having the shape shown in FIG. 1 was formed by using photolithography and dry etching technology by RIE.

【0013】図3に光導波層の膜厚をパラメータとした
ときの図2のC-C'の層構造による光スイッチ部の等価屈
折率Nswと図2のD-D'の層構造による光導波路部の等価
屈折率Nwgを示す。先の議論にしたがってNwg=Nswを
満足すために第1回目の結晶成長の光導波層22の膜厚を
0.3μmとし、第2回目の結晶成長の際の光導波層27の
膜厚を0.5μmにした。この条件において作成した光ス
イッチにおいて1.3μmの半導体レーザ光を導波させ電
流約50mAでスイッチングさせることができた。さらに光
導波層22を0.2μm光導波層27を0.5μmとした素子にお
いてて、スイッチング電流の低減を図ることができ約20
mAでスイッチングすることを確認できた。
FIG. 3 shows the equivalent refractive index Nsw of the optical switch section according to the layer structure CC ′ of FIG. 2 and the optical structure according to the layer structure DD ′ of FIG. 2 when the film thickness of the optical waveguide layer is used as a parameter. The equivalent refractive index Nwg of the waveguide is shown. According to the above discussion, in order to satisfy Nwg = Nsw, the film thickness of the optical waveguide layer 22 of the first crystal growth is
The thickness of the optical waveguide layer 27 at the time of the second crystal growth was 0.5 μm. In the optical switch created under these conditions, 1.3 μm semiconductor laser light was guided and switching was possible at a current of about 50 mA. Furthermore, in an element in which the optical waveguide layer 22 is 0.2 μm and the optical waveguide layer 27 is 0.5 μm, the switching current can be reduced by about 20 μm.
It was confirmed that switching was performed with mA.

【0014】図1のB-B'にあたる光増幅部の断面構造を
図4に示す。光増幅部の層構造は光スイッチ部と共通に
なっている。この構造の光増幅部において150mAの電流
で挿入損失を打ち消す利得を得ることができた。
FIG. 4 shows a cross-sectional structure of the optical amplifying portion corresponding to BB 'in FIG. The layer structure of the optical amplification section is common to that of the optical switch section. In the optical amplifier of this structure, a gain of canceling the insertion loss was obtained with a current of 150 mA.

【0015】図1のA-A'断面の従来構造による光スイッ
チ部の構造を図5に示す。先の作成法と同様に光増幅部
の層構造を結晶成長した後、光増幅部だけを残し上部4
層をエッチングし、InGaAsP光導波層27(吸収端波長λg
=1.15μm)、InPクラッド層31、InGaAsPキャップ層32
の3層をMOCVD結晶成長法を用いて選択的に結晶成長し
た。光スイッチ部の電流注入部はZn拡散により作成し
た。ここで電流注入部の深さ制御がスイッチング特性を
きめる重要な要素であったが、閉管法によるZn拡散では
十分な再現性が得られなかった。しかも図4の構造から
わかるように層方向での電流閉じ込めはダブルへテロ構
造により光導波層によく閉じ込められるが、光導波層内
では横方向のポテンシャルバリアが無いために拡がりが
起こる。このため注入電流にたいして光導波層内のキャ
リア密度が上がり方が緩慢であり、スイッチング電流の
増加をまねいていた。これに対して図2に記載の本実施
例では層方向のダブルヘテロ構造に加えて横方向にもヘ
テロバリアが形成されているためにキャリアの閉じ込め
がよくなっている。従来構造による光スイッチのスイッ
チング電流は約100mAであり本発明の実施例と比べ2倍
から5倍の電流を要していた。
FIG. 5 shows the structure of an optical switch section of the conventional structure taken along the line AA 'in FIG. After the crystal structure of the layer structure of the optical amplification section was grown in the same manner as in the above-mentioned preparation method, only the optical amplification section was left and the upper part 4 was formed.
The InGaAsP optical waveguide layer 27 (absorption edge wavelength λg
= 1.15 μm), InP clad layer 31, InGaAsP cap layer 32
3 layers were selectively grown by the MOCVD crystal growth method. The current injection part of the optical switch part was made by Zn diffusion. Here, the depth control of the current injection part was an important factor that determines the switching characteristics, but sufficient reproducibility was not obtained by Zn diffusion by the closed tube method. Moreover, as can be seen from the structure of FIG. 4, the current confinement in the layer direction is well confined in the optical waveguide layer by the double hetero structure, but there is no lateral potential barrier in the optical waveguide layer, so that the expansion occurs. For this reason, the carrier density in the optical waveguide layer rises slowly with respect to the injected current, leading to an increase in the switching current. On the other hand, in this embodiment shown in FIG. 2, carrier confinement is improved because a hetero barrier is formed in the lateral direction in addition to the double hetero structure in the layer direction. The switching current of the optical switch according to the conventional structure is about 100 mA, which requires twice to five times the current of the embodiment of the present invention.

【0016】本実施例は簡便な構造により基本機能を確
認する為に光導波路にリブ型構造を用いているが、半導
体レーザと同様な埋め込み構造を用いれば光増幅器の電
流を低減できることは言うまでもない。しかも光スイッ
チ部の電流注入部のPN接合は結晶成長により形成されて
いるためZn拡散で形成したPN接合の様に埋め込み結晶成
長を行なう際の熱処理を加えても再拡散は起こらず光ス
イッチの特性が保存される。
In the present embodiment, the rib type structure is used for the optical waveguide in order to confirm the basic function with a simple structure, but it goes without saying that the current of the optical amplifier can be reduced by using the embedded structure similar to that of the semiconductor laser. .. Moreover, since the PN junction of the current injection part of the optical switch part is formed by crystal growth, re-diffusion does not occur even if heat treatment is performed during embedded crystal growth like the PN junction formed by Zn diffusion and the optical switch part The property is saved.

【0017】[0017]

【発明の効果】本実施例によれば、光スイッチを光増幅
器と同一の層構造を用いて実現できるため素子作成過程
の大幅な簡略化を図ることができる。更に、実施例に示
した等価屈折率の関係を満たす層構造をとることにより
スイッチングに要する電流を大幅に低減できる。更に、
先と同じ層構造を使い従来と同じ電流値で駆動した場合
には等価的な屈折率変化を大きく取れるために全反射角
を増やすことができるようになる。この結果、素子の小
型化を図ることができ大規模アレーが実現できるように
なる。
According to the present embodiment, the optical switch can be realized by using the same layer structure as that of the optical amplifier, so that the device manufacturing process can be greatly simplified. Furthermore, by adopting the layer structure satisfying the relationship of the equivalent refractive index shown in the embodiment, the current required for switching can be greatly reduced. Furthermore,
When the same layer structure as the above is used and driven at the same current value as the conventional one, a large equivalent change in the refractive index can be obtained, so that the total reflection angle can be increased. As a result, the element can be downsized and a large-scale array can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である光スイッチと光増幅器
を集積化した際の上面図
FIG. 1 is a top view when an optical switch and an optical amplifier according to an embodiment of the present invention are integrated.

【図2】第1図の実施例の光スイッチ断面構造図FIG. 2 is a sectional structural view of the optical switch of the embodiment shown in FIG.

【図3】実施例の層構造を設計をするための光導波層膜
厚をパラメータとした等価屈折率の計算
FIG. 3 Calculation of equivalent refractive index using optical waveguide layer film thickness as a parameter for designing the layer structure of the example

【図4】光増幅部の断面構造FIG. 4 is a sectional structure of an optical amplification section.

【図5】従来例の光スイッチ部断面構造FIG. 5 is a cross-sectional structure of a conventional optical switch section.

【符号の説明】[Explanation of symbols]

1…光導波路、2…キャリア注入領域、3…光増幅部、
4…片渡光導波路、21…n型InP基板、22…n型InGaA
sP光導波層、23…n型InP障壁層、24…n型InGaAsP光
増幅層、25…p型InPクラッド層、26…p型InGaAsPキ
ャップ層、27…n型InGaAsP光導波層、28…半絶縁性
InPクラッド層、31…n型InPクラッド層、32…n型In
GaAsPキャップ層、33…Zn拡散領域。
1 ... Optical waveguide, 2 ... Carrier injection region, 3 ... Optical amplifier,
4 ... Single-pass optical waveguide, 21 ... n-type InP substrate, 22 ... n-type InGaA
sP optical waveguide layer, 23 ... n type InP barrier layer, 24 ... n type InGaAsP optical amplification layer, 25 ... p type InP clad layer, 26 ... p type InGaAsP cap layer, 27 ... n type InGaAsP optical waveguide layer, 28 ... half Insulation
InP clad layer, 31 ... n type InP clad layer, 32 ... n type In
GaAsP cap layer, 33 ... Zn diffusion region.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】光波を導くための光導波路、光を切り換え
るための光スイッチを同一半導体基板上に形成した集積
化光素子に於て、上記光スイッチ部の電流注入のための
PN接合を結晶成長により作製することを特長とする集積
化光素子。
1. An integrated optical device in which an optical waveguide for guiding a light wave and an optical switch for switching light are formed on the same semiconductor substrate.
An integrated optical device characterized by producing a PN junction by crystal growth.
【請求項2】請求項1に記載の集積化光素子に光増幅器
を集積化し、光増幅部と光スイッチ部が同一の結晶成長
で形成したPN接合を持つことを特長とする集積化光素
子。
2. An integrated optical device characterized in that an optical amplifier is integrated with the integrated optical device according to claim 1, and the optical amplifier part and the optical switch part have PN junctions formed by the same crystal growth. ..
【請求項3】請求項2に記載の光集積素子を片渡り交差
構造で構成したキャリア注入型光スイッチ。
3. A carrier injection type optical switch in which the optical integrated device according to claim 2 is constructed in a crossover structure.
【請求項4】請求項3に記載の光スイッチにおいて片渡
り交差部に光増幅器を集積することを特長とする光スイ
ッチ。
4. The optical switch according to claim 3, wherein an optical amplifier is integrated at a crossover.
【請求項5】請求項1から4に記載の光スイッチを基本
単位セルとして集積化した光スイッチアレイ。
5. An optical switch array in which the optical switch according to claim 1 is integrated as a basic unit cell.
JP6307292A 1992-03-19 1992-03-19 Integrated optical element, optical switch and optical switch array Pending JPH05265055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6307292A JPH05265055A (en) 1992-03-19 1992-03-19 Integrated optical element, optical switch and optical switch array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6307292A JPH05265055A (en) 1992-03-19 1992-03-19 Integrated optical element, optical switch and optical switch array

Publications (1)

Publication Number Publication Date
JPH05265055A true JPH05265055A (en) 1993-10-15

Family

ID=13218779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6307292A Pending JPH05265055A (en) 1992-03-19 1992-03-19 Integrated optical element, optical switch and optical switch array

Country Status (1)

Country Link
JP (1) JPH05265055A (en)

Similar Documents

Publication Publication Date Title
US5805755A (en) Self-aligned transition from ridge to buried heterostructure waveguide, especially for multi-wavelength laser array integration
US5862168A (en) Monolithic integrated optical semiconductor component
JPH04243216A (en) Production of optical waveguide and optical integrated element and production thereof
US4796274A (en) Semiconductor device with distributed bragg reflector
US6597823B2 (en) Integrated optical circuit device and method for producing the same
US6025207A (en) Method for manufacture of a buried structure laser device for integrated photonic circuit
GB2287124A (en) Semiconductor laser and method of fabrication
US4589117A (en) Butt-jointed built-in semiconductor laser
JP3104798B2 (en) Integrated optical coupler and method of manufacturing the same
JPH05265055A (en) Integrated optical element, optical switch and optical switch array
JP2792826B2 (en) Optical switch and method of manufacturing the same
KR930010131B1 (en) Tapered semiconductor waveguides and method of making same
JP3116912B2 (en) Semiconductor optical integrated device, optical communication module using the same, optical communication system and method of manufacturing the same
JP2605650B2 (en) Optical isolator
EP4311042A1 (en) Opto-electronic device
JP2605645B2 (en) Waveguide type optical isolator
JPH05102607A (en) Manufacture of buried structure semiconductor laser
JP3067702B2 (en) Semiconductor optical integrated device and method of manufacturing the same
JPH0228389A (en) Semiconductor laser element
JPH04159513A (en) Mode selecting optical element
JPH0582887A (en) Optical semiconductor device
JPH02228635A (en) Semiconductor optical switch and its production
JPH0661581A (en) Semiconductor laser and its manufacture
JPH04369269A (en) Manufacture of optical integrated circuit
JPS595688A (en) Semiconductor laser