JPH05265032A - Liquid crystal element and its driving method - Google Patents

Liquid crystal element and its driving method

Info

Publication number
JPH05265032A
JPH05265032A JP4647992A JP4647992A JPH05265032A JP H05265032 A JPH05265032 A JP H05265032A JP 4647992 A JP4647992 A JP 4647992A JP 4647992 A JP4647992 A JP 4647992A JP H05265032 A JPH05265032 A JP H05265032A
Authority
JP
Japan
Prior art keywords
voltage
liquid crystal
pixel
electrode
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4647992A
Other languages
Japanese (ja)
Other versions
JP2858499B2 (en
Inventor
暢生 ▲高▼橋
Nobuo Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4647992A priority Critical patent/JP2858499B2/en
Publication of JPH05265032A publication Critical patent/JPH05265032A/en
Application granted granted Critical
Publication of JP2858499B2 publication Critical patent/JP2858499B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To prevent the generation of light leakage from a picture element boundary part and to suppress the generation of abnormality in the orientation of liquid crystal by forming a conductive inter-picture-element shielding layer on a picture element electrode peripheral edge part formed on a main base in a liquid crystal element to be turned to a light shielding state at the time of impressing voltage. CONSTITUTION:Since the inter-picture-element shielding layer 102 is formed on the main base 101, alignment to a picture element electrode 107 can be determined by the accuracy of photolithography. Namely when voltage with a waveform approximately equal to voltage waveform held in the electrode 107 surrounded by the layer 102 is applied by voltage approximately equal to maximum voltage impressed to the electrode 107, a lateral direction voltage between the layer 102 and an ON picture element can be neglected and the generation of abnormality in the orientation of liquid crystal in the picture element can be suppressed. Since it is impossible to independently form the layer 102 in each picture element, a fixed voltage is simultaneously impressed to the whole surface or in each vertical/horizontal lines. Although abnormality in the orientation of liquid crystal may be generated at the impression of the fixed voltage, the generation can be neglected because a light/dark ratio is determined by the light shielding capacity of dark time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶を用いた表示素子
及び光変調素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a display element and a light modulation element using liquid crystal.

【0002】[0002]

【従来の技術】液晶素子は表示素子もしくは光変調素子
として精力的な研究開発が行われており、現在これを用
いた直視型表示装置が広く用いられているほか、投射型
表示装置などに適用されている。
2. Description of the Related Art A liquid crystal element has been actively researched and developed as a display element or a light modulation element, and a direct-view type display device using the liquid crystal element is currently widely used, and also applied to a projection type display device. Has been done.

【0003】上記液晶素子は一般に相対する2枚の電極
板とこれに狭持された液晶材を基本構成要素として持つ
が、複数の画素を持つ液晶素子の場合双方の電極の大き
さが異なることが多い。特にTFT(薄膜トランジス
タ)などの能動素子をもつ液晶素子では一方の基板(主
基板)に能動素子とこれに接続された画素電極が設けら
れ、他方の基板(対向基板)に一面共通の対向電極が設
けられる。
The above-mentioned liquid crystal element generally has two electrode plates facing each other and a liquid crystal material sandwiched between them as basic constituent elements. However, in the case of a liquid crystal element having a plurality of pixels, the sizes of both electrodes are different. There are many. In particular, in a liquid crystal element having an active element such as a TFT (thin film transistor), one substrate (main substrate) is provided with an active element and a pixel electrode connected thereto, and the other substrate (counter substrate) is provided with a common counter electrode on one surface. It is provided.

【0004】図5(a)はTN(ツイスト・ネマチッ
ク)液晶とTFTを用いた一般的な液晶表示装置に適用
した液晶素子の画素分を示した平面図である。図5
(b)は図5(a)におけるA−A’線での断面を示し
たものである。主基板101、対向基板108にそれぞ
れ透明な画素電極107、信号電極104及び対向電極
109が形成され、その上に配向膜110が塗布されて
おり、これらの間にTN液晶材111が狭持されてい
る。この種の液晶素子は通常液晶駆動電圧を与えないと
きに光が透過し、電圧を与えたときに遮光する、いわゆ
るノーマリホワイトモードで利用される。こうした液晶
素子は画素電極の隙間(境界部112)に電圧を与える
ことができないため、そのままでは画素の明暗比を上げ
ることができない。また画素電極107の周縁部では電
場の方向が電極に対して垂直でなくなるため液晶層に配
向以上(ディスクリネーション等)が発生し、画像の焼
き付き、残像といった表示不良の原因となる。
FIG. 5A is a plan view showing a pixel portion of a liquid crystal element applied to a general liquid crystal display device using a TN (twisted nematic) liquid crystal and a TFT. Figure 5
FIG. 5B shows a cross section taken along the line AA ′ in FIG. A transparent pixel electrode 107, a signal electrode 104 and a counter electrode 109 are formed on the main substrate 101 and the counter substrate 108, respectively, and an alignment film 110 is applied thereon, and a TN liquid crystal material 111 is sandwiched therebetween. ing. This type of liquid crystal element is normally used in a so-called normally white mode in which light is transmitted when a liquid crystal drive voltage is not applied and light is shielded when a voltage is applied. Since such a liquid crystal element cannot apply a voltage to the gap (boundary portion 112) between the pixel electrodes, the brightness ratio of the pixel cannot be increased as it is. Further, in the peripheral portion of the pixel electrode 107, since the direction of the electric field is not perpendicular to the electrode, alignment or more (disclination or the like) occurs in the liquid crystal layer, which causes display defects such as image sticking and afterimage.

【0005】このため通常は何らかの遮光部が画素境界
部112に設けられる。一般には図5(b)のごとく対
向基板上に画素間遮光層102を設け、透過光を制御で
きない境界部及びその近傍を画素開口部から隠ぺいする
ことが行われる。また特に配向異常の現れ易い部位につ
いては画素間遮光層502の面積を広げ、問題となる箇
所を重点的に隠ぺいすることも行われている(特開平1
−266512号公報)。
Therefore, some kind of light-shielding portion is usually provided in the pixel boundary portion 112. Generally, as shown in FIG. 5B, an inter-pixel light-shielding layer 102 is provided on a counter substrate to hide the boundary portion where transmitted light cannot be controlled and its vicinity from the pixel opening portion. In addition, especially for a portion where an abnormal orientation is likely to appear, the area of the inter-pixel light shielding layer 502 is enlarged to conceal the problematic portion (Japanese Patent Laid-Open No. HEI-1).
-266512).

【0006】[0006]

【発明が解決しようとする課題】液晶配向異常は電圧印
加時に画素電極周縁部に発生し、ノーマリホワイトモー
ドの液晶素子は電圧印加時に遮光することから、こうし
た液晶素子では開口面積を画素電極の大きさにまで広げ
ることはできない。対向基板上に画素間遮光部を設けた
場合、画素電極に対して視野角に相当する張り出し部分
が必要となる。また基板貼り合わせ時のずれも考慮せね
ばならず、画素電極の面積に対し開口面積を大幅に狭め
なければならない。基板貼り合わせ工程に高い位置合わ
せ精度が要求されればそれだけ製作が困難となる。投射
型表示装置に用いる液晶素子などでは視野角を考慮する
必要が殆どないため基板貼り合わせ精度を向上させれば
開口率を向上させることはできるが、基板全体が小型化
するため電極間隔が狭くなり、液晶配向異常が画素内部
に発生しやすくなる。画素間遮光層を主基板上に設けた
場合、画素電極との位置合わせはフォトリングラフィの
精度で決定できるため容易に高精度が得られるものの、
画素間遮光層と飽和電圧の印加された画素(オン画素)
との間に横方向電界がかかると画素電極内部に液晶配向
異常が発生する。以上の理由によりこの種の素子では光
利用効率が上げられず、消費電力を増加させる原因とな
る。こうしたことから表示品位を落とさずに開口率を確
保できる手段が要求され、更に基板貼り合わせ精度を従
来より極端に挙げずとも実現されることが望ましい。
The liquid crystal alignment abnormality occurs at the peripheral portion of the pixel electrode when a voltage is applied, and the normally white mode liquid crystal element shields light when a voltage is applied. It cannot be expanded to size. When the light-shielding portion between pixels is provided on the counter substrate, an overhanging portion corresponding to the viewing angle is required for the pixel electrode. In addition, it is necessary to consider the deviation when bonding the substrates, and the opening area must be significantly narrowed with respect to the area of the pixel electrode. The higher the positioning accuracy required in the substrate bonding process, the more difficult the manufacturing becomes. Since it is almost unnecessary to consider the viewing angle in a liquid crystal element or the like used in a projection display device, the aperture ratio can be improved by improving the substrate bonding accuracy, but the electrode interval is narrow because the entire substrate is downsized. Therefore, the liquid crystal alignment abnormality is likely to occur inside the pixel. When the inter-pixel light-shielding layer is provided on the main substrate, the alignment with the pixel electrode can be determined by the precision of photolinography, so high precision can be easily obtained.
Pixels to which light-shielding layer between pixels and saturation voltage are applied (on-pixel)
When a horizontal electric field is applied between the pixel electrode and the pixel electrode, liquid crystal alignment abnormality occurs inside the pixel electrode. Due to the above reasons, the light utilization efficiency cannot be improved in this type of device, which causes an increase in power consumption. For this reason, a means that can secure the aperture ratio without deteriorating the display quality is required, and it is desirable that it be realized without raising the substrate bonding accuracy more drastically than in the past.

【0007】本発明は上述の問題点を解決し、画素境界
部の光もれを防ぐと同時に画素電極周縁部に発生する液
晶の配向異常を隠ぺいすることを、画素開口部を必要以
上に狭めることなく、あるいは基板貼り合わせ工程に高
い位置合わせ精度を要求することなく実現し、液晶素子
の性能を向上させることを目的とする。
The present invention solves the above-mentioned problems and prevents the leakage of light at the pixel boundary portion and at the same time conceals the liquid crystal alignment abnormality occurring at the peripheral edge portion of the pixel electrode by narrowing the pixel opening portion more than necessary. It is an object of the present invention to improve the performance of a liquid crystal element by realizing the liquid crystal device without the need for high positioning accuracy in the substrate bonding process.

【0008】[0008]

【課題を解決するための手段】本発明は、画素電極並び
にこれと接続する能動素子及び配線を有する主基板と対
向電極を有する対向基板との間隙に液晶材料が狭持され
ており、電圧印加時に遮光状態となる液晶素子におい
て、導電性の画素間遮光層を主基板上の画素電極周縁部
に設けた構造になっている。また、この液晶素子は、画
素間遮光層に、この画素間遮光層によって囲まれる画素
電極に印加される最大電圧と概略等しい実効電圧で且つ
その画素電極が保持する電圧波形と概略等しい波形の電
圧を与えることによってその効果を最大限に発揮でき
る。
According to the present invention, a liquid crystal material is held in a gap between a main substrate having a pixel electrode and active elements and wirings connected to the pixel electrode and a counter substrate having a counter electrode. In a liquid crystal element which is sometimes in a light-shielded state, a conductive inter-pixel light-shielding layer is provided on a peripheral portion of a pixel electrode on a main substrate. In addition, in this liquid crystal element, a voltage having an effective voltage substantially equal to the maximum voltage applied to the pixel electrode surrounded by the pixel light shielding layer and having a waveform substantially equal to the voltage waveform held by the pixel electrode is applied to the pixel light shielding layer. The effect can be maximized by giving.

【0009】[0009]

【作用】図1(a),(b)に示すように画素間遮光層
102を主基板101上に設けることにより、画素電極
107との位置合わせがフォトリソグラフィの精度で決
定でき、容易に高精度が得られる。また対向基板108
に遮光層がないため基板貼り合わせ時に高精度を要求さ
れず、製作も困難とならない。
By providing the inter-pixel light shielding layer 102 on the main substrate 101 as shown in FIGS. 1 (a) and 1 (b), the alignment with the pixel electrode 107 can be determined by the accuracy of photolithography, and the height can be easily increased. Accuracy can be obtained. The counter substrate 108
Since there is no light-shielding layer, high precision is not required when the substrates are bonded together, and manufacturing is not difficult.

【0010】画素間遮光層102にそれによって囲まれ
る画素電極に印加される最大電圧と概略等しい実効電圧
で電圧で且つその画素電極が保持する電圧波形と概略等
しい波形の電圧を与えることにより、画素間遮光層とオ
ン画素との間の横方向電圧は問題にならない大きさにな
り、液晶配向異常に画素内での発生を抑止することがで
きる。画素間遮光層102は画素ごとに独立に設けるこ
とはできないため、全面一斉もしくは縦横いずれかのラ
インごとにまとめて一定の電圧を与えることになる。こ
の場合電圧の印加されない、もしくは印加電圧がしきい
値電圧に近い画素(オン画素)との間には横方向電界が
発生し、それに伴って液晶配向異常も発生するが、画素
明暗比は暗時(オン時)の遮光能により決まるため問題
とはならない。このほか別の要因により画素間遮光層1
02の膜厚が薄くせざるを得ず、遮光能が不十分と考え
られる場合でも電圧印加により液晶の配向が遮光時の状
態にのっているなめ十分な遮光能が得られるという利点
もある。
By providing the inter-pixel light-shielding layer 102 with a voltage having an effective voltage substantially equal to the maximum voltage applied to the pixel electrode surrounded by it and having a waveform substantially equal to the voltage waveform held by the pixel electrode, The lateral voltage between the light-shielding layer and the ON pixel becomes a magnitude that does not pose a problem, and it is possible to prevent abnormal liquid crystal alignment from occurring in the pixel. Since the inter-pixel light-shielding layer 102 cannot be provided independently for each pixel, a constant voltage is applied to the entire surface all at once or for each line either vertically or horizontally. In this case, a horizontal electric field is generated between a pixel to which no voltage is applied or the applied voltage is close to the threshold voltage (on-pixel), and liquid crystal alignment abnormality is also generated, but the pixel brightness ratio is dark. This is not a problem because it is determined by the light-shielding ability at the time (when on). Due to other factors, the inter-pixel light shielding layer 1
Even if the film thickness of 02 is inevitably thin and the light-shielding ability is considered to be insufficient, there is also an advantage that a sufficient light-shielding ability is obtained because the alignment of the liquid crystal is in the state of light-shielding by voltage application. ..

【0011】以上の作用により画素明暗比を低下するこ
となく、また目合わせ精度を従来より改善せずとも開口
率を向上することができる。
With the above operation, the aperture ratio can be improved without lowering the pixel contrast ratio and without improving the alignment accuracy as compared with the prior art.

【0012】[0012]

【実施例】図2(a)は本発明を適用した液晶素子の一
実施例を示す平面図であり、図2(b)は図2(a)に
おいてA−A’線て示した箇所の断面図である。主基板
となるガラス基板101にはクロムからなる走査電極1
03、信号電極104、多結晶シリコンからなる能動素
子106、透明なITO(Indium TinOxi
de:酸化インジウム錫)からなる画素電極107、さ
らに絶縁層105を介してクロムからなる画素間遮光層
102をそれぞれ形成し、対向基板108となるガラス
基板にはITOからなる対向電極109を形成した。こ
こで画素間遮光層102は連続した一つの導体からな
り、画素電極107の周縁部に約2μmの幅で重なりを
持っている。双方の基板表面にポリイミド配向膜110
を塗布、焼成し、それらを基板貼り合わせ時に各基板表
面における配向方向が互いにほぼ90°をなすような方
向に配向処理した後、約5μmの間隙を持つよう基板を
貼り合わせ、TN液晶材料211を注入、封止して液晶
素子を得た。かかる素子において走査電極103に走査
電圧、信号電極104に信号電圧、対向電極109にコ
モン電圧を各々与え、画素間遮光層102には電圧の印
加されている信号電極とほぼ同じ電圧を与えた。このよ
うな駆動電圧を与えてノーマリホワイトモードにて表示
を行ったところ、80μmピッチの画素で開口率35%
以上、明暗比100:1以上の鮮明な画像を容易に実現
することができた。液晶配向異常はオフ画素の周縁部に
若干観察されたもののオン画素内には全く見られず、本
発明の効果が確かめられた。比較のため従来構造の液晶
表示素子を作製して確認したところ開口率35%では明
暗比が10:1以下となり100:1の明暗比を得るた
めには開口率を15%以下にまで落とさねばならなかっ
た。
EXAMPLE FIG. 2 (a) is a plan view showing an example of a liquid crystal element to which the present invention is applied, and FIG. 2 (b) is a sectional view taken along the line AA 'in FIG. 2 (a). FIG. The glass substrate 101 serving as the main substrate has a scan electrode 1 made of chromium.
03, signal electrode 104, active element 106 made of polycrystalline silicon, transparent ITO (Indium Tin Oxi)
de: indium tin oxide), the inter-pixel light-shielding layer 102 made of chromium is further formed via the insulating layer 105, and the counter electrode 109 made of ITO is formed on the glass substrate to be the counter substrate 108. .. Here, the inter-pixel light shielding layer 102 is composed of one continuous conductor, and has an overlap of about 2 μm on the peripheral edge of the pixel electrode 107. Polyimide alignment film 110 on both substrate surfaces
Is applied and baked, and when they are bonded together, they are aligned so that the alignment directions on the surfaces of the substrates are approximately 90 ° with each other, and then the substrates are bonded together with a gap of about 5 μm. Was injected and sealed to obtain a liquid crystal element. In such an element, a scanning voltage was applied to the scanning electrode 103, a signal voltage was applied to the signal electrode 104, a common voltage was applied to the counter electrode 109, and the same voltage as the signal electrode to which the voltage was applied was applied to the inter-pixel light shielding layer 102. When such a driving voltage is applied and display is performed in the normally white mode, the aperture ratio is 35% in a pixel of 80 μm pitch.
As described above, it was possible to easily realize a clear image with a light / dark ratio of 100: 1 or more. Although the liquid crystal alignment abnormality was slightly observed in the peripheral portion of the off pixel, it was not observed at all in the on pixel, confirming the effect of the present invention. For comparison, a liquid crystal display device having a conventional structure was manufactured and confirmed. When the aperture ratio was 35%, the light / dark ratio was 10: 1 or less, and in order to obtain the light / dark ratio of 100: 1, the aperture ratio must be reduced to 15% or less. did not become.

【0013】画素間遮光層102に与える電圧は概ね液
晶飽和電圧の90%以上の矩形波であり、オン画素に対
する実効電圧が液晶のしきい値電圧を越えない値にする
必要がある。また走査を開始する箇所と走査を終了する
箇所ではそれぞれ画素電圧にかかる波形の位相がずれて
いるために画素間遮光層に与える電圧は最適な位相を選
ぶことが望ましい。なお配線間容量を減らし、能動素子
への影響を小さくするために画素間遮光層102は図2
(a)のごとく配線上及び能動素子との重なりを極力な
くすような構造をとる必要がある。
The voltage applied to the inter-pixel light-shielding layer 102 is a rectangular wave of about 90% or more of the liquid crystal saturation voltage, and the effective voltage for the ON pixel must be a value that does not exceed the threshold voltage of the liquid crystal. In addition, since the phase of the waveform applied to the pixel voltage is deviated at the position where the scanning is started and the position where the scanning is ended, it is desirable to select the optimum phase for the voltage applied to the inter-pixel light shielding layer. The inter-pixel light-shielding layer 102 is formed in FIG. 2 in order to reduce the inter-wiring capacitance and reduce the influence on the active elements.
As shown in (a), it is necessary to take a structure that minimizes the overlap between the wiring and the active element.

【0014】図3は本発明を適用した液晶素子の一実施
例を示す平面図である。主基板101にはクロムからな
る走査電極103、信号電極104、多結晶シリコンか
らなる能動素子106、ITOからなる画素電極10
7、さらに絶縁層105を介してクロムからなる画素間
遮光層102をそれぞれ形成し、対向基板となるガラス
基板にはITOからなる対向電極を形成した。ここで画
素間遮光層102は走査電極配線103に沿って連続し
た複数の導体からなり画素電極107の周縁部に約2μ
mの幅で重なりを持っている。双方の基板表面にポリイ
ミド配向膜を塗布、焼成し、それらを基板貼り合わせ時
に各基板表面における配向方向が互いにほぼ90°をな
すような方向に配向処理した後、約5μmの間隙を持つ
よう基板を貼り合わせ、TN液晶材料を注入、封止して
液晶素子を得た。かかる素子において走査電極103に
走査電圧、信号電極104に信号電圧、対向電極にコモ
ン電圧を各々与え、画素間遮光層102には電圧の印加
されている信号電極とほぼ同じ電圧を与えた。この素子
においては一回の走査ごとに信号電圧を正負を反転する
いわゆる走査線反転駆動を行い、画素間遮光層102に
はこれに応じて各々の遮光層電極ごとにオン画素に対す
る実効電圧が液晶のしきい値電圧を越えないような電圧
を与えている。このような駆動電圧を与えてノーマリホ
ワイトモードにて表示を行ったところ、80μmピッチ
と画素で開口率35%以上、明暗比130:1以上の鮮
明な画像を容易に実現することができた。画素部を顕微
鏡にて拡大観察したところ隣接する画素間遮光層の間隙
部とオフ画素の周縁部に若干観察されたものの、オン画
素内には明暗比の低下に結びつくような配向以上は見ら
れず、本発明の効果が確かめられた。
FIG. 3 is a plan view showing an embodiment of a liquid crystal element to which the present invention is applied. On the main substrate 101, a scan electrode 103 made of chromium, a signal electrode 104, an active element 106 made of polycrystalline silicon, and a pixel electrode 10 made of ITO.
7. Further, the inter-pixel light shielding layer 102 made of chrome was formed via the insulating layer 105, and the counter electrode made of ITO was formed on the glass substrate serving as the counter substrate. Here, the inter-pixel light shielding layer 102 is composed of a plurality of conductors that are continuous along the scanning electrode wiring 103, and is approximately 2 μm around the periphery of the pixel electrode 107.
Has an overlap with a width of m. After coating and baking polyimide alignment films on the surfaces of both substrates, they are aligned so that the alignment directions on the surfaces of the substrates are approximately 90 ° when the substrates are bonded together, and then the substrates are made to have a gap of about 5 μm. Were bonded together, and a TN liquid crystal material was injected and sealed to obtain a liquid crystal element. In such an element, a scanning voltage was applied to the scanning electrode 103, a signal voltage was applied to the signal electrode 104, and a common voltage was applied to the counter electrode, and the same voltage as the signal electrode to which the voltage was applied was applied to the inter-pixel light shielding layer 102. In this element, so-called scanning line inversion driving is performed in which the positive and negative of the signal voltage are inverted at each scanning, and the inter-pixel light-shielding layer 102 accordingly produces an effective voltage for the on-pixel for each light-shielding layer electrode. A voltage that does not exceed the threshold voltage of is given. When such a drive voltage was applied and display was performed in the normally white mode, a clear image having an aperture ratio of 35% or more and a light / dark ratio of 130: 1 or more at a pitch of 80 μm could be easily realized. .. When the pixel portion was observed under a microscope with a microscope, it was slightly observed in the gap between the adjacent pixel light-shielding layers and the peripheral portion of the off pixel, but in the on pixel, more than the orientation leading to the reduction of the light-dark ratio was observed. Therefore, the effect of the present invention was confirmed.

【0015】図4は本発明を適用した液晶素子の一実施
例を示す平面図である。主基板101にはクロムからな
る走査電極103、信号電極104、多結晶シリコンか
らなる能動素子106、ITOからなる画素電極10
7、さらに絶縁層105を介してクロムからなる画素間
遮光層102をそれぞれ形成し、対向基板にはITOか
らなる対向電極を形成した。ここで画素間遮光層102
は信号電極配線104に沿って連続した複数の導体から
なり画素電極107の周縁部に約2μmの幅で重なりを
持っている。双方の基板表面にポリイミド配向膜を塗
布、焼成し、それらを基板貼り合わせ時に各基板表面に
おける配向方向が互いにほぼ90°をなすような方向に
配向処理した後、約5μmの間隙を持つよう基板を貼り
合わせ、TN液晶材料を注入、封止して液晶素子を得
た。かかる素子において走査電極103に走査電圧、信
号電極104に信号電圧、対向電極コモン電圧を各々与
え、画素間遮光層102には電圧を印加されている信号
電極とほぼ同じ電圧を与えた。この素子においては隣合
う信号電極ごとに信号電圧の正負を反転するいわゆる信
号線反転駆動を行い、画素間遮光層102にはこれに応
じて各々の遮光層電極ごとにオン画素に対する実効電圧
が液晶のしきい値電圧を越えないような電圧を与えてい
る。このような駆動電圧を与えてノーマリホワイトモー
ドにで表示を行ったところ、80μmピッチの画素で開
口率35%以上、明暗比120:1以上の鮮明な画像を
容易に実現することができた。画素部を観察したところ
画素間遮光層の間隙部とオフ画素の周縁部に若干観察さ
れたもののオン画素内には配向異常は見られず、本発明
の効果が確かめられた。
FIG. 4 is a plan view showing an embodiment of a liquid crystal element to which the present invention is applied. On the main substrate 101, a scan electrode 103 made of chromium, a signal electrode 104, an active element 106 made of polycrystalline silicon, and a pixel electrode 10 made of ITO.
7. Further, the inter-pixel light shielding layer 102 made of chrome was formed via the insulating layer 105, and the counter electrode made of ITO was formed on the counter substrate. Here, the inter-pixel light shielding layer 102
Is composed of a plurality of conductors continuous along the signal electrode wiring 104 and has an overlap of about 2 μm on the peripheral edge of the pixel electrode 107. After coating and baking polyimide alignment films on the surfaces of both substrates, they are aligned so that the alignment directions on the surfaces of the substrates are approximately 90 ° when the substrates are bonded together, and then the substrates are made to have a gap of about 5 μm. Were bonded together, and a TN liquid crystal material was injected and sealed to obtain a liquid crystal element. In such an element, a scanning voltage was applied to the scanning electrode 103, a signal voltage was applied to the signal electrode 104, and a common voltage of the counter electrode was applied, respectively, and the inter-pixel light shielding layer 102 was applied with almost the same voltage as the signal electrode to which the voltage was applied. In this element, so-called signal line inversion driving for inverting the positive / negative of the signal voltage is performed for each adjacent signal electrode, and the inter-pixel light-shielding layer 102 accordingly produces an effective voltage for the ON pixel for each light-shielding layer electrode. A voltage that does not exceed the threshold voltage of is given. When such a drive voltage was applied and display was performed in the normally white mode, it was possible to easily realize a clear image with an aperture ratio of 35% or more and a light / dark ratio of 120: 1 or more in a pixel having a pitch of 80 μm. .. When the pixel portion was observed, some alignment defects were not observed in the ON pixels, although some were observed in the gaps between the light-shielding layers between pixels and the peripheral portions of the OFF pixels, confirming the effect of the present invention.

【0016】なお以上の例では走査電極、信号電極、画
素間遮光部の各電極材料としてクロムを用いたが適する
材料はこれに限らず、アルミ、モリブデン等の遮光性導
電対であれば何を用いてもかまわず、また画素電極及び
対向電極の材料は光透過性導電材料であればITOに限
るものではない。
In the above example, chromium is used as the electrode material for the scanning electrodes, the signal electrodes, and the light-shielding portions between pixels. However, the suitable material is not limited to this, and any light-shielding conductive pair such as aluminum or molybdenum can be used. It may be used, and the material of the pixel electrode and the counter electrode is not limited to ITO as long as it is a light transmissive conductive material.

【0017】[0017]

【発明の効果】以上説明した通り、本発明を適用すれ
ば、能動素子を持つ液晶素子において画素境界部の光も
れを防ぎ、且つ画素電極周縁部に発生する液晶の配向異
常((ディスクリネーション)液晶欠陥)を隠ぺいする
ことが、画素開口部を狭めることなく高い位置合わせ精
度で可能となる。このことにより素子の光利用高率を下
げることなく高品位の表示が実現でき、特に液晶表示素
子を小型化高密度化する際に大きな利点となる。
As described above, according to the present invention, in a liquid crystal element having an active element, light leakage at a pixel boundary portion is prevented, and liquid crystal alignment abnormality ((discrete It is possible to hide the (nation) liquid crystal defect) with high alignment accuracy without narrowing the pixel opening. As a result, high-quality display can be realized without lowering the light utilization rate of the device, which is a great advantage particularly when the liquid crystal display device is downsized and the density is increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の概略を示す図。FIG. 1 is a diagram showing an outline of the present invention.

【図2】本発明の実施例を示す図。FIG. 2 is a diagram showing an embodiment of the present invention.

【図3】本発明の実施例を示す図。FIG. 3 is a diagram showing an embodiment of the present invention.

【図4】本発明の実施例を示す図。FIG. 4 is a diagram showing an embodiment of the present invention.

【図5】従来素子の例を示す図。FIG. 5 is a diagram showing an example of a conventional element.

【符号の説明】[Explanation of symbols]

101 主ガラス基板 102 画素間遮光層 103 走査電極 104 信号電極 105 絶縁層 106 能動素子 107 画素電極 108 対向ガラス基板 109 対向電極 110 配向膜 111 液晶層 112 画素電極境界部 101 main glass substrate 102 light shielding layer between pixels 103 scanning electrode 104 signal electrode 105 insulating layer 106 active element 107 pixel electrode 108 counter glass substrate 109 counter electrode 110 alignment film 111 liquid crystal layer 112 pixel electrode boundary part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 画素電極並びにこれと接続する能動素子
及び配線を有する主基板と、対向電極を有する対向基板
との間隙に液晶材料が狭持されており、電圧印加時に遮
光状態となる液晶素子において、導電性の画素間遮光層
を主基板上の画素電極周縁部に設けたことを特徴とする
液晶素子。
1. A liquid crystal element in which a liquid crystal material is sandwiched in a gap between a main substrate having a pixel electrode, an active element and a wiring connected to the pixel electrode, and a counter substrate having a counter electrode, and is in a light shielding state when a voltage is applied. 2. A liquid crystal element according to, wherein a conductive inter-pixel light shielding layer is provided on a peripheral portion of a pixel electrode on a main substrate.
【請求項2】 画素電極並びにこれと接続する能動素子
及び配線を有する主基板と、対向電極を有する対向基板
との間隙に液晶材料が狭持されており、導電性の画素間
遮光層を主基板上の画素電極周縁部に設け、電圧印加時
に遮光状態となる液晶素子の走査電極に走査電圧を、信
号電極に信号電圧を、対向電極にコモン電圧をそれぞれ
印加し、画素間遮光層にこの画素間遮光層によって囲ま
れる画素電極に印加される最大電圧と概略等しい実効電
圧で且つその画素電極が保持する電圧波形と概略等しい
波形の電圧を与えることを特徴とする液晶素子の駆動方
法。
2. A liquid crystal material is sandwiched between a main substrate having pixel electrodes, active elements and wirings connected to the pixel electrodes, and a counter substrate having counter electrodes, and a conductive inter-pixel light-shielding layer is mainly used. A scan voltage, a signal voltage is applied to the scan electrodes of the liquid crystal element, which is shielded when a voltage is applied, a signal voltage is applied to the signal electrode, and a common voltage is applied to the counter electrode. A method for driving a liquid crystal element, wherein an effective voltage substantially equal to a maximum voltage applied to a pixel electrode surrounded by an inter-pixel light shielding layer and a voltage having a waveform substantially equal to a voltage waveform held by the pixel electrode are applied.
JP4647992A 1992-03-04 1992-03-04 Driving method of liquid crystal element Expired - Lifetime JP2858499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4647992A JP2858499B2 (en) 1992-03-04 1992-03-04 Driving method of liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4647992A JP2858499B2 (en) 1992-03-04 1992-03-04 Driving method of liquid crystal element

Publications (2)

Publication Number Publication Date
JPH05265032A true JPH05265032A (en) 1993-10-15
JP2858499B2 JP2858499B2 (en) 1999-02-17

Family

ID=12748340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4647992A Expired - Lifetime JP2858499B2 (en) 1992-03-04 1992-03-04 Driving method of liquid crystal element

Country Status (1)

Country Link
JP (1) JP2858499B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201773A (en) * 1995-01-31 1996-08-09 Nec Corp Active matrix type liquid crystal display device
US5610736A (en) * 1993-12-24 1997-03-11 Kabushiki Kaisha Toshiba Active matrix type display device in which elongated electrodes underlie the signal lines to form capacitors with the pixel electrodes and manufacturing method
JPH10197888A (en) * 1997-01-08 1998-07-31 Furontetsuku:Kk Liquid crystal display device and electronic equipment
JP2003084299A (en) * 2001-09-11 2003-03-19 Nec Corp Liquid crystal display device
JP2009163007A (en) * 2008-01-07 2009-07-23 Toshiba Mobile Display Co Ltd Liquid crystal display device
CN102169256A (en) * 2011-05-09 2011-08-31 深圳市华星光电技术有限公司 Liquid crystal display, colorful optical filter substrate, thin film transistor substrate and manufacture method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610736A (en) * 1993-12-24 1997-03-11 Kabushiki Kaisha Toshiba Active matrix type display device in which elongated electrodes underlie the signal lines to form capacitors with the pixel electrodes and manufacturing method
JPH08201773A (en) * 1995-01-31 1996-08-09 Nec Corp Active matrix type liquid crystal display device
JPH10197888A (en) * 1997-01-08 1998-07-31 Furontetsuku:Kk Liquid crystal display device and electronic equipment
JP2003084299A (en) * 2001-09-11 2003-03-19 Nec Corp Liquid crystal display device
JP2009163007A (en) * 2008-01-07 2009-07-23 Toshiba Mobile Display Co Ltd Liquid crystal display device
US8339342B2 (en) 2008-01-07 2012-12-25 Japan Display Central Inc. Liquid crystal display device
CN102169256A (en) * 2011-05-09 2011-08-31 深圳市华星光电技术有限公司 Liquid crystal display, colorful optical filter substrate, thin film transistor substrate and manufacture method thereof
WO2012151792A1 (en) * 2011-05-09 2012-11-15 深圳市华星光电技术有限公司 Liquid crystal display, colorful filter substrate, thin film transistor substrate and manufacturing method thereof

Also Published As

Publication number Publication date
JP2858499B2 (en) 1999-02-17

Similar Documents

Publication Publication Date Title
JPH06194687A (en) Transmission type active matrix liquid crystal element
US20070268423A1 (en) Structure of LCD pane and method of manufacturing the same
US20050200793A1 (en) In-plane switching mode liquid crystal display device and method of fabricating the same
US8514339B2 (en) Active matrix substrate, liquid crystal panel, liquid crystal display unit, liquid crystal display device, and television receiver
JP4036081B2 (en) Electro-optical panel and manufacturing method thereof
JP2004354553A (en) Liquid crystal display device
JPH11344725A (en) Active matrix type liquid crystal display device
JPWO2007063649A1 (en) Active matrix substrate, display device including the active matrix substrate, liquid crystal panel, display device including the liquid crystal panel, television receiver, active matrix substrate correction method, liquid crystal panel correction method, and active matrix substrate manufacturing method Manufacturing method of liquid crystal panel
JP2010096966A (en) Electro-optical apparatus, method for manufacturing same, and electronic device
JPH05265032A (en) Liquid crystal element and its driving method
JP5200720B2 (en) Electro-optical device, electronic apparatus, and method of manufacturing electro-optical device
JP2979458B2 (en) Matrix type liquid crystal display
JP2008096616A (en) Electro-optical device and electronic device
JPH05196963A (en) Liquid crystal element
JP3312720B2 (en) Liquid crystal display
JP2010191408A (en) Electro-optical device and electronic apparatus
JP3346354B2 (en) LCD panel
JP2503845B2 (en) Active matrix liquid crystal element
JP3282542B2 (en) Active matrix type liquid crystal display
JP2006243221A (en) Substrate for electrooptical apparatus, electrooptical apparatus, and electronic equipment
JP3311326B2 (en) Liquid crystal display
JPH1172801A (en) Liquid crystal display device
JP2001235761A (en) Electro-optical device
JP2827575B2 (en) Liquid crystal element
JP2010072513A (en) Substrate for electrooptical device, electrooptical device and electronic apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071204

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091204

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091204

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101204

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101204

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111204

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111204

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 14