JPH05264573A - Semiconductor acceleration sensor - Google Patents

Semiconductor acceleration sensor

Info

Publication number
JPH05264573A
JPH05264573A JP22765192A JP22765192A JPH05264573A JP H05264573 A JPH05264573 A JP H05264573A JP 22765192 A JP22765192 A JP 22765192A JP 22765192 A JP22765192 A JP 22765192A JP H05264573 A JPH05264573 A JP H05264573A
Authority
JP
Japan
Prior art keywords
weight
strain gauges
beams
acceleration sensor
semiconductor acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22765192A
Other languages
Japanese (ja)
Other versions
JP3115427B2 (en
Inventor
Masamichi Ueyanagi
上▲やなぎ▼勝道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Fuji Electric Co Ltd
Original Assignee
Denso Ten Ltd
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd, Fuji Electric Co Ltd filed Critical Denso Ten Ltd
Priority to GB9306077A priority Critical patent/GB2266151B/en
Priority to GB9605377A priority patent/GB2296977B/en
Priority to DE4345552A priority patent/DE4345552B4/en
Priority to DE19934309786 priority patent/DE4309786B4/en
Priority to DE4345551A priority patent/DE4345551B4/en
Publication of JPH05264573A publication Critical patent/JPH05264573A/en
Priority to US08/281,100 priority patent/US5665915A/en
Priority to US08/376,051 priority patent/US5490421A/en
Application granted granted Critical
Publication of JP3115427B2 publication Critical patent/JP3115427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a higher performance and low cost semiconductor acceleration sensor which has improved detection sensitivity without requiring any special process whose interference output and offset output with a passivation film are lowered. CONSTITUTION:A weight 1 is supported with beams 2 and 3 and 4 and 5 from the left and right and strain gauges 2A, 3A, 4A and 5A are formed on the beams 2, 3, 4 and 5 in the longitudinal direction of the top surface thereof on the side of a coupled part of the beams and a support body 6 while strain gauges 2B, 3B, 4B and 5B are formed in the longitudinal direction of the top surface thereof on the side of the coupled part of the beams and the weight 1. The strain gauges 2A and 5A, 3A and 4A, 2B and 5B, and 3B and 4B are arranged respectively symmetrically with respect to the center O of the weight 1 to form a Wheatstone bridge and a passivation film 10 is formed on the top surface of the strain gauges.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体からなる超小型の
加速度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor miniaturized acceleration sensor.

【0002】[0002]

【従来の技術】図8および図9は従来の半導体加速度セ
ンサの一例を示し、図8は平面図,図9は側面図であ
る。図8および図9において、半導体からなり、四角形
の厚肉状の例えば厚さ400ミクロンの重り1と、この
重りの一側面と所定の間隔を有する四角形の厚肉状の支
持体6と、重り1の前記一側面と対面する支持体6の側
面とを連結する薄肉状の例えば厚さ20〜40ミクロン
の梁7とからなり、この梁7に歪ゲージ7A,7B,7
C,7Dが形成されている。これら歪ゲージのうち歪ゲ
ージ7A,7Cは梁7と支持体6の結合部側の上面にこ
の梁7の長さ方向に形成され、歪ゲージ7B,7Dは梁
7と重り1の結合部側の上面にこの梁7の巾方向に形成
される。そしてこれら歪ゲージ7A,7B,7C,7D
を図12のように歪ゲージ7Aと7C,7Bと7Dとを
それぞれ対向させてホイートストンブリッジを構成す
る。なおEは電源端子,Gは接地端子,S1,S2は信
号出力端子である。
2. Description of the Related Art FIGS. 8 and 9 show an example of a conventional semiconductor acceleration sensor, FIG. 8 is a plan view and FIG. 9 is a side view. 8 and 9, a square thick-walled weight 1 made of semiconductor, for example, 400 μm in thickness, a square thick-walled support 6 having a predetermined distance from one side of the weight, and a weight. 1 is composed of a thin-walled beam 7 having a thickness of, for example, 20 to 40 μm, which connects the one side surface of the support body 6 to the side surface of the support body 6 facing the one side surface.
C and 7D are formed. Among these strain gauges, the strain gauges 7A and 7C are formed in the length direction of the beam 7 on the upper surface of the beam 7 and the support 6 on the side of the connecting portion, and the strain gauges 7B and 7D are on the connecting portion side of the beam 7 and the weight 1. Is formed on the upper surface of the beam 7 in the width direction of the beam 7. And these strain gauges 7A, 7B, 7C, 7D
As shown in FIG. 12, the strain gauges 7A and 7C and 7B and 7D are opposed to each other to form a Wheatstone bridge. E is a power supply terminal, G is a ground terminal, and S1 and S2 are signal output terminals.

【0003】今、重り1に対し、図9で矢印V方向のす
なわち重り1に対し垂直方向(加速度検出方向となる)
の加速度が加わると、梁7は図13に示すように重り1
は垂直方向の力Fv を受け、矢印M方向に撓む。このと
き梁7には、この梁7と支持体6の結合部側の上面およ
びこの梁7と重り1の結合部側の上面にそれぞれ引っ張
り応力が働き、この梁7の長さ方向に形成された歪ゲー
ジ7Aおよび7Cはその抵抗値が増加するが、この梁7
の巾方向に形成された歪ゲージ7Bおよび7Dはその抵
抗値に変化は生じない。このようにしてホイートストン
ブリッジの信号出力端子S1,S2から加速度に比例し
た大きさの検出信号が出力される。
Now, the weight 1 is in the direction of arrow V in FIG. 9, that is, the direction perpendicular to the weight 1 (which is the acceleration detection direction).
When the acceleration of is applied to the beam 7, the beam 7 is moved to the weight 1 as shown in FIG.
Receives a vertical force F v and bends in the direction of arrow M. At this time, tensile stress acts on the beam 7 on the upper surface of the beam 7 and the support 6 on the side of the joint portion and on the upper surface of the beam 7 and the weight 1 on the side of the joint portion, and the beam 7 is formed in the longitudinal direction of the beam 7. The strain gauges 7A and 7C have increased resistance values.
The resistance values of the strain gauges 7B and 7D formed in the width direction do not change. In this way, the detection signal having a magnitude proportional to the acceleration is output from the signal output terminals S1 and S2 of the Wheatstone bridge.

【0004】なお、歪ゲージ7A,7B,7C,7Dは
通常拡散技術により形成するので、その保護のため重り
1,梁7および支持体6の上面にSiO2 あるいはSi
Nなどのパッシベーション膜10を設けるようにする。
Since the strain gauges 7A, 7B, 7C and 7D are usually formed by a diffusion technique, the weight 1, the beam 7 and the upper surface of the support 6 are protected by SiO 2 or Si.
A passivation film 10 of N or the like is provided.

【0005】[0005]

【発明が解決しようとする課題】前述の加速度センサに
おいては、図9で示すように梁7の撓み中心線9と重り
1の重心点Wとの間に距離Lがあるので、矢印Hで示す
ように重り1に対し横方向(加速度の非検出方向とな
る)に加速度が加わると、撓み中心線9と重り1の重心
点Wとの間の距離Lと、加速度によって重り1に生じる
横方向の力Fh とによりモーメントが生じ、図14に示
すように、梁7は垂直方向に加速度が加わったときと同
様に矢印M方向に撓んでしまう。この撓みによってもホ
イートストンブリッジは信号を出力し、この信号は干渉
出力となり検出精度を低下させる。
In the acceleration sensor described above, there is a distance L between the deflection center line 9 of the beam 7 and the center of gravity W of the weight 1 as shown in FIG. When the acceleration is applied to the weight 1 in the lateral direction (which is the direction in which the acceleration is not detected), the distance L between the deflection center line 9 and the center of gravity W of the weight 1 and the lateral direction generated in the weight 1 by the acceleration. A force is generated by the force F h and the beam 7 bends in the direction of arrow M as in the case where acceleration is applied in the vertical direction, as shown in FIG. The Wheatstone bridge also outputs a signal due to this bending, and this signal becomes an interference output and reduces detection accuracy.

【0006】このために、図10,図11に示すように
重り1の上面に例えばガラスなどからなる追加重り8を
接合し、重り1と追加重り8とからなる重りの重心点W
が丁度梁7の撓み中心線9と合致させそれらの間の距離
Lを零とすることが考えられるが、追加重りを接合する
特別な工程が増えコストが上昇する。更にまた、前述の
加速度センサにおいては、梁と重りとの結合部側の上面
にこの梁の巾方向に形成された歪ゲージは、加速度が加
わったとき抵抗変化を生じないので検出感度が低い問題
がある。
For this reason, as shown in FIGS. 10 and 11, an additional weight 8 made of, for example, glass is joined to the upper surface of the weight 1 to form a center of gravity W of the weight composed of the weight 1 and the additional weight 8.
It is conceivable to just match the bending center line 9 of the beam 7 and set the distance L between them to zero, but the special step of joining the additional weight increases and the cost rises. Furthermore, in the aforementioned acceleration sensor, the strain gauge formed in the width direction of the beam on the upper surface at the side where the beam and the weight are connected does not cause resistance change when acceleration is applied, so that the detection sensitivity is low. There is.

【0007】更にまた、歪ゲージを保護するためのSi
2 あるいはSiNなどのパッシベーション膜は、通常
高温で形成処理され、その後常温に戻されるが、パッシ
ベーション膜とシリコン半導体との熱膨張係数が異なる
ため、常温に戻したときシリコン半導体の表面に応力を
生じ図15のよう梁7に撓みを生じる場合がある。この
ように梁に撓みを生じると、丁度加速度が加わったとき
と同じようになりホイーストンブリッジから電圧が出力
される。この電圧はオフセット出力と称されて、センサ
出力のSN比を下げ検出精度を低下させる。
Furthermore, Si for protecting the strain gauge
A passivation film such as O 2 or SiN is usually formed at a high temperature and then returned to room temperature. However, since the thermal expansion coefficient of the passivation film is different from that of the silicon semiconductor, stress is applied to the surface of the silicon semiconductor when the temperature is returned to room temperature. As a result, the beam 7 may be bent as shown in FIG. When the beam is deflected in this way, the voltage is output from the Wheatstone bridge in the same manner as when acceleration is applied. This voltage is called an offset output and reduces the SN ratio of the sensor output to reduce the detection accuracy.

【0008】本発明の目的は前述の問題点を解決し、特
別な工程を必要とせず、検出感度を向上し、かつ干渉出
力を低減した加速度センサを提供することにある。更に
本発明の目的はパッシベーション膜によるオフセット電
圧を低減した加速度センサを提供することにある。
An object of the present invention is to solve the above-mentioned problems, to provide an acceleration sensor which does not require a special process, has improved detection sensitivity, and has reduced interference output. Another object of the present invention is to provide an acceleration sensor in which the offset voltage due to the passivation film is reduced.

【0009】[0009]

【課題を解決するための手段】前述の目的を達成するた
めに本発明の半導体加速度センサは半導体からなり、四
角形の厚肉状の重りと、この重りと所定の間隔を有し、
かつこの重りを囲うように形成された四角形の内孔を有
する厚肉状の支持体と、前記重りの対面する一対の外辺
のそれぞれの外辺の各両端部とこれら両端部と対面する
支持体の各内辺とを連結する4個の薄肉状の梁とからな
り、前記各梁にそれぞれ歪ゲージを形成する。あるいは
半導体からなり、正四角形の厚肉状の中央部とこの中央
部を中心として互に90°の回転移動で合致する中央部
の各辺の位置にそれぞれ形成された4個の四角形の厚肉
状の凸部とからなる重りと、前記重りの各凸部の外辺と
所定の間隔を有し、かつこの重りを囲うよう形成された
四角形の内孔を有する厚肉状の支持体と、前記重りの中
央部を中心として互に90°の回転移動で合致する前記
重りの各凸部の一側辺と、これら一側辺にそれぞれ対面
する前記支持体の各内辺とを連結する4個の薄肉状の梁
とからなり、前記各梁にそれぞれ歪ゲージを形成する。
更にこれら半導体加速度センサの4個の各梁に形成され
る歪ゲージは、それぞれこれら梁の長さ方向にこれら梁
と支持体の結合部側の上面に形成される第1の側の4個
の歪ゲージとこれら梁と重りの結合部側の上面に形成さ
れる第2の側の4個の歪ゲージとからなり、これら第1
の側の4個の歪ゲージのうち重りの中心点に対して対称
となる各2個の歪ゲージをそれぞれ対向させ、かつこれ
ら第2の側の4個の歪ゲージのうち重りの中心点に対し
て対称となる各2個の歪ゲージをそれぞれ対向させてホ
イートストンブリッジを構成する。そしてこの4個の各
梁に形成される歪ゲージがそれぞれこれら梁の長さ方向
にこれら梁と支持体の結合部側の上面に形成される半導
体加速度センサにおいて、歪ゲージの形成された梁の上
面にパッシベーション膜を設けるようにする。
In order to achieve the above-mentioned object, a semiconductor acceleration sensor of the present invention is made of a semiconductor and has a quadrangular thick-walled weight and a predetermined distance from the weight,
And a thick-walled support having a square inner hole formed so as to surround the weight, both ends of each of the outer sides of the pair of facing outer sides of the weight, and a support that faces these both ends. It is composed of four thin-walled beams that connect each inner side of the body, and a strain gauge is formed on each of the beams. Alternatively, it is made of a semiconductor and has four square thick walls formed at the positions of the regular square thick central portion and the sides of the central portion that coincide with each other by 90 ° rotational movement about the central portion. And a thick-walled support having a quadrangular inner hole formed so as to surround the weight, and a weight consisting of a convex portion having a predetermined shape, an outer side of each convex portion of the weight, and a predetermined distance. Connect one side of each convex portion of the weight, which coincides with each other by 90 ° rotational movement around the center of the weight, and each inner side of the support, which faces each one of these convex sides 4 Each of the beams has a thin gauge beam, and a strain gauge is formed on each of the beams.
Further, the strain gauges formed on each of the four beams of these semiconductor acceleration sensors have four strain gauges on the first side formed on the upper surfaces of the beams in the length direction of the beams and on the joint side of the beam and the support. The strain gauge and the four strain gauges on the second side formed on the upper surface of the beam and the connecting portion side of the weight,
Of the four strain gauges on the side of, the two strain gauges that are symmetrical with respect to the center point of the weight are opposed to each other, and the center point of the weight of the four strain gauges on the second side Wheatstone bridges are formed by making two strain gauges symmetrical to each other face each other. Then, in the semiconductor acceleration sensor in which the strain gauges formed on each of the four beams are formed on the upper surfaces of the beams in the length direction of the beams on the joint side of the beams and the support, A passivation film is provided on the upper surface.

【0010】[0010]

【作用】請求項1記載の半導体加速度センサにおいて
は、半導体からなり、四角形の厚肉状の重りと、この重
りと所定の間隔を有し、かつこの重りを囲うように形成
された四角形の内孔を有する厚肉状の支持体と、前記重
りの対面する一対の外辺のそれぞれの外辺の各両端部と
これら両端部と対面する支持体の各内辺とを連結する4
個の薄肉状の梁とからなり、前記各梁にそれぞれ歪ゲー
ジを形成するようにしたので重りは左右から梁によって
支持されるので、横方向(非検出方向)の加速度が加わ
った場合梁の撓みは従来の片側の梁で支持される場合に
比し著るしく小さくなり、干渉出力は著るしく低減され
る。
In the semiconductor acceleration sensor according to the first aspect of the present invention, a quadrangular thick-walled weight made of a semiconductor and a quadrangle formed at a predetermined distance from the weight and surrounding the weight are included. A thick-walled support having holes, each end of each outer edge of the pair of outer edges facing each other, and each inner edge of the support that faces these both edges are connected to each other 4
It consists of individual thin-walled beams, and the strain gauges are formed on each of the beams, so the weights are supported by the beams from the left and right, so when the lateral (non-detection) acceleration is applied, The deflection is significantly smaller than that in the case of being supported by a conventional beam on one side, and the interference output is significantly reduced.

【0011】また、請求項2記載の半導体加速度センサ
においては半導体からなり、正四角形の厚肉状の中央部
とこの中央部を中心として互に90°の回転移動で合致
する中央部の各辺の位置にそれぞれ形成された4個の四
角形の厚肉状の凸部とからなる重りと、前記重りの各凸
部の外辺と所定の間隔を有し、かつこの重りを囲うよう
形成された四角形の内孔を有する厚肉状の支持体と、前
記重りの中央部を中心として互に90°の回転移動で合
致する前記重りの各凸部の一側辺と、これら一側辺にそ
れぞれ対面する前記支持体の各内辺とを連結する4個の
薄肉状の梁とからなり、前記各梁にそれぞれ歪ゲージを
形成するようにしたので、各梁は重りの中央部の各辺に
沿って形成されるようになり、それらの長さ方向を長く
することができるのでより容易に撓むようになる。これ
により、請求項1における作用の外に更に検出感度を向
上させることができる。
According to another aspect of the semiconductor acceleration sensor of the present invention, each of the sides of the central portion is made of a semiconductor and has a square thick-walled central portion and the central portions that are mutually rotated by 90 ° about the central portion. A weight having four quadrangular thick-walled convex portions formed at the respective positions, and a predetermined distance from the outer edge of each convex portion of the weight, and formed so as to surround the weight. A thick support having a quadrangular inner hole, one side of each convex portion of the weight which is rotated by 90 ° about the central portion of the weight, and each of these convex sides It is composed of four thin-walled beams that connect each inner side of the supporting body facing each other, and a strain gauge is formed on each beam, so that each beam is attached to each side of the center portion of the weight. Will be formed along and can lengthen their length direction It will bend more easily. As a result, the detection sensitivity can be further improved in addition to the effect of the first aspect.

【0012】更に、請求項3記載のように、前記各半導
体加速度センサにおいて、4個の各梁に形成される歪ゲ
ージは、それぞれこれら梁の長さ方向にこれら梁と支持
体の結合部側の上面に形成される第1の側の4個の歪ゲ
ージとこれら梁と重りの結合部側の上面に形成される第
2の側の4個の歪ゲージとからなり、これら第1の側の
4個の歪ゲージのうち重りの中心点に対して対称となる
各2個の歪ゲージをそれぞれ対向させ、かつこれら第2
の側の4個の歪ゲージのうち重りの中心点に対して対称
となる各2個の歪ゲージをそれぞれ対向させてホイート
ストンブリッジを構成するようにしたので、例えば横方
向(非検出方向)の加速度が加わった場合、重りの中心
点に対して対称となる第1の側および第2の側それぞれ
の各2個の歪ゲージは、その内一方の歪ゲージに圧縮応
力が加わると他方の歪ゲージには引っ張り応力が加わ
り、互に抵抗値の変化を打消すように働き、ホイートス
トンブリッジからは信号は出力されない。また、垂直方
向(検出方向)の加速度が加わった場合は、第1の側お
よび第2の側のすべての歪ゲージは、それぞれ一方の側
の歪ゲージに圧縮応力が加わると他方の側の歪ゲージに
は引っ張り応力が加わり、これらのすべての歪ゲージの
抵抗値の変化によってホイートストンブリッジからは検
出信号が出力される。これによって、干渉出力は低減し
検出感度は向上する。
Further, in each of the semiconductor acceleration sensors as described in claim 3, the strain gauges formed on each of the four beams are arranged in the lengthwise direction of the beams on the side where the beams and the support are connected. The four strain gauges on the first side formed on the upper surface of the first side and the four strain gauges on the second side formed on the upper surface on the side where the beams and weights are connected, Of the four strain gauges, the two strain gauges that are symmetrical with respect to the center point of the weight are opposed to each other, and
Of the four strain gauges on the side of, the two strain gauges that are symmetrical with respect to the center point of the weight are made to face each other to form the Wheatstone bridge, so that, for example, in the lateral direction (non-detection direction) When acceleration is applied, two strain gauges on each of the first side and the second side, which are symmetric with respect to the center point of the weight, have two strain gauges. Tensile stress is applied to the gauges, they act to cancel out the change in resistance value, and no signal is output from the Wheatstone bridge. When acceleration in the vertical direction (detection direction) is applied, all strain gauges on the first side and the second side are strained on the other side when compressive stress is applied to the strain gauge on one side. A tensile stress is applied to the gauge, and a detection signal is output from the Wheatstone bridge due to changes in the resistance values of all these strain gauges. This reduces interference output and improves detection sensitivity.

【0013】また、請求項3記載の半導体加速度センサ
のように各歪ゲージが梁と支持体の結合部側の上面、お
よび梁と重りの結合部側の上面にそれぞれ梁の長さ方向
に設けられた半導体加速度センサにおいて、請求項4に
示すように歪ゲージの形成された梁の上面にパッシベー
ション膜を設けると、このパッシベーション膜とシリコ
ン半導体との熱膨張係数の差によってシリコン半導体の
表面に応力を生じても、これら梁の上面の長さ方向の歪
ゲージにはすべて同じ抵抗変化を生じホイートスンブリ
ッジに接続したとき、これら抵抗変化は互いに打ち消し
合ってオフセット出力を生じることはない。
Further, as in the semiconductor acceleration sensor according to a third aspect of the present invention, the strain gauges are provided in the beam length direction on the upper surface of the beam-supporting joint side and on the upper surface of the beam-weight coupling side, respectively. In this semiconductor acceleration sensor, when a passivation film is provided on the upper surface of the beam on which the strain gauge is formed as described in claim 4, stress is applied to the surface of the silicon semiconductor due to the difference in thermal expansion coefficient between the passivation film and the silicon semiconductor. However, when the strain gauges on the upper surface of these beams all have the same resistance change and are connected to the Wheatstone bridge, these resistance changes do not cancel each other out to generate an offset output.

【0014】[0014]

【実施例】図1および図2は本発明の半導体加速度セン
サの一実施例を示し、図1は平面図,図2は図1のA−
Aにおける断面図である。図1および図2において、半
導体からなり、四角形の厚肉状の、例えば厚さ400ミ
クロンの重り1と、この重り1と所定の間隔を有し、か
つこの重り1を囲うように形成された四角形の内孔を有
する厚肉状の支持体6と、重り1の対面する一対の外辺
のそれぞれの外辺の各両端部とこれら両端部と対面する
支持体6の各内辺とを連結する4個の薄肉状の、例えば
厚さ20〜40ミクロンの梁2,3,4,5とからな
り、これら梁2,3,4,5にそれぞれ歪ゲージ2A,
2B、3A,3B、4A,4B、5A,5Bが形成され
ている。これら歪ゲージのうち、歪ゲージ2A,3A,
4A,5Aは支持体6とこれら歪ゲージが形成されたそ
れぞれの梁2,3,4,5との結合部側の上面にこれら
梁の長さ方向に形成され、歪ゲージ2B,3B,4B,
5Bは重り1とこれら歪ゲージが形成されたそれぞれの
梁2,3,4,5との結合部側の上面にこれら梁の長さ
方向に形成されている。今各梁のそれぞれの梁と支持体
の結合部側の上面に形成された4個の歪ゲージ2A,3
A,4A,5Aを第1の側歪ゲージと称し、それぞれの
梁と重りとの結合部側の上面に形成された4個の歪ゲー
ジ2B,3B,4B,5Bを第2の側歪ゲージと称する
と、第1の側の4個の歪ゲージ2A,3A,4A,5A
のうち重り1の中心点Oに対して対称となる各2個の歪
ゲージ2A,5Aおよび3A,4Aをそれぞれ対向さ
せ、かつ第2の側の4個の歪ゲージ2B,3B,4B,
5Bのうち重り1の中心点Oに対して対称となる各2個
の歪ゲージ2B,5Bおよび3B,4Bをそれぞれ対向
させて図5に示すようにホイートストンブリッジを構成
する。なお、Vは電源端子,Gは接地端子,S1,S2
は信号出力端子である。
1 and 2 show an embodiment of a semiconductor acceleration sensor of the present invention, FIG. 1 is a plan view, and FIG. 2 is A- of FIG.
It is sectional drawing in A. FIG. In FIG. 1 and FIG. 2, a weight 1 made of a semiconductor and having a quadrangular thickness, for example, a thickness of 400 μm, is formed so as to surround the weight 1 with a predetermined distance from the weight 1. The thick-walled support body 6 having a square inner hole, the respective end portions of the outer edges of the pair of outer edges of the weight 1 which are opposed to each other, and the inner edges of the support element 6 which face these end portions are connected to each other. It is composed of four thin-walled beams 2, 3, 4, 5 having a thickness of, for example, 20 to 40 μm, and strain gauges 2A,
2B, 3A, 3B, 4A, 4B, 5A, 5B are formed. Of these strain gauges, strain gauges 2A, 3A,
4A and 5A are formed in the length direction of these beams on the upper surface of the side of the connection between the support 6 and the beams 2, 3, 4, and 5 on which these strain gauges are formed, and the strain gauges 2B, 3B and 4B are formed. ,
5B is formed in the length direction of the weight 1 and the upper surface of the side where the beams 2, 3, 4, 5 on which the strain gauges are formed are connected. Now, four strain gauges 2A, 3 are formed on the upper surface of each beam on the side of the joint between the beam and the support.
A, 4A, and 5A are referred to as first side strain gauges, and four strain gauges 2B, 3B, 4B, and 5B formed on the upper surface of each beam and weight coupling side are referred to as second side strain gauges. , The four strain gauges 2A, 3A, 4A, 5A on the first side
Of the two strain gauges 2A, 5A and 3A, 4A that are symmetric with respect to the center point O of the weight 1, respectively, and face each other, and the four strain gauges 2B, 3B, 4B on the second side,
Of the 5B, two strain gauges 2B, 5B and 3B, 4B which are symmetrical with respect to the center point O of the weight 1 are opposed to each other to form a Wheatstone bridge as shown in FIG. In addition, V is a power supply terminal, G is a ground terminal, S1, S2
Is a signal output terminal.

【0015】今、重り1に対し、図2で矢印V方向の、
すなわち重り1に対し垂直方向(加速度の検出方向とな
る)の加速度が加わると、重り1は垂直方向の力Fv
け図6に示すように下方へ移動し、左右の梁2,3と
4,5によって支持される。このときこれら梁の梁と支
持体6の結合部側の上面には引っ張り応力が、梁と重り
1の結合部側の上面には圧縮応力が発生する。従って第
1の側の歪ゲージ2A,3A,4A,5Aの抵抗値は増
加し、第2の側の歪ゲージ2B,3B,4B,5Bの抵
抗値は減少し、ホイートストンブリッジの信号出力端子
S1,S2から加速度に比例した大きさの検出信号が出
力される。
Now, for the weight 1, in the direction of arrow V in FIG.
That is, when acceleration is applied to the weight 1 in the vertical direction (which is the direction of detecting the acceleration), the weight 1 receives the vertical force F v and moves downward as shown in FIG. , 5 supported. At this time, a tensile stress is generated on the upper surface of the beam and the support 6 on the side of the connecting portion, and a compressive stress is generated on the upper surface of the beam and the weight 1 on the side of the connecting portion. Therefore, the resistance values of the strain gauges 2A, 3A, 4A, 5A on the first side increase, the resistance values of the strain gauges 2B, 3B, 4B, 5B on the second side decrease, and the signal output terminal S1 of the Wheatstone bridge. , S2 outputs a detection signal having a magnitude proportional to the acceleration.

【0016】次に、重り1に対し、図2で矢印H方向
の、すなわち重り1に対し横方向(加速度の非検出方向
となる)の加速度が加わると、梁の撓み中心線9と重り
1の重心点Wとの間の距離Lと、加速度により重り1に
生じる横方向の力Fh とによるモーメントにより、図7
に示すように変形し、重り1により押される側の梁2,
3は、各梁と支持体との結合部側の上面に圧縮応力が各
梁と重りとの結合部側の上面に引っ張り応力が発生し、
重り1により引っ張られる側の梁4,5は各梁と支持体
との結合部側の上面に引っ張り応力が各梁と重りとの結
合部側の上面に圧縮応力が発生する。
Next, when an acceleration is applied to the weight 1 in the direction of the arrow H in FIG. 2, that is, in the lateral direction (which is the non-detection direction of acceleration) with respect to the weight 1, the deflection center line 9 of the beam and the weight 1 are applied. 7 by the distance L between the center of gravity W of the weight and the lateral force F h generated in the weight 1 by the acceleration.
Beam 2 on the side that is deformed as shown in and is pushed by the weight 1.
In No. 3, compressive stress is generated on the upper surface of each beam-supporting joint side, and tensile stress is generated on the upper surface of each beam-weight joint side.
In the beams 4 and 5 on the side pulled by the weight 1, tensile stress is generated on the upper surface of each beam-supporting joint side, and compressive stress is generated on the upper surface of each beam-weight joint side.

【0017】従って、第1の側の4個の歪ゲージ2A,
3A,4A,5Aのうち重り1の中心点Oに対して対称
となる各2個の歪ゲージ2A,5Aおよび3A,4Aの
うち、歪ゲージ2A,5Aは、2Aが抵抗値減少,5A
が抵抗値増加となり互にその抵抗値の変化を打ち消し合
い、また歪ゲージ3A,4Aは3Aが抵抗値減少,4A
が抵抗値増加となり互に抵抗値の変化を打ち消し合う。
また、第2の側の4個の歪ゲージ2B,3B,4B,5
Bも同様に互にその抵抗値の変化を打ち消し合い、ホイ
ートストンブリッジからは信号は出力されない。
Therefore, the four strain gauges 2A on the first side,
Of the two strain gauges 2A, 5A and 3A, 4A which are symmetrical with respect to the center point O of the weight 1 among the strain gauges 3A, 4A, 5A, the strain gauges 2A, 5A have a resistance value of 2A, 5A.
Becomes an increase in the resistance value and the changes in the resistance value cancel each other out, and in the strain gauges 3A and 4A, 3A decreases the resistance value, 4A
Becomes an increase in resistance value and the changes in resistance value cancel each other out.
Also, the four strain gauges 2B, 3B, 4B, 5 on the second side
Similarly, the B's cancel each other out the change in their resistance values, and no signal is output from the Wheatstone bridge.

【0018】本半導体加速度センサは、重り1は左右か
ら梁2,3および4,5によって支持されるので横方向
(非検出方向)の加速度が加わった場合重りは左右の梁
によって支持されるので、従来の片側の梁で支持される
場合に比し、梁の撓みそのものが小さくなるとともに、
前述のように各歪ゲージは互にその抵抗値の変化が打ち
消し合うので、干渉出力は著るしく低減する。
In this semiconductor acceleration sensor, since the weight 1 is supported by the beams 2, 3 and 4, 5 from the left and right, the weight is supported by the left and right beams when a lateral (non-detection direction) acceleration is applied. , Compared with the case of being supported by a conventional beam on one side, the deflection itself of the beam becomes smaller,
As described above, the strain gauges cancel each other out the change in their resistance values, so that the interference output is significantly reduced.

【0019】更に垂直方向(検出方向)の加速度が加わ
った場合、すべての歪ゲージの抵抗値の変化によってホ
イートストンブリッジは信号が出力されるので信号出力
が増大する。図3および図4は本発明の半導体加速度セ
ンサの異なる実施例を示し、図3は平面図,図4は図3
のB−Bにおける断面図である。図3および図4におい
て、半導体からなり四角形の厚肉状の例えば厚さ400
ミクロンの中央部1Aとこの中央部1Aを中心として互
に90°の回転移動で合致する中央部1Aの各辺の位置
にそれぞれ形成された4個の四角形の厚肉状の凸部1
A,1B,1C,1Dとからなる重り1と、重り1の各
凸部1A,1B,1C,1Dの外辺と所定の間隔を有
し、かつこの重り1を囲うよう形成された四角形の内孔
を有する厚肉状の支持体6と、重り1の中央部1Aを中
心として互に90°の回転移動で合致する重り1の各凸
部1A,1B,1C,1Dの一側辺と、これら一側辺に
それぞれ対面する支持体6の各内辺とを連結する4個の
薄肉状、例えば20〜40ミクロンの梁2,3,4,5
とからなり、これら梁2,3,4,5にそれぞれ歪ゲー
ジ2A,2B、3A,3B、4A,4B、5A,5Bが
形成されている。これら歪ゲージのうち、歪ゲージ2
A,3A,4A,5Aはそれぞれの梁と支持体との結合
部側の上面にこれら梁の長さ方向に形成され、歪ゲージ
2B,3B,4B,5Bはそれぞれの梁と重りとの結合
部側の上面にこれら梁の長さ方向に形成されている。そ
して、これら歪ゲージは図1および図2に示す実施例と
同様ホイートストンブリッジを構成し、その動作も図1
および図2に示す実施例と全く同様である。
When acceleration in the vertical direction (detection direction) is further applied, a signal is output to the Wheatstone bridge due to a change in the resistance value of all strain gauges, so that the signal output increases. 3 and 4 show different embodiments of the semiconductor acceleration sensor of the present invention, FIG. 3 is a plan view, and FIG. 4 is FIG.
It is sectional drawing in BB of FIG. In FIGS. 3 and 4, a quadrangular thick wall made of semiconductor, for example, a thickness of 400
Four quadrangular thick-walled convex portions 1 formed on the respective sides of the central portion 1A of the micron and the central portion 1A which coincide with each other by a 90 ° rotational movement about the central portion 1A.
A weight 1 composed of A, 1B, 1C and 1D, and a quadrangle formed so as to surround the weight 1 with a predetermined distance from the outer sides of the respective convex portions 1A, 1B, 1C and 1D of the weight 1. A thick-walled support 6 having an inner hole and one side of each of the protrusions 1A, 1B, 1C, 1D of the weight 1 which are fitted to each other by a rotational movement of 90 ° about the central portion 1A of the weight 1. , Four thin walls, for example, 20 to 40 micron beams 2, 3, 4, 5 which connect the inner sides of the support 6 facing the one side, respectively.
Strain gauges 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B are formed on the beams 2, 3, 4, 5 respectively. Of these strain gauges, strain gauge 2
A, 3A, 4A and 5A are formed on the upper surface of the side where the beams and the support are connected, and the strain gauges 2B, 3B, 4B and 5B are connected to the beams and the weights. It is formed in the length direction of these beams on the upper surface on the part side. These strain gauges form a Wheatstone bridge as in the embodiment shown in FIGS. 1 and 2, and their operation is also shown in FIG.
And is completely the same as the embodiment shown in FIG.

【0020】本半導体加速度センサでは各梁2,3,
4,5は重り1の中心部1Aの各辺に沿って形成される
ので、それらの長さ方向を長くすることができるのでよ
り容易に撓むようになり、更に検出感度を向上させるこ
とができる。なお、重り1の各辺に設けた凸部1A,1
B,1C,1Dは図1に示すように各辺の一端部に設
け、これら凸部の両側辺のうち対面する支持体6の内辺
との距離の長い方の一側辺にそれぞれ梁2,3,4,5
を形成するようにすると、これら梁の長さをより長くす
ることができる。
In this semiconductor acceleration sensor, each beam 2, 3,
Since the weights 4 and 5 are formed along each side of the central portion 1A of the weight 1, they can be elongated in the lengthwise direction, so that they can be bent more easily, and the detection sensitivity can be further improved. In addition, the convex portions 1A, 1 provided on each side of the weight 1
As shown in FIG. 1, B, 1C, and 1D are provided at one end of each side, and the beam 2 is provided on one side of the two sides of these protrusions, which has a longer distance from the inner side of the supporting body 6 facing each other. , 3, 4, 5
The length of these beams can be made longer by forming the beam.

【0021】更に、図1.図2で示される半導体加速度
センサあるいは図3,4で示される半導体加速度センサ
において、上面に形成された歪ゲージを保護するために
SiO2 あるいはSiNなどのパッシベーション膜10
を形成する。このパッシベーション膜は通常数百度の高
温状態で形成され、その後常温に戻されるが、シリコン
半導体との熱膨張係数が異なるため、シリコン半導体の
表面には応力が残留し、このために各歪ゲージ2A,2
B,3A,3B,4A,4B,5A,5Bの抵抗値が変
化するが、これら歪ゲージは、すべて梁2,3,4,5
の上面長手方向に設けられているので、同じ抵抗変化を
生じる。そして、これら歪ゲージを図5に示すホイース
トンブリッジに接続したとき、すべての歪ゲージは同じ
ように抵抗変化をしているので、これら抵抗変化は互い
に打ち消し合ってオフセット出力を生じることはない。
Further, as shown in FIG. In the semiconductor acceleration sensor shown in FIG. 2 or the semiconductor acceleration sensor shown in FIGS. 3 and 4, a passivation film 10 such as SiO 2 or SiN is provided to protect the strain gauge formed on the upper surface.
To form. This passivation film is usually formed at a high temperature of several hundreds of degrees and then returned to room temperature, but since the coefficient of thermal expansion is different from that of the silicon semiconductor, stress remains on the surface of the silicon semiconductor, which causes strain gauges 2A , 2
Although the resistance values of B, 3A, 3B, 4A, 4B, 5A and 5B change, these strain gauges are all beams 2, 3, 4, 5
Since it is provided in the upper surface longitudinal direction, the same resistance change occurs. Then, when these strain gauges are connected to the Wheatstone bridge shown in FIG. 5, all the strain gauges have the same resistance change, and therefore these resistance changes do not cancel each other out to generate an offset output.

【0022】[0022]

【発明の効果】本発明によれば、半導体からなる装置の
形状とこの装置に形成される歪ゲージの個数,位置およ
び接続方法によって、特別な工程を追加することなく、
検出感度を向上し、かつ干渉出力およびオフセット出力
を低減したので、高性能の半導体加速度センサを低コス
トで供給することができる。この種半導体加速度センサ
は自動車をはじめ各種用途に広く用いられるもので、高
性能の半導体加速度センサが低コストで供給できる効果
は極めて大きい。
According to the present invention, depending on the shape of the semiconductor device and the number, position and connecting method of the strain gauges formed on the device, no additional process is required.
Since the detection sensitivity is improved and the interference output and the offset output are reduced, a high-performance semiconductor acceleration sensor can be supplied at low cost. This kind of semiconductor acceleration sensor is widely used in various applications including automobiles, and the effect that a high-performance semiconductor acceleration sensor can be supplied at low cost is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体加速度センサの一実施例を示す
平面図
FIG. 1 is a plan view showing an embodiment of a semiconductor acceleration sensor of the present invention.

【図2】図1のA−Aにおける断面図FIG. 2 is a sectional view taken along line AA of FIG.

【図3】本発明の半導体加速度センサの異なる実施例を
示す平面図
FIG. 3 is a plan view showing another embodiment of the semiconductor acceleration sensor of the present invention.

【図4】図3のB−Bにおける断面図FIG. 4 is a sectional view taken along line BB in FIG.

【図5】図1に示す本発明の半導体加速度センサの接続
5 is a connection diagram of the semiconductor acceleration sensor of the present invention shown in FIG.

【図6】図1に示す本発明の半導体加速度センサの動作
を説明する断面図
6 is a sectional view for explaining the operation of the semiconductor acceleration sensor of the present invention shown in FIG.

【図7】図1に示す本発明の半導体加速度センサの動作
を更に説明する断面図
FIG. 7 is a sectional view for further explaining the operation of the semiconductor acceleration sensor of the present invention shown in FIG.

【図8】従来の半導体加速度センサの一例を示す平面図FIG. 8 is a plan view showing an example of a conventional semiconductor acceleration sensor.

【図9】図8の側面図9 is a side view of FIG.

【図10】従来の半導体加速度センサの異なる実施例を
示す平面図
FIG. 10 is a plan view showing another embodiment of the conventional semiconductor acceleration sensor.

【図11】図10の側面図11 is a side view of FIG.

【図12】図8に示す従来の半導体加速度センサの接続
FIG. 12 is a connection diagram of the conventional semiconductor acceleration sensor shown in FIG.

【図13】図8に示す従来の半導体加速度センサの動作
を説明する側面図
13 is a side view for explaining the operation of the conventional semiconductor acceleration sensor shown in FIG.

【図14】図8に示す従来の半導体加速度センサの動作
を更に説明する側面図
14 is a side view further explaining the operation of the conventional semiconductor acceleration sensor shown in FIG.

【図15】図8に示す従来の半導体加速度センサの動作
を更に説明する側面図
15 is a side view further explaining the operation of the conventional semiconductor acceleration sensor shown in FIG.

【符号の説明】[Explanation of symbols]

1 重り 1A 中央部 1B 凸部 1C 凸部 1D 凸部 1E 凸部 2 梁 2A 歪ゲージ(第1の側の) 2B 歪ゲージ(第2の側の) 3 梁 3A 歪ゲージ(第1の側の) 3B 歪ゲージ(第2の側の) 4 梁 4A 歪ゲージ(第1の側の) 4B 歪ゲージ(第2の側の) 5 梁 5A 歪ゲージ(第1の側の) 5B 歪ゲージ(第2の側の) 6 支持体 10 パッシベーション膜 O 中心点(重り1の) 1 Weight 1A Central part 1B Convex part 1C Convex part 1D Convex part 1E Convex part 2 Beam 2A Strain gauge (on the first side) 2B Strain gauge (on the second side) 3 Beam 3A Strain gauge (on the first side) ) 3B Strain gauge (second side) 4 Beam 4A Strain gauge (first side) 4B Strain gauge (second side) 5 Beam 5A Strain gauge (first side) 5B Strain gauge (first) 2 side) 6 support 10 passivation film O center point (of weight 1)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】半導体からなり、四角形の厚肉状の重り
と、この重りと所定の間隔を有し、かつこの重りを囲う
ように形成された四角形の内孔を有する厚肉状の支持体
と、前記重りの対面する一対の外辺のそれぞれの外辺の
各両端部とこれら両端部と対面する支持体の各内辺とを
連結する4個の薄肉状の梁とからなり、前記各梁にそれ
ぞれ歪ゲージが形成されることを特徴とする半導体加速
度センサ。
1. A thick-walled support made of a semiconductor, having a quadrangular thick-walled weight and a quadrangular inner hole formed so as to surround the weight with a predetermined distance from the weight. And four thin-walled beams connecting each end of each outer edge of the pair of outer edges facing each other and each inner edge of the support facing these both ends, A semiconductor acceleration sensor, wherein a strain gauge is formed on each beam.
【請求項2】半導体からなり、正四角形の厚肉状の中央
部とこの中央部を中心として互に90°の回転移動で合
致する中央部の各辺の位置にそれぞれ形成された4個の
四角形の厚肉状の凸部とからなる重りと、前記重りの各
凸部の外辺と所定の間隔を有し、かつこの重りを囲うよ
う形成された四角形の内孔を有する厚肉状の支持体と、
前記重りの中央部を中心として互に90°の回転移動で
合致する前記重りの各凸部の一側辺と、これら一側辺に
それぞれ対面する前記支持体の各内辺とを連結する4個
の薄肉状の梁とからなり、前記各梁にそれぞれ歪ゲージ
が形成されることを特徴とする半導体加速度センサ。
2. A thick square central portion made of a semiconductor and four pieces formed at positions of respective sides of the central portion which coincide with each other by a rotational movement of 90 ° about the central portion. A weight having a quadrangular thick-walled convex portion, a thick wall-shaped having a quadrangular inner hole formed so as to surround the weight with a predetermined distance from the outer side of each convex portion of the weight. A support,
Connect one side of each convex portion of the weight, which coincides with each other by 90 ° rotational movement around the center of the weight, and each inner side of the support, which faces each one of these convex sides 4 A semiconductor acceleration sensor, comprising a plurality of thin-walled beams, and a strain gauge is formed on each beam.
【請求項3】請求項1あるいは2記載の半導体加速度セ
ンサにおいて、4個の各梁に形成される歪ゲージは、そ
れぞれこれら梁の長さ方向にこれら梁と支持体の結合部
側の上面に形成される第1の側の4個の歪ゲージとこれ
ら梁と重りの結合部側の上面に形成される第2の側の4
個の歪ゲージとからなり、これら第1の側の4個の歪ゲ
ージのうち重りの中心点に対して対称となる各2個の歪
ゲージをそれぞれ対向させ、かつこれら第2の側の4個
の歪ゲージのうち重りの中心点に対して対称となる各2
個の歪ゲージをそれぞれ対向させてホイートストンブリ
ッジを構成することを特徴とする半導体加速度センサ。
3. The semiconductor acceleration sensor according to claim 1 or 2, wherein the strain gauges formed on each of the four beams are provided on the upper surface of the beam in the length direction of the beam and on the joint side of the support. Four strain gauges on the first side to be formed and four strain gauges on the second side to be formed on the upper surface of the connecting portion side of these beams and weights.
Of the four strain gauges on the first side, two strain gauges symmetrical with respect to the center point of the weight are opposed to each other, and the strain gauges on the second side are Each of the two strain gauges is symmetrical about the center point of the weight.
A semiconductor acceleration sensor characterized in that a Wheatstone bridge is formed by making individual strain gauges face each other.
【請求項4】請求項3記載の半導体加速度センサにおい
て、歪ゲージの形成された梁の上面にパッシベーション
膜が設けられたことを特徴とする半導体加速度センサ。
4. The semiconductor acceleration sensor according to claim 3, wherein a passivation film is provided on the upper surface of the beam on which the strain gauge is formed.
JP04227651A 1991-11-28 1992-08-27 Semiconductor acceleration sensor Expired - Fee Related JP3115427B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
GB9605377A GB2296977B (en) 1992-03-25 1993-03-24 Semi-conductor acceleration sensor
GB9306077A GB2266151B (en) 1992-03-25 1993-03-24 Semiconductor acceleration sensor
DE19934309786 DE4309786B4 (en) 1992-03-25 1993-03-25 Elastomeric e.g. silicone encapsulation for optical connected to support - has two thin beam pairs for connection, with beams in each pair symmetric w.r.t. each other, and with two differing response characteristic strain gauges formed on each beam upper surface
DE4345551A DE4345551B4 (en) 1992-03-25 1993-03-25 Elastomeric e.g. silicone encapsulation for optical connected to support - has two thin beam pairs for connection, with beams in each pair symmetric w.r.t. each other, and with two differing response characteristic strain gauges formed on each beam upper surface
DE4345552A DE4345552B4 (en) 1992-03-25 1993-03-25 Semiconductor accelerometer
US08/281,100 US5665915A (en) 1992-03-25 1994-07-27 Semiconductor capacitive acceleration sensor
US08/376,051 US5490421A (en) 1992-03-25 1995-01-23 Semi-conductor acceleration sensor having thin beam supported weight

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP31283691 1991-11-28
JP3-312836 1991-11-28

Publications (2)

Publication Number Publication Date
JPH05264573A true JPH05264573A (en) 1993-10-12
JP3115427B2 JP3115427B2 (en) 2000-12-04

Family

ID=18034015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04227651A Expired - Fee Related JP3115427B2 (en) 1991-11-28 1992-08-27 Semiconductor acceleration sensor

Country Status (1)

Country Link
JP (1) JP3115427B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481899B1 (en) * 2013-06-27 2015-01-21 부산대학교 산학협력단 Silicon Accelerometer and Packaging of the Same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103235155B (en) * 2013-04-28 2016-05-11 厦门乃尔电子有限公司 A kind of piezoresistance type acceleration sensor with full-bridge micro girder construction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481899B1 (en) * 2013-06-27 2015-01-21 부산대학교 산학협력단 Silicon Accelerometer and Packaging of the Same

Also Published As

Publication number Publication date
JP3115427B2 (en) 2000-12-04

Similar Documents

Publication Publication Date Title
US6955086B2 (en) Acceleration sensor
US20040025591A1 (en) Accleration sensor
JP2575939B2 (en) Semiconductor acceleration sensor
US4558600A (en) Force transducer
KR100499970B1 (en) Acceleration sensor
JPH0260271B2 (en)
KR0139506B1 (en) Self-diagnostic accelerometer with symmetric proof-mass and its preparation method
JPH10177033A (en) Acceleration measuring instrument
JPH07113647B2 (en) Semiconductor acceleration sensor
US5335544A (en) Apparatus for measuring mechanical forces and force actions
US5962792A (en) Beam strain gauge
KR100508198B1 (en) Acceleration sensor
US20030057447A1 (en) Acceleration sensor
US7939355B2 (en) Single-mask fabrication process for linear and angular piezoresistive accelerometers
JPH05264573A (en) Semiconductor acceleration sensor
CN100422697C (en) Acceleration transducer
US7690272B2 (en) Flexural pivot for micro-sensors
JP5547054B2 (en) Capacitance type acceleration sensor
JP2865266B2 (en) Semiconductor acceleration sensor
JPH07128358A (en) Acceleration sensor
JP2650623B2 (en) Semiconductor acceleration sensor
JPH06160422A (en) Semiconductor acceleration sensor
JPS62190775A (en) Sensor for acceleration
Plaza et al. Six-beam twin-mass structure for triaxial accelerometer
JPH06300774A (en) Acceleration sensor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000905

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070929

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees