JPH05264487A - Heat treatment oil cooling tester - Google Patents

Heat treatment oil cooling tester

Info

Publication number
JPH05264487A
JPH05264487A JP9179092A JP9179092A JPH05264487A JP H05264487 A JPH05264487 A JP H05264487A JP 9179092 A JP9179092 A JP 9179092A JP 9179092 A JP9179092 A JP 9179092A JP H05264487 A JPH05264487 A JP H05264487A
Authority
JP
Japan
Prior art keywords
temperature
test piece
cooling
derivative
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9179092A
Other languages
Japanese (ja)
Inventor
Eisuke Nasu
英輔 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK Corp
Original Assignee
DKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK Corp filed Critical DKK Corp
Priority to JP9179092A priority Critical patent/JPH05264487A/en
Publication of JPH05264487A publication Critical patent/JPH05264487A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To measure characteristic temperature of a heat treatment oil without any personal difference in a cooling test of the heat treatment oil used for hardening of a metal. CONSTITUTION:A cooling speed curve (first derivative) is obtained by performing first-order differentiation of a cooling curve (change of test piece temperature with time). Then, a test piece temperature E at a cooling time D when a maximum value C appears in the cooling speed curve B is detected. Furthermore, an average change rate (inclination F) of the test piece temperature from measurement initiation to the cooling time D is obtained. Then, a point where an inclination F' which is obtained by translating the inclination F is tangential to the cooling curve A is set to a characteristic temperature G.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属の焼入れに用いら
れる熱処理油の冷却試験器に関し、さらに詳述すると、
JISに定められた熱処理油の冷却試験を行ない、コン
ピュータでデータ処理を行なうことにより、熱処理油の
特性温度を精度よく測定することが可能な冷却試験器に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling tester for heat-treated oil used for quenching metals, and more specifically,
The present invention relates to a cooling tester capable of accurately measuring a characteristic temperature of heat treated oil by performing a cooling test of heat treated oil specified by JIS and performing data processing by a computer.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】鉄鋼や
その他の金属の焼入れに用いる熱処理油の冷却試験は、
JIS−K2242に規定されている。この試験におい
ては、図5に示すように銀試片aの表面部にアルメル線
bを埋め込んだ構造の試験片cを用いる(dは銀パイ
プ、eは銀線、fは支持棒である)。そして、図6に示
すように、加熱炉gで試験片cを800℃に加熱してか
ら熱処理油hに入れ、試験片cの温度の経時変化を測定
し、得られた冷却曲線から冷却性能を評価するものであ
る。なお、図6においてiは試験片自動昇降装置、jは
投下スイッチ、kは冷却曲線が出力される記録計であ
る。
2. Description of the Related Art A cooling test of heat-treated oil used for quenching steel and other metals is
It is specified in JIS-K2242. In this test, as shown in FIG. 5, a test piece c having a structure in which an alumel wire b is embedded in the surface of a silver test piece a is used (d is a silver pipe, e is a silver wire, and f is a support rod). .. Then, as shown in FIG. 6, after heating the test piece c to 800 ° C. in the heating furnace g and putting it in the heat-treated oil h, the change with time of the temperature of the test piece c was measured, and the cooling performance was obtained from the obtained cooling curve. Is to evaluate. In FIG. 6, i is a test piece automatic lifting device, j is a dropping switch, and k is a recorder for outputting a cooling curve.

【0003】図7は冷却曲線の一例である。この冷却曲
線から下記〜の3つの冷却過程を見ることができ
る。 蒸気膜段階 800℃に加熱された試験片は、高温による熱処理油の
熱分解で生じた蒸気膜に覆われてしまい、この蒸気膜が
冷却の妨害をする。 沸騰段階 しかし、試験片の温度がある程度下がってくると蒸気膜
が破れ、熱処理油が直接試験片と触れるため、冷却が加
速される。 対流段階 その後、試験片は十分に冷却され、対流と伝導によるゆ
るやかな冷却がつづく。
FIG. 7 shows an example of a cooling curve. From this cooling curve, the following three cooling processes can be seen. Steam film stage: A test piece heated to 800 ° C is covered with a steam film generated by thermal decomposition of heat-treated oil at a high temperature, and this steam film interferes with cooling. Boiling stage However, when the temperature of the test piece falls to some extent, the vapor film breaks and the heat-treated oil comes into direct contact with the test piece, so that cooling is accelerated. Convection stage After that, the specimen is sufficiently cooled, followed by gentle cooling due to convection and conduction.

【0004】上述した冷却試験の測定項目の一つに特性
温度がある。この特性温度は、図7に示すように焼入れ
冷却過程において蒸気膜が崩壊する温度であり、蒸気膜
段階から沸騰段階に移行する時の試験片温度である。従
来、特性温度は、冷却曲線を記録計に出力し、温度が急
激に変化する点を冷却曲線から目視で読み取ることによ
り検出している。しかし、このように特性温度を目視で
読み取る方法は個人差による読み取り誤差が大きく、そ
のため従来の方法は測定精度が低いという問題があっ
た。また、JISで定める繰り返し精度5℃を定量的に
評価することは困難であった。
Characteristic temperature is one of the measurement items of the cooling test described above. This characteristic temperature is the temperature at which the vapor film collapses in the quenching and cooling process as shown in FIG. 7, and is the test piece temperature at the time of transition from the vapor film stage to the boiling stage. Conventionally, the characteristic temperature is detected by outputting a cooling curve to a recorder and visually reading a point at which the temperature rapidly changes from the cooling curve. However, such a method of visually reading the characteristic temperature has a large reading error due to individual differences, and thus the conventional method has a problem of low measurement accuracy. Moreover, it was difficult to quantitatively evaluate the repeatability of 5 ° C. defined by JIS.

【0005】本発明は、上記事情に鑑みなされたもの
で、目視によって特性温度を読み取ることによる誤差を
排除し、個人差なく熱処理油の特性温度を測定すること
ができる熱処理油冷却試験器を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and provides a heat treatment oil cooling tester capable of eliminating the error caused by visually reading the characteristic temperature and measuring the characteristic temperature of the heat treated oil without individual differences. The purpose is to do.

【0006】[0006]

【課題を解決するための手段及び作用】本発明は、上記
目的を達成するため、第1発明として、加熱した試験片
を熱処理油で冷却するときの試験片温度の経時変化を測
定する測定部と、試験片温度の経時変化の1階微分を行
なって1次導関数を算出し、測定開始時から1次導関数
の極値が現われる時までの試験片温度の平均変化率を演
算し、この平均変化率と前記1次導関数とを比較して両
者が実質的に等しくなる時の試験片温度を熱処理油の特
性温度として出力する演算・比較部とを具備する熱処理
油冷却試験器を提供する。
In order to achieve the above object, the present invention provides, as a first invention, a measuring unit for measuring a change with time of a test piece temperature when a heated test piece is cooled with heat-treated oil. Then, the first derivative of the time-dependent change of the test piece temperature is performed to calculate the first derivative, and the average change rate of the test piece temperature from the start of measurement to the time when the extreme value of the first derivative appears is calculated, A heat treatment oil cooling tester comprising: a calculation / comparison section for comparing the average rate of change with the first derivative and outputting the test piece temperature when the two become substantially equal as the characteristic temperature of the heat treatment oil. provide.

【0007】また、第2発明として、加熱した試験片を
熱処理油で冷却するときの試験片温度の経時変化を検出
する測定部と、試験片の温度変化の1階微分及び高階微
分を行なって1次導関数及び高次導関数を算出し、測定
開始時から高次導関数の最初の極値が現われる時までの
試験片温度の平均変化率を演算し、この平均変化率と前
記1次導関数とを比較して両者が実質的に等しくなる時
の試験片温度を熱処理油の特性温度として出力する演算
・比較部とを具備することを特徴とする熱処理油冷却試
験器を提供する。
As a second aspect of the present invention, a measuring unit for detecting a time-dependent change in the temperature of the test piece when the heated test piece is cooled with heat-treated oil, and a first-order differential and a higher-order differential of the temperature change of the test piece are performed. The first derivative and the higher derivative are calculated, and the average change rate of the test piece temperature from the start of measurement to the time when the first extreme value of the higher derivative appears is calculated. Provided is a heat treatment oil cooling tester, comprising: a calculation / comparison unit that compares a derivative and outputs a test piece temperature when the two become substantially equal as a characteristic temperature of heat treatment oil.

【0008】本発明の概念を図示すると、図1のように
なる。すなわち、図1においてAは冷却曲線を示す。第
1発明では、まず冷却曲線(試験片温度の経時変化)A
の1階微分を行なって冷却速度曲線(1次導関数)Bを
得る。次に、冷却速度曲線Bに極大値Cが現われた冷却
時間Dにおける試験片温度Eを検出する。さらに、測定
開始時から冷却時間Dまでの試験片温度の平均変化率、
すなわち測定開始時の試験片温度(800℃)と試験片
温度Eとで定まる勾配F(E−800)/D(℃/秒)
を求める。そして、この勾配Fを平行移動した勾配F’
が冷却曲線Aと接する点を特性温度Gとするものであ
る。この最後の操作は、測定開始時から時Dまでの試験
片温度の平均変化率(勾配F)と前記1次導関数(冷却
速度曲線B)とを比較し、両者が等しくなる時の試験片
温度を熱処理油の特性温度Gとして求める操作である。
The concept of the present invention is illustrated in FIG. That is, A in FIG. 1 indicates a cooling curve. In the first invention, first, a cooling curve (change in test piece temperature with time) A
To obtain a cooling rate curve (first derivative) B. Next, the test piece temperature E at the cooling time D when the maximum value C appears on the cooling rate curve B is detected. Furthermore, the average change rate of the test piece temperature from the start of measurement to the cooling time D,
That is, the gradient F (E-800) / D (° C / sec) determined by the temperature (800 ° C) of the test piece at the start of measurement and the temperature E of the test piece
Ask for. Then, a gradient F ′ obtained by translating this gradient F
Is the characteristic temperature G at the point of contact with the cooling curve A. This last operation compares the average rate of change (gradient F) of the temperature of the test piece from the start of measurement to time D with the first derivative (cooling rate curve B), and the test piece when both are equal This is an operation for obtaining the temperature as the characteristic temperature G of the heat-treated oil.

【0009】なお、実際に測定を行なった場合、測定開
始時から特性温度Gに至る間の冷却曲線Aには凹凸が生
じ、特性温度Gより高温側でも勾配F’が冷却曲線Aと
接する点がある(図3,4参照)。このため、実際の測
定においては、上記平均変化率と1次導関数とを測定開
始時間にさかのぼる方向で順次比較し、両者が等しくな
る時の試験片温度を特性温度Gとする。
When the actual measurement is performed, the cooling curve A from the start of measurement to the characteristic temperature G becomes uneven, and the slope F'contacts the cooling curve A even at a temperature higher than the characteristic temperature G. (See FIGS. 3 and 4). Therefore, in actual measurement, the average rate of change and the first derivative are sequentially compared in the direction going back to the measurement start time, and the temperature of the test piece when both are equal is defined as the characteristic temperature G.

【0010】また、図1において、特性温度Gは冷却速
度曲線Bにおけるピークの立ち上がり箇所Hに存在す
る。第2発明は、冷却曲線Aの高階微分を行ない、測定
開始時の試験片温度と高次導関数の最初の極値が現われ
た時までの試験片温度とで定まる勾配を求め、この勾配
を平行移動して冷却曲線Aと接する点を特性温度Gとす
ることにより、図1の温度Eを特性温度G(箇所H)に
より近づけるようにしたものである。この場合、高階微
分を高次にすればするほど温度Eは特性温度Gに近づ
き、最終的に温度Eは特性温度Gに収れんする。
Further, in FIG. 1, the characteristic temperature G exists at the rising point H of the peak in the cooling rate curve B. The second aspect of the invention is to perform a higher-order differentiation of the cooling curve A to obtain a slope determined by the temperature of the test piece at the start of measurement and the temperature of the test piece until the first extreme value of the higher derivative appears. By making the point of parallel movement and contact with the cooling curve A the characteristic temperature G, the temperature E of FIG. 1 is made closer to the characteristic temperature G (location H). In this case, the higher the higher order differential is, the closer the temperature E becomes to the characteristic temperature G, and finally the temperature E converges to the characteristic temperature G.

【0011】なお、実際に測定を行なった場合、測定開
始時から特性温度Gに至る間の冷却曲線Aには凹凸が生
じ、特性温度Gより高温側でも高次導関数には小さな極
値がある(図3,4参照)。このため、実際の測定にお
いては、冷却速度曲線Bのピークに対応する部分におけ
る最初の極値を高次導関数の最初の極値とする。
When the actual measurement is carried out, the cooling curve A from the start of measurement to the characteristic temperature G becomes uneven, and even if the temperature is higher than the characteristic temperature G, a small extreme value is present in the higher derivative. Yes (see FIGS. 3 and 4). Therefore, in the actual measurement, the first extreme value in the portion corresponding to the peak of the cooling rate curve B is the first extreme value of the higher derivative.

【0012】本発明は、熱処理油の冷却曲線を微分した
場合必ず極値が現われること、かつこの極値が最初に現
われた時の試験片温度と測定開始時の試験片温度とから
定まる勾配を平行移動すると必ず特性温度と実質的に同
じ箇所で冷却曲線と接すること、したがってこの接点に
おける試験片温度を特性温度と定義することにより個人
差なく熱処理油の特性温度を検出することができること
を本発明者が知見した結果なされたものである。
According to the present invention, an extreme value always appears when the cooling curve of heat treated oil is differentiated, and a gradient determined from the test piece temperature at the time when this extreme value first appears and the test piece temperature at the start of measurement. It is necessary to detect the characteristic temperature of the heat-treated oil without individual differences by defining the temperature of the test piece at this contact point as the characteristic temperature when it moves in parallel with the cooling curve at the substantially same point as the characteristic temperature. This was made as a result of the findings of the inventor.

【0013】[0013]

【実施例】次に、実施例により本発明を具体的に示す
が、本発明は下記実施例に限定されるものではない。図
2は本発明の一実施例に係る熱処理油冷却試験器を示す
もので、この装置は測定部1と比較・演算部2とからな
る。ここで、上記試験器ユニット1は、図5の試験片、
加熱炉、試験片自動昇降装置、熱処理油等を有する図6
に示したものと同様の試験器ユニット3(ただし記録計
は設けられていない)と、試験器ユニット3にスタート
信号を与えるとともに、熱電対の起電力を増幅して比較
・演算部2に送るアンプユニット4とから構成されてい
る。また、比較・演算部2は、ハードディスク、キーボ
ード、ディスプレイ、プリンタ等を有するパーソナルコ
ンピュータユニット5によって構成されている。
EXAMPLES Next, the present invention will be illustrated concretely by examples, but the present invention is not limited to the following examples. FIG. 2 shows a heat treatment oil cooling tester according to an embodiment of the present invention, and this apparatus comprises a measuring unit 1 and a comparing / calculating unit 2. Here, the tester unit 1 is the test piece of FIG.
FIG. 6 having a heating furnace, a test piece automatic lifting device, heat treatment oil, etc.
A tester unit 3 similar to that shown in (but no recorder is provided) and a start signal to the tester unit 3 are amplified, and the electromotive force of the thermocouple is amplified and sent to the comparison / calculation unit 2. It is composed of an amplifier unit 4. The comparison / arithmetic unit 2 is composed of a personal computer unit 5 having a hard disk, a keyboard, a display, a printer and the like.

【0014】本例の熱処理油冷却試験器は、試験器ユニ
ット3でJISに規定された熱処理油の冷却試験を自動
的に行ない、その結果をアンプユニット4を介してパー
ソナルコンピュータユニット5に送り、パーソナルコン
ピュータユニット5でデータ処理を行なうものである。
The heat treatment oil cooling tester of this example automatically conducts a cooling test of heat treatment oil specified in JIS in the tester unit 3, and sends the result to the personal computer unit 5 via the amplifier unit 4, Data processing is performed by the personal computer unit 5.

【0015】次に測定例を示す。測定例1 前記実施例の試験器を用い、JIS−K2242に規定
されたフタル酸ジオクチル含有標準液の冷却試験を行な
った。結果(プリンタ出力)を図3及び表1に示す。こ
こで、図3は試験片温度(冷却曲線)、冷却速度及び冷
却加速度を示すグラフ、表1は冷却時間(Time、0.05秒
間隔)、試験片温度(Temp.)、冷却速度(Vel.)及び
冷却加速度(Accel.)の数値出力の一部である。
Next, a measurement example will be shown. Measurement Example 1 A cooling test of a dioctyl phthalate-containing standard solution specified in JIS-K2242 was conducted using the tester of the above-mentioned example. The results (printer output) are shown in FIG. 3 and Table 1. Here, FIG. 3 is a graph showing test piece temperature (cooling curve), cooling rate and cooling acceleration, and Table 1 is cooling time (Time, 0.05 second interval), test piece temperature (Temp.), Cooling rate (Vel.). And a part of numerical output of cooling acceleration (Accel.).

【0016】[0016]

【表1】 [Table 1]

【0017】本例において、特性温度は図3のグラフ上
方に507.1℃と表示される(図示せず)。これは、
次のような演算、比較結果によるものである(表1参
照)。すなわち、冷却速度の極値Cは−306.0℃/
秒、この時の冷却時間Dは3.95秒、試験片温度Eは
474.1℃であるから、測定開始時から冷却時間Dま
での試験片温度の平均変化率は (474.1−800)/3.95=−82.4℃/秒 となる。この平均変化率と刻々の冷却速度とを測定開始
時間にさかのぼる方向で順次比較し、冷却速度と平均変
化率(−82.4℃/秒)との差が最小となる点の試験
片温度を熱処理油の特性温度G(507.1℃)とす
る。
In this example, the characteristic temperature is displayed as 507.1 ° C. above the graph of FIG. 3 (not shown). this is,
This is based on the following calculation and comparison results (see Table 1). That is, the extreme value C of the cooling rate is −306.0 ° C. /
Since the cooling time D at this time is 3.95 seconds and the test piece temperature E is 474.1 ° C., the average rate of change of the test piece temperature from the start of measurement to the cooling time D is (474.1-800 ) /3.95=−82.4° C./sec. This average rate of change and the cooling rate at every moment are sequentially compared in the direction going back to the measurement start time, and the temperature of the test piece at the point where the difference between the cooling rate and the average rate of change (-82.4 ° C / sec) is the minimum is determined. The characteristic temperature G (507.1 ° C.) of the heat-treated oil is used.

【0018】また、2階微分を行なって得られた冷却加
速度(2次導関数)を用いて特性温度を検出する場合、
測定開始時から冷却加速度の最初の極値I(図3及び表
1参照)が現われた時D’までの試験片温度の平均変化
率[(489.4−800)/3.90=−79.6℃
/秒]を演算し、この平均変化率と刻々の冷却速度とを
測定開始時間にさかのぼる方向で順次比較し、冷却速度
と平均変化率との差が最小となる点の試験片温度を熱処
理油の特性温度G’(507.1℃)とする。
When the characteristic temperature is detected by using the cooling acceleration (second derivative) obtained by performing the second derivative,
Average rate of change of test piece temperature [(489.4-800) /3.90=-79] from the start of measurement to the time D'when the first extreme value I (see FIG. 3 and Table 1) of the cooling acceleration appears. 0.6 ° C
/ Sec] is calculated, and this average rate of change and the instantaneous cooling rate are sequentially compared in the direction going back to the measurement start time, and the temperature of the test piece at the point where the difference between the cooling rate and the average rate of change is minimized Characteristic temperature G ′ (507.1 ° C.).

【0019】測定例2 実施例の試験器を用い、市販熱処理油の冷却試験を行な
った。結果(プリンタ出力)を図4及び表2に示す。図
4及び表2はそれぞれ図3及び表1と同様のものを示
す。
Measurement Example 2 A cooling test of a commercially available heat-treated oil was conducted using the tester of the example. The results (printer output) are shown in FIG. 4 and Table 2. FIG. 4 and Table 2 show the same as FIG. 3 and Table 1, respectively.

【0020】[0020]

【表2】 [Table 2]

【0021】本例において、特性温度は図4のグラフ上
方に609.3℃と表示される(図示せず)。これは、
次のような演算、比較結果によるものである(表2参
照)。すなわち、冷却速度の極値Cは−533.5℃/
秒であり、この時の冷却時間Dは2.75秒、試験片温
度Eは520.0℃であるから、測定開始時から冷却時
間Dまでの試験片温度の平均変化率は (520.0−800)/2.75=−101.8℃/
秒 となる。この平均変化率と刻々の冷却速度とを測定開始
時間にさかのぼる方向で順次比較し、冷却速度と平均変
化率(−101.8℃/秒)との差が最小となる点の試
験片温度を熱処理油の特性温度G(609.3℃)とす
る。
In the present example, the characteristic temperature is displayed as 609.3 ° C. above the graph of FIG. 4 (not shown). this is,
This is based on the following calculation and comparison results (see Table 2). That is, the extreme value C of the cooling rate is −533.5 ° C. /
Since the cooling time D at this time is 2.75 seconds and the test piece temperature E is 520.0 ° C., the average change rate of the test piece temperature from the start of measurement to the cooling time D is (520.0 −800) /2.75=−101.8° C. /
Seconds. This average rate of change and the momentary cooling rate are sequentially compared in the direction going back to the measurement start time, and the temperature of the test piece at the point where the difference between the cooling rate and the average rate of change (-101.8 ° C / sec) is the minimum is determined. The characteristic temperature G (609.3 ° C.) of the heat-treated oil is used.

【0022】また、2階微分を行なって得られた冷却加
速度(2次導関数)を用いて特性温度を検出する場合、
測定開始時から冷却加速度の最初の極値I(図4及び表
2参照)が現われた時D’までの試験片温度の平均変化
率[(571.7−800)/2.65=−86.2℃
/秒]を演算し、この平均変化率と刻々の冷却速度とを
測定開始時間にさかのぼる方向で順次比較し、冷却速度
と平均変化率との差が最小となる点の試験片温度を熱処
理油の特性温度G’(614.2℃)とする。
When the characteristic temperature is detected by using the cooling acceleration (second derivative) obtained by performing the second derivative,
Average change rate of test piece temperature [(571.7-800) /2.65=-86] from the start of measurement to the time D'when the first extreme value I (see FIG. 4 and Table 2) of the cooling acceleration appears. 2 ° C
/ Sec] is calculated, and this average rate of change and the instantaneous cooling rate are sequentially compared in the direction going back to the measurement start time, and the temperature of the test piece at the point where the difference between the cooling rate and the average rate of change is minimized Characteristic temperature G ′ (614.2 ° C.).

【0023】測定例3 実施例の試験器を用い、同一の熱処理油を試料として2
回の冷却試験を行なった。結果(プリンタ出力)を表
3,4に示す。表3,4は表1と同様のものを示す。
Measurement Example 3 Using the tester of the example, the same heat-treated oil was used as a sample.
One cooling test was performed. The results (printer output) are shown in Tables 3 and 4. Tables 3 and 4 show the same as Table 1.

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】本例において、冷却時間Dを決定するのに
冷却速度を用いて特性温度を求めた結果、1回目の特性
温度Gは607.8℃、2回目の特性温度Gは608.
8℃であり、繰り返し精度は1.0℃であった。
In this example, as a result of obtaining the characteristic temperature by using the cooling rate to determine the cooling time D, the first characteristic temperature G is 607.8 ° C. and the second characteristic temperature G is 608.
The temperature was 8 ° C and the repeatability was 1.0 ° C.

【0027】なお、上記測定例1〜3においては、冷却
時間DあるいはD’までの試験片温度の平均変化率と冷
却速度との差が最小となる試験片温度を特性温度Gある
いはG’としている。その理由は、この手法でJISに
規定された精度を十分に確保できるからであるが、必要
によっては比例配分等の手法によって平均変化率と試験
片の冷却速度が完全に一致するときの試験片温度を特性
温度とするようにしてもよい。
In the above measurement examples 1 to 3, the test piece temperature at which the difference between the average rate of change of the test piece temperature and the cooling rate until the cooling time D or D'is the minimum is defined as the characteristic temperature G or G '. There is. The reason is that the accuracy specified in JIS can be sufficiently secured by this method, but if necessary, the test piece when the average rate of change and the cooling rate of the test piece completely match by a method such as proportional distribution. The temperature may be the characteristic temperature.

【0028】[0028]

【発明の効果】以上のように、本発明によれば、目視に
よる誤差を排除して熱処理油の特性温度を精度良く測定
することができる。
As described above, according to the present invention, it is possible to accurately measure the characteristic temperature of heat-treated oil by eliminating visual errors.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の概念を説明するグラフである。FIG. 1 is a graph illustrating the concept of the present invention.

【図2】本発明熱処理油冷却試験器の一実施例を示す構
成図である。
FIG. 2 is a configuration diagram showing an embodiment of a heat treatment oil cooling tester of the present invention.

【図3】測定例1で得られたグラフである。FIG. 3 is a graph obtained in Measurement Example 1.

【図4】測定例2で得られたグラフである。FIG. 4 is a graph obtained in measurement example 2.

【図5】熱処理油の冷却試験に用いられる試験片の概略
図である。
FIG. 5 is a schematic view of a test piece used for a cooling test of heat-treated oil.

【図6】熱処理油冷却試験に用いられる装置の概略図で
ある。
FIG. 6 is a schematic view of an apparatus used for a heat treatment oil cooling test.

【図7】熱処理油冷却試験で得られた冷却曲線を示すグ
ラフである。
FIG. 7 is a graph showing a cooling curve obtained in a heat treatment oil cooling test.

【符号の説明】[Explanation of symbols]

1 測定部 2 演算・比較部 A 冷却曲線 B 冷却速度曲線 C 冷却速度の極大値 D 冷却速度の極大値が現われた冷却時間 E 冷却時間Dにおける試験片温度 F 測定開始時から冷却時間Dまでの試験片温度の平均
変化率 G 熱処理油の特性温度 G’熱処理油の特性温度
1 Measurement part 2 Calculation / comparison part A Cooling curve B Cooling rate curve C Maximum value of cooling rate D Cooling time at which maximum value of cooling rate appears E Test piece temperature at cooling time D From measurement start to cooling time D Average rate of change in specimen temperature G Characteristic temperature of heat treated oil G'Characteristic temperature of heat treated oil

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 加熱した試験片を熱処理油で冷却すると
きの試験片温度の経時変化を測定する測定部と、試験片
温度の経時変化の1階微分を行なって1次導関数を算出
し、測定開始時から1次導関数の極値が現われる時まで
の試験片温度の平均変化率を演算し、この平均変化率と
前記1次導関数とを比較して両者が実質的に等しくなる
時の試験片温度を熱処理油の特性温度として出力する演
算・比較部とを具備することを特徴とする熱処理油冷却
試験器。
1. A first-order derivative is calculated by performing a first-order differentiation of the time-dependent change of the temperature of the test piece when measuring the time-dependent change of the temperature of the test piece when the heated test piece is cooled with heat-treated oil. The average change rate of the temperature of the test piece from the start of the measurement to the time when the extreme value of the first derivative appears is calculated, and the average change rate is compared with the first derivative to make both substantially equal. A heat treatment oil cooling tester, comprising: a calculation / comparison unit that outputs the test piece temperature as a characteristic temperature of heat treatment oil.
【請求項2】 加熱した試験片を熱処理油で冷却すると
きの試験片温度の経時変化を検出する測定部と、試験片
の温度変化の1階微分及び高階微分を行なって1次導関
数及び高次導関数を算出し、測定開始時から高次導関数
の最初の極値が現われる時までの試験片温度の平均変化
率を演算し、この平均変化率と前記1次導関数とを比較
して両者が実質的に等しくなる時の試験片温度を熱処理
油の特性温度として出力する演算・比較部とを具備する
ことを特徴とする熱処理油冷却試験器。
2. A measuring unit for detecting a time-dependent change in the temperature of a test piece when a heated test piece is cooled with a heat-treated oil, and a first derivative and a higher derivative of the temperature change of the test piece to perform a first derivative and Calculate the high-order derivative, calculate the average rate of change of the specimen temperature from the start of measurement to the time when the first extreme value of the high-order derivative appears, and compare this average rate of change with the first derivative. Then, the heat treatment oil cooling tester is provided with a calculation / comparison section that outputs the test piece temperature when the two become substantially equal as the characteristic temperature of the heat treatment oil.
JP9179092A 1992-03-17 1992-03-17 Heat treatment oil cooling tester Pending JPH05264487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9179092A JPH05264487A (en) 1992-03-17 1992-03-17 Heat treatment oil cooling tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9179092A JPH05264487A (en) 1992-03-17 1992-03-17 Heat treatment oil cooling tester

Publications (1)

Publication Number Publication Date
JPH05264487A true JPH05264487A (en) 1993-10-12

Family

ID=14036406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9179092A Pending JPH05264487A (en) 1992-03-17 1992-03-17 Heat treatment oil cooling tester

Country Status (1)

Country Link
JP (1) JPH05264487A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7841766B2 (en) * 2005-03-22 2010-11-30 Idemitsu Kosan Co., Ltd. Metal surface temperature measuring instrument
JP2014167487A (en) * 2014-05-07 2014-09-11 Neturen Co Ltd Cooling liquid management method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7841766B2 (en) * 2005-03-22 2010-11-30 Idemitsu Kosan Co., Ltd. Metal surface temperature measuring instrument
JP2014167487A (en) * 2014-05-07 2014-09-11 Neturen Co Ltd Cooling liquid management method

Similar Documents

Publication Publication Date Title
CA1278603C (en) Non destructive testing for creep damage of a ferromagnetic workpiece
JP2011247718A (en) Flaw detection method and flaw detection device
Mates et al. A pulse-heated Kolsky bar technique for measuring the flow stress of metals at high loading and heating rates
TWI394940B (en) Metal surface temperature measuring device
JP4096034B2 (en) Creep test method
JPH05264487A (en) Heat treatment oil cooling tester
CA1302122C (en) Method of predicting remaining lifetime of metal material
Shi et al. Experimental study of the relationships between the spectral emissivity of brass and the temperature in the oxidizing environment
CN114485981A (en) Temperature measurement method and temperature measurement device based on diamond first-order Raman spectrum
JP2578994B2 (en) Hot displacement-load measurement system
JP3728286B2 (en) Nondestructive high temperature creep damage evaluation method
Turner et al. Application of digital image analysis to strain measurement at elevated temperature
JP2004309355A (en) Hardening depth measuring apparatus of steel material
Ebert et al. Intercomparison of thermophysical property measurements on iron and steels
JP5055851B2 (en) Local heat transfer coefficient determination program and local heat transfer coefficient determination device
WO2003087885A2 (en) Apparatus and method for true temperature estimation
Douellou et al. Fatigue characterization of 3D-printed maraging steel by infrared thermography
JP2977373B2 (en) Optical fiber temperature distribution sensor
JPH02311748A (en) Method for measuring heat change
CN112198187B (en) Method for synchronously measuring radial strain based on longitudinal strain measurement thermal expansion instrument
De Finis et al. Potentialities of thermal signal analysis approach for a rapid mechanical characterisation of high diffusivity materials
JPH07128328A (en) Method for predicting deterioration and residual life of metallic material
JPH06331447A (en) Method and apparatus for evaluating precision of radiation thermometer
JPH1073548A (en) Induction heating flaw detection method and flaw detector
JP2002181679A (en) Elevated temperature hardness meter