JPH052633B2 - - Google Patents

Info

Publication number
JPH052633B2
JPH052633B2 JP59023486A JP2348684A JPH052633B2 JP H052633 B2 JPH052633 B2 JP H052633B2 JP 59023486 A JP59023486 A JP 59023486A JP 2348684 A JP2348684 A JP 2348684A JP H052633 B2 JPH052633 B2 JP H052633B2
Authority
JP
Japan
Prior art keywords
water
weight
water absorption
monomer
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59023486A
Other languages
Japanese (ja)
Other versions
JPS60166251A (en
Inventor
Tadanobu Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aron Kasei Co Ltd
Original Assignee
Aron Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aron Kasei Co Ltd filed Critical Aron Kasei Co Ltd
Priority to JP59023486A priority Critical patent/JPS60166251A/en
Publication of JPS60166251A publication Critical patent/JPS60166251A/en
Publication of JPH052633B2 publication Critical patent/JPH052633B2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02P60/216

Landscapes

  • Cultivation Of Plants (AREA)
  • Hydroponics (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、植物栽培用に使用される保水性に優
れた複合材料に関するものである。最近、家庭、
職場において簡便に植物栽培ができる、水耕栽培
が多く取入れられるようになつた。これは平地面
積の乏しい我国の都市部では、住宅の高層化又は
非建築物面積の狭小化は避けられず、室内に少し
でも、植物を取入れたいとする都会人の願望のあ
らわれと考えられる。又、職場ではオフイスコン
ピユーター、パーソナルコンピユーター、ワード
プロセツサー等の導入で事務合理化が急速に進
み、神経を集中する場面が多くなるため、逆に神
経を安めるような環境面の配慮が必要となつたか
らと考えられる。このような水耕栽培には、現
在、焼結で多孔質にした粒状品が用いられている
が、吸水性、保水性の面では吸水性樹脂に及ば
ず、空気の乾燥する冬場には保水性が悪いため給
水を忘れると、植物を枯らすこともあつた。この
ため冬場には給水頻度を増す必要がありより簡便
な保水材料が求められていた。本発明は、上記、
従来の水耕栽培に用いられている保水材料の保水
性を向上させることを目的とするものであり、重
合性単量体と、該単量体に対して0.01〜10重量%
の他の架橋性単量体との混合単量体水溶液を、粒
状の多孔性無機質材料に含浸し重合せしめてなる
保水性複合材料に関するものである。これによれ
ば吸水性、保水性に優れた吸水性樹脂を複合化し
たものであるので無機質単独の場合よりも水耕栽
培に使用した場合、給水頻度を少なくでき、室内
インテリアとしての水耕栽培による植物の価値を
更に高めることができる。本発明を更に詳しく説
明すると、本発明の重合性単量体としてはアクリ
ル酸、アクリル酸塩(例えばアンモニウム塩、ナ
トリウム塩、カリウム塩、リチウム塩等)、アク
リルアミドを主成分とするが、メタアクリル酸、
イタコン酸、マレイン酸およびその塩類:イタコ
ン酸、マレイン酸、フマール酸等のジカルボン酸
類の低級アルチル又は低級アルコキシエステル
類:ビニルスルホン酸、アクリル酸メチルエステ
ル、エチルエステル等:アクリル酸ヒドロキシエ
チルエステル:ポリエチレングリコールモノアク
リレート等:の1種又は2種以上の併用も可能で
ある。更に上記重合性単量体を使用して、重合反
応で保水性複合材料を製造する際に、重合性単量
体100重量部に対して、他の架橋性単量体を0.01
〜10重量部併用する必要がある。この架橋性単量
体は、重合時に架橋構造を与え保水性向上および
保水時の粘着防止のために併用が必須のものであ
る。しかし架橋性単量体の使用量が10重量部を越
えると架橋密度が大きくなりすぎ、吸水時の体積
膨張が抑えられるため吸水能力は低下するので繰
返し使用する場合に問題がある。又0.01重量部未
満の使用量では保水性低下および粘着性発生の問
題が生じる。このような架橋性単量体としては、
アクリル酸カルシウム、アクリル酸マグネシウム
等のアクリル酸の多価金属塩:N,N′−メチレ
ンビスアクリルアミド:エチレングリコールジア
クリレート:エチレングリコールジメタアクリレ
ート、ポリエチレングリコールジアクリレート、
ポリエチレングリコールジメタアクリレート等の
グリコール類のジアクリレート又はジメタアクリ
レート:トリメチロールプロパントリアクリレー
ト、ペントエリスリトールトリアクリレート等、
ポリオールのアクリレート類又はメタアクリレー
ト類:エチレングリコールジグリシジルエーテ
ル、ポリエチレングリコールジグリシジルエーテ
ル等のジグシジルエーテル類:エチレングリコー
ルエポキシアクリレート、ジエチレングリコール
エポキシアクリレート等のエポキシアクリレート
類:等の重合時に架橋構造を与えることのできる
ものの中から選択された1種又は2種以上を用い
ることができる。粒状の多孔性無機質材料として
軽石、火山礫等の天然のものやレンガ、パーライ
ト、発泡スラツジ、多孔質セラミツク等の人工の
ものが用いられる。上記、重合性単量体および架
橋性単量体を20重量%以上の濃度の水溶液とし、
N2ガスで溶存酸素を除去し多孔性無機質材料に
含浸させる。この場合、含浸法としては、混合単
量体水溶液を多孔性無機質材料に散布するか、又
は混合単量体水溶液に多孔性無機質材料を浸漬す
る方法が望ましい。又、この場合、多孔性無機質
材料の吸水率以下に混合単量体水溶液を含浸させ
ることが望ましい。これは多孔内で単量体を重合
させるためで吸水率以上にすると表面でも重合が
進行し粒子同士が接着し重合後の取扱いが困難と
なる。重合反応では重合に関与するものを全て
N2ガスで置換しておき重合反応を阻害しないよ
うにしておくことは勿論の事である。次に重合開
始剤を添加して、重合反応を開始させるが、開始
剤は通常の水溶性ラジカル発生剤である過硫酸ア
ンモニウム、過硫酸カリウム、過酸化水素、t−
ブチルハイドロパーオキサイド等が用いられ、又
これらに亜硫酸水素ナトリウム、−アスコルビ
ン酸、第1鉄塩等の還元剤とを組合せるレドツク
ス系開始剤も用いられる。重合開始剤の添加方法
としては、重合性単量体を含有する多孔性無機質
材料に重合開始剤又は重合開始剤、還元剤の水溶
液を散布する方法が好ましい。又、均一に散布し
て重合開始剤をムラなく添加するため、重合開始
剤水溶液を霧状にして添加するのが特に好まし
い。重合開始剤水溶液を霧状にするには、超音波
振動子による超音波式装置や遠心力を利用した回
転霧化遠心噴霧装置やスプレーノズルが用いられ
る。重合温度としては、特に温度調節は必要とし
ないが5℃より低くなると、重合開始が不確実に
なり易いので重合開始温度を5℃以上とする。重
合反応は数分から数時間の間で完結し、得られた
含水状態のままで保水性複合材料として用いるこ
とも可能だし、又加熱乾燥した後、吸水させ保水
材料として用いることも可能である。かくして得
られた保水性複合材料は、保水性に優れるため、
水耕栽培に用いられると、給水頻度を減らすこと
ができ、より簡便に室内で植物栽培が楽しめるた
め、室内インテリアとしての水耕栽培植物の価値
を更に高めるものである。 以下、実施例に基づき本発明を詳細に説明す
る。 実施例 1 アクリル酸35重量部(以下、重量を省略する)、
アクリル酸ナトリウム65部、ジエチレングリコー
ルエポキシアクリレート4部からなる単量体混合
物を水で30%に希釈し、N2ガスを吹込みN2置換
した。以下重合の完了まではN2雰囲気に保ち、
重合が阻害されるのを防止した。市販の人工軽量
骨材(粒径:5〜10mm;容積重量0.7〜0.8Kg/
;飽和吸水率:15〜17%)に単量体混合物の水
溶液を散布吸収させたが吸水率は10〜12%とし
た。次に0.4%過硫酸アンモニウム水溶液、0.2%
亜硫酸水素ナトリウム水溶液をそれぞれ超音波霧
化装置で霧化した雰囲気に先の単量体混合物の水
溶液を含浸させた人工軽量骨材を10秒間づつ保持
し、重合反応を開始させた。更に同じくN2雰囲
気中で1時間保持し重合反応を完結させたが、重
合温度は30〜70℃であつた。この保水性複合材料
の保水率を測定すると、表.1のような結果とな
り優れた保水性を示した。又、植木鉢に充填して
観葉植物であるポトスを植えて人工軽量骨材の場
合と比較検討したが給水頻度を減らすことができ
た。 なお、飽和吸水率、吸水率、保水率は下記の式
で算出した。 (1) 飽和吸水率(A) A=サンプルの飽和吸水後の重量−サン
プルの乾燥重量/サンプルの乾燥重量×100(%) サンプルの飽和吸水後の重量:サンプルを水に
30分間浸漬後、金網上で5分間水切りした後
の重量 (2) 吸水率(B) B=サンプルの吸水後の重量−サンプル
の乾燥重量/サンプルの乾燥重量×100(%) (3) 保水率(C) C=サンプルの吸水後の重量−サンプル
の室温放置後の重量/サンプルの吸水後の重量−サンプ
ルの乾燥重量×100(%) サンプルの室温放置後の重量:吸水後のサンプ
ルを25±1℃、60%RHの雰囲気に50時間放
置後の重量
The present invention relates to a composite material with excellent water retention properties used for plant cultivation. Recently, family,
Hydroponic cultivation, which allows plants to be easily cultivated in the workplace, has become increasingly popular. This is considered to be an expression of the desire of urban people to incorporate even a small amount of plants indoors, as it is unavoidable for homes to become high-rise or for non-building areas to become smaller in Japan's urban areas, where flat land is scarce. In addition, in the workplace, office work is being streamlined rapidly with the introduction of office computers, personal computers, word processors, etc., and there are many situations where people need to concentrate on their nerves. This is thought to be due to the summer weather. Currently, granular products made porous by sintering are used for this type of hydroponic cultivation, but they are not as good as water-absorbing resins in terms of water absorption and water retention, and they are difficult to retain water in winter when the air is dry. Because of its poor quality, if you forgot to water it, it could cause your plants to wither. For this reason, it is necessary to increase the frequency of water supply in winter, and a simpler water-retaining material is required. The present invention provides the above-mentioned
The purpose is to improve the water retention properties of water retention materials used in conventional hydroponic cultivation, and it contains a polymerizable monomer and 0.01 to 10% by weight of the monomer.
The present invention relates to a water-retaining composite material obtained by impregnating a granular porous inorganic material with an aqueous solution of a mixed monomer with other crosslinkable monomers and polymerizing the same. According to this, since it is a composite of water-absorbing resin with excellent water absorption and water retention properties, when used for hydroponic cultivation compared to the case of inorganic materials alone, water supply frequency can be reduced, making it suitable for hydroponic cultivation as indoor interior decoration. can further increase the value of plants. To explain the present invention in more detail, the main components of the polymerizable monomer of the present invention are acrylic acid, acrylates (for example, ammonium salt, sodium salt, potassium salt, lithium salt, etc.), acrylamide, and methacrylic acid. acid,
Itaconic acid, maleic acid, and their salts: Lower alkyl or lower alkoxy esters of dicarboxylic acids such as itaconic acid, maleic acid, and fumaric acid: Vinyl sulfonic acid, acrylic acid methyl ester, ethyl ester, etc.: Acrylic acid hydroxyethyl ester: Polyethylene Glycol monoacrylate etc.: It is also possible to use one type or a combination of two or more types. Furthermore, when producing a water-retentive composite material through a polymerization reaction using the above polymerizable monomer, 0.01 parts by weight of other crosslinkable monomers are added to 100 parts by weight of the polymerizable monomer.
It is necessary to use ~10 parts by weight together. This crosslinkable monomer is essential to be used in combination to provide a crosslinked structure during polymerization, improve water retention, and prevent adhesion during water retention. However, if the amount of the crosslinkable monomer used exceeds 10 parts by weight, the crosslinking density becomes too high and the volumetric expansion upon absorption of water is suppressed, resulting in a decrease in water absorption capacity, which poses a problem when used repeatedly. In addition, if the amount used is less than 0.01 part by weight, there will be problems of decreased water retention and generation of stickiness. Such crosslinkable monomers include:
Polyvalent metal salts of acrylic acid such as calcium acrylate and magnesium acrylate: N,N'-methylenebisacrylamide: ethylene glycol diacrylate: ethylene glycol dimethacrylate, polyethylene glycol diacrylate,
Glycol diacrylate or dimethacrylate such as polyethylene glycol dimethacrylate: trimethylolpropane triacrylate, pentoerythritol triacrylate, etc.
Acrylates or methacrylates of polyols: Digcidyl ethers such as ethylene glycol diglycidyl ether and polyethylene glycol diglycidyl ether; Epoxy acrylates such as ethylene glycol epoxy acrylate and diethylene glycol epoxy acrylate: Providing a crosslinked structure during polymerization. One or more types selected from those capable of can be used. As the granular porous inorganic material, natural materials such as pumice and volcanic lapilli, and artificial materials such as brick, perlite, foamed sludge, and porous ceramics are used. The above polymerizable monomer and crosslinkable monomer are made into an aqueous solution with a concentration of 20% by weight or more,
Remove dissolved oxygen with N2 gas and impregnate the porous inorganic material. In this case, the impregnation method is preferably a method in which a mixed monomer aqueous solution is sprinkled on the porous inorganic material, or a method in which the porous inorganic material is immersed in the mixed monomer aqueous solution. Further, in this case, it is desirable to impregnate the mixed monomer aqueous solution to a water absorption rate below the water absorption rate of the porous inorganic material. This is because monomers are polymerized within the pores, and if the water absorption rate is exceeded, polymerization will proceed on the surface as well, causing particles to adhere to each other, making handling after polymerization difficult. In a polymerization reaction, everything involved in polymerization is
It goes without saying that the atmosphere should be replaced with N 2 gas so as not to inhibit the polymerization reaction. Next, a polymerization initiator is added to start the polymerization reaction.
Butyl hydroperoxide and the like are used, and redox initiators in which these are combined with reducing agents such as sodium bisulfite, -ascorbic acid, and ferrous salts are also used. A preferable method for adding the polymerization initiator is to spray the polymerization initiator or an aqueous solution of the polymerization initiator and reducing agent onto the porous inorganic material containing the polymerizable monomer. Furthermore, in order to uniformly disperse and add the polymerization initiator evenly, it is particularly preferable to add the aqueous polymerization initiator solution in the form of a mist. To make the aqueous polymerization initiator solution into a mist, an ultrasonic device using an ultrasonic vibrator, a rotary atomization centrifugal spray device using centrifugal force, or a spray nozzle is used. Regarding the polymerization temperature, no particular temperature control is required, but if it is lower than 5°C, the initiation of polymerization tends to be uncertain, so the polymerization initiation temperature is set to 5°C or higher. The polymerization reaction is completed within a few minutes to several hours, and it is possible to use the obtained water-containing state as a water-retaining composite material, or it is possible to absorb water after drying by heating and use it as a water-retaining material. The water-retaining composite material thus obtained has excellent water-retaining properties, so
When used in hydroponic cultivation, the frequency of water supply can be reduced and it is easier to enjoy growing plants indoors, further increasing the value of hydroponic plants as indoor interiors. Hereinafter, the present invention will be explained in detail based on Examples. Example 1 35 parts by weight of acrylic acid (weight is omitted hereafter),
A monomer mixture consisting of 65 parts of sodium acrylate and 4 parts of diethylene glycol epoxy acrylate was diluted to 30% with water, and the mixture was replaced with N2 by blowing in N2 gas. The N2 atmosphere is maintained until the completion of polymerization.
This prevented polymerization from being inhibited. Commercially available artificial lightweight aggregate (particle size: 5-10mm; volumetric weight 0.7-0.8Kg/
; saturated water absorption rate: 15-17%), an aqueous solution of the monomer mixture was sprayed and absorbed, but the water absorption rate was set at 10-12%. Next, 0.4% ammonium persulfate aqueous solution, 0.2%
The artificial lightweight aggregate impregnated with the aqueous solution of the monomer mixture was held for 10 seconds in an atmosphere in which an aqueous sodium bisulfite solution was atomized using an ultrasonic atomizer to initiate the polymerization reaction. Furthermore, the polymerization reaction was completed by holding the same in the same N 2 atmosphere for 1 hour, but the polymerization temperature was 30 to 70°C. When the water retention rate of this water-retaining composite material was measured, Table 1. The results were as shown in No. 1, indicating excellent water retention. In addition, we compared it with artificial lightweight aggregate by planting pothos, an ornamental plant, in flowerpots, and were able to reduce the frequency of watering. Note that the saturated water absorption rate, water absorption rate, and water retention rate were calculated using the following formulas. (1) Saturated water absorption rate (A) A = Weight of sample after saturated water absorption - Dry weight of sample / Dry weight of sample x 100 (%) Weight of sample after saturated water absorption: Sample in water
Weight after soaking for 30 minutes and draining for 5 minutes on a wire mesh (2) Water absorption rate (B) B = Weight of sample after water absorption - Dry weight of sample / Dry weight of sample x 100 (%) (3) Water retention Rate (C) C = Weight of sample after water absorption - Weight of sample after being left at room temperature / Weight of sample after water absorption - Dry weight of sample x 100 (%) Weight of sample after being left at room temperature: Weight of sample after being left at room temperature Weight after being left in an atmosphere of 25±1℃ and 60%RH for 50 hours

【表】 給水間隔は植えたポトスの水気がなくなり生気
がなくなるまでの期間をみた。 実施例 2〜5 ジエチレングリコールエポキシアクリレートを
6部、8部、10部、12部と増やす以外は、実施
例.1と同様にして保水性複合材料の製造および
吸水性、保水性の測定をすると、表.2の結果を
得た。架橋性単量体が12部のため大巾な吸水性の
低下が認められ、これは架橋密度が大きくなつた
ためと考えられる。
[Table] The watering interval was determined based on the period until the planted pothos loses its moisture and loses its vitality. Examples 2-5 Same as Example except that diethylene glycol epoxy acrylate was increased to 6 parts, 8 parts, 10 parts, and 12 parts. When a water-retaining composite material was manufactured and its water absorption and water retention properties were measured in the same manner as in 1, Table. 2 results were obtained. Since the amount of crosslinking monomer was 12 parts, a significant decrease in water absorption was observed, which is thought to be due to the increased crosslinking density.

【表】 実施例 6 アクリル酸35部、アクリル酸ナトリウム55部、
アクリルアミド10部、N,N′−メチレンピスア
クリルアミド0.05部からなる単量体混合物を水で
35%に希釈し、N2ガスで置換する。粒状のパー
ライト(粒径:7〜12mm;容積重量:0.05Kg/
;飽和吸水率:70%)に単量体混合物を散布吸
収させた。吸水率は約20%とした。次に0.4%過
硫酸アンモニウム水溶液、0.2%亜硫酸水素ナト
リウム水溶液をそれぞれ超音波霧化装置で霧化し
た雰囲気に先の単量体混合物を含有させたパーラ
イトを15秒間づつ保持し、重合反応を開始させ
た。更に同じくN2雰囲気中で90分間保持し、重
合を完結させて保水性複合材料を製造した。次に
実施例.1と同様の保水性試験を実施すると、
表.3の結果となり、優れた保水性を示した。
[Table] Example 6 35 parts of acrylic acid, 55 parts of sodium acrylate,
A monomer mixture consisting of 10 parts of acrylamide and 0.05 part of N,N'-methylenepisacrylamide was mixed with water.
Dilute to 35% and replace with N2 gas. Granular pearlite (particle size: 7-12mm; volumetric weight: 0.05Kg/
; saturated water absorption rate: 70%) by scattering and absorbing the monomer mixture. The water absorption rate was approximately 20%. Next, the pearlite containing the monomer mixture was held for 15 seconds in an atmosphere in which 0.4% ammonium persulfate aqueous solution and 0.2% sodium bisulfite aqueous solution were atomized using an ultrasonic atomizer to initiate the polymerization reaction. Ta. Furthermore, the mixture was kept in the same N 2 atmosphere for 90 minutes to complete polymerization and produce a water-retentive composite material. Next is an example. When conducting the same water retention test as in 1,
table. The result was 3, indicating excellent water retention.

【表】 実施例 7〜8 N,N′−メチレンピスアクリルアミドを0.03
部、0.01部と減らす以外は、実施例.6と同様に
して、保水性複合材料の製造および吸水率の測定
をすると表.4の結果を得た。架橋性単量体が
0.01部の場合、保水性の低下が認められ、これは
架橋密度が小さくなつたためと考えられる。 従つて、架橋性単量体の使用量は0.01部が下限
である。
[Table] Examples 7-8 N,N'-methylenepisacrylamide at 0.03
Example except that it was reduced to 0.01 parts. When a water-retaining composite material was manufactured and its water absorption rate was measured in the same manner as in 6, Table. A result of 4 was obtained. The crosslinking monomer
In the case of 0.01 part, a decrease in water retention was observed, which is thought to be due to a decrease in crosslink density. Therefore, the lower limit of the amount of crosslinking monomer used is 0.01 part.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 水溶性の重合単量体と、該単量体に対して
0.01〜10重量部の他の架橋性単量体とを、20重量
%以上の濃度を有する混合単量体水溶液とし、
N2ガスで溶存酸素を除去し、該混合単量体水溶
液を粒状の多孔性無機質材料に、該多孔性無機質
材料の吸水率以下で含浸させて重合せしめてなる
吸水性をゆうする保水性複合材料。
1 Water-soluble polymerized monomer and for the monomer
0.01 to 10 parts by weight of other crosslinkable monomers to form a mixed monomer aqueous solution having a concentration of 20% by weight or more,
A water-retentive composite with water absorption properties obtained by removing dissolved oxygen with N 2 gas, impregnating a granular porous inorganic material with the mixed monomer aqueous solution at a water absorption rate lower than that of the porous inorganic material, and polymerizing the mixture. material.
JP59023486A 1984-02-10 1984-02-10 Water-holding composite material Granted JPS60166251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59023486A JPS60166251A (en) 1984-02-10 1984-02-10 Water-holding composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59023486A JPS60166251A (en) 1984-02-10 1984-02-10 Water-holding composite material

Publications (2)

Publication Number Publication Date
JPS60166251A JPS60166251A (en) 1985-08-29
JPH052633B2 true JPH052633B2 (en) 1993-01-12

Family

ID=12111848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59023486A Granted JPS60166251A (en) 1984-02-10 1984-02-10 Water-holding composite material

Country Status (1)

Country Link
JP (1) JPS60166251A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10130427A1 (en) * 2001-06-23 2003-03-27 Reinmar Peppmoeller Stable, water-swellable and absorbent anionic polymers with a sponge structure and their production and use
JPH01243927A (en) * 1988-03-24 1989-09-28 Mitsubishi Petrochem Co Ltd Soil water-retaining material
JPH03198726A (en) * 1989-12-26 1991-08-29 World Ceramic:Kk Horticultural pebble
JPH03114935U (en) * 1990-03-07 1991-11-27
JP3901742B2 (en) * 1992-12-23 2007-04-04 イーエムエス・クンストシュトフ・アクチェンゲゼルシャフト Polymerizable mixture, process for its production and its use
JP4694810B2 (en) * 2004-09-08 2011-06-08 株式会社日本触媒 Water-retaining material for plant growth mainly composed of water-absorbent resin

Also Published As

Publication number Publication date
JPS60166251A (en) 1985-08-29

Similar Documents

Publication Publication Date Title
US4722159A (en) Cultivation of mushrooms
JP3188283B2 (en) Liquid absorbent
JPH052633B2 (en)
JPS5819333B2 (en) KIYUUSISEINOFUYOHOHOHO
JPH06397B2 (en) Super absorbent sheet and its manufacturing method
JPS60149609A (en) Production of water-absorptive composite material
JPS6123016B2 (en)
JPH0624627B2 (en) Super absorbent material
JPH10191777A (en) Water holding agent for soil or horticulture
JPH0248292B2 (en)
JPH05320270A (en) Production of water-absorptive polymer
JPH01243927A (en) Soil water-retaining material
CN103724532A (en) High-efficiency synthesis process of water-absorbent resin
JPS56131683A (en) Imparting method of water absorption and retention characteristics
JPH056969B2 (en)
CN112079665B (en) Magnesium sulfate fertilizer and preparation process thereof
JPH01201312A (en) Modification of water-absorptive resin
CN108911786A (en) A kind of concrete inner curing agent and preparation method thereof
JPH0851809A (en) Improvement of germination of seed
JP3205896B2 (en) How to improve seed germination
JPH01198681A (en) Water retaining agent
CN108752517A (en) A kind of formula and preparation method thereof of noctilucence bullet pearl
EP1679358B1 (en) Snow composition and method for making artificial snow
JPH11349944A (en) Material for retaining water in soil
JP2779016B2 (en) Agricultural and horticultural water retention agent