JPH05263254A - Formation of thin film of cati1-xfexo3 - Google Patents

Formation of thin film of cati1-xfexo3

Info

Publication number
JPH05263254A
JPH05263254A JP4093334A JP9333492A JPH05263254A JP H05263254 A JPH05263254 A JP H05263254A JP 4093334 A JP4093334 A JP 4093334A JP 9333492 A JP9333492 A JP 9333492A JP H05263254 A JPH05263254 A JP H05263254A
Authority
JP
Japan
Prior art keywords
substrate
chambers
reaction chamber
metal compound
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4093334A
Other languages
Japanese (ja)
Inventor
Hironari Iwahara
弘育 岩原
Hideaki Ito
秀章 伊藤
Masanobu Aizawa
正信 相沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP4093334A priority Critical patent/JPH05263254A/en
Publication of JPH05263254A publication Critical patent/JPH05263254A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Compounds Of Iron (AREA)
  • Chemical Vapour Deposition (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To form the CaTi1-xFexO3 film which is thin and dense. CONSTITUTION:A CVD device is constituted by boring holes 2a, 2b, 2c, 2d in a block 1, connecting one end of cylindrical chambers 3a, 3d, 3c to the apertures of the holes 2a, 2b, 2c, constituting the other ends of the respective cylindrical chambers 3a, 3d, 3c as carrier gas introducing ports, providing heating furnaces 4a, 4b, 4c around these chambers, using the inside of the cylindrical chambers 3a, 3d, 3c as evaporating chambers and disposing boats 5a, 5d, 5c to be mounted with raw materials within these evaporating chambers. The front end of a cylindrical reaction chamber 6 is connected to the small- diameter hole 2d and a substrate 7 is set in this reaction chamber 6. A heating furnace 8 is provided on the outer periphery of the chamber 6 and a mixer is disposed in the upstream position of the substrate 7. A reactive gas supply pipe 10 is inserted from near the front end of the reaction chamber 6 toward the substrate 7 so as to penetrate the part of this mixer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は化学気相析出法(CV
D)を利用してCaTi1-xFex3薄膜を基板表面に形成
する方法に関する。
The present invention relates to a chemical vapor deposition method (CV).
D) is used to form a CaTi 1-x Fe x O 3 thin film on the surface of the substrate.

【0002】[0002]

【従来の技術】単一の結晶相内で特定イオンに対して伝
導性を示す固体電解質が、ガス分離膜、酸素ポンプ或い
は燃料電池等の材料として用いられている。そして、こ
の固体電解質に更に電子伝導性が備った混合導電体が最
近注目されている。混合導電体はペロブスカイト型酸化
物の形態をとり、具体的にはLaMnO3を母体としてMn
の一部をSrで置換したLa1-xMnSrx3、LaCoO3
母体としてCoの一部をSrで置換したLa1-xCoSr
x3、CaTiO3を母体としてTiの一部をFeで置換し
たCaTi1-xFex3等が挙げられる。
2. Description of the Related Art Solid electrolytes having conductivity to specific ions within a single crystal phase are used as materials for gas separation membranes, oxygen pumps, fuel cells and the like. Then, a mixed conductor in which the solid electrolyte is further provided with electronic conductivity has recently received attention. The mixed conductor is in the form of a perovskite type oxide, and specifically, LaMnO 3 is used as a base material and Mn is used.
Of La 1-x MnSr x O 3 in which a part of Co is replaced by Sr, and La 1-x CoSr in which a part of Co is replaced by Sr with LaCoO 3 as a matrix
Examples thereof include CaTi 1-x Fe x O 3 in which x O 3 and CaTiO 3 are the base materials and a part of Ti is substituted with Fe.

【0003】[0003]

【発明が解決しようとする課題】上述した混合導電体の
うち、La1-xMnSrx3及びLa1-xCoSrx3は高温
(1000℃)で酸素が少ない(10-3〜10-4torr)
状態では還元され、導電性を示さなくなる。したがっ
て、例えば混合導電体を酸素ガス分離膜として用いた場
合には、酸素分離が進行して酸素分圧が低下すると、そ
れ以上ガス分離等を行うことができなくなり、ガス分離
装置としての機能を果たさなくなる。一方、CaTi1-x
Fex3は1000℃で10-8torr程度の真空状態でも
還元されず、ガス分離能力を有するが、如何にして緻密
で薄い膜を形成するかの点で課題がある。
Among the above-mentioned mixed conductors, La 1-x MnSr x O 3 and La 1-x CoSr x O 3 contain a small amount of oxygen (10 -3 to 10) at high temperature (1000 ° C). -4 torr)
In the state, it is reduced and becomes non-conductive. Therefore, for example, when a mixed conductor is used as an oxygen gas separation membrane, when oxygen separation proceeds and the oxygen partial pressure decreases, it becomes impossible to perform further gas separation and the like, and the function as a gas separation device is reduced. It will not end. On the other hand, CaTi 1-x
Fe x O 3 is not reduced even in a vacuum state of about 10 −8 torr at 1000 ° C. and has a gas separation ability, but there is a problem in how to form a dense and thin film.

【0004】即ち、従来にあってはペロブスカイト型酸
化物からなる薄膜を形成する手段として、特開昭57−
145068号公報に示されるような焼結法、特開昭6
3−156号公報に開示されるような溶射法或いはEV
D(Electorochemical VaporDeposition)が知られてい
る。
That is, in the past, as means for forming a thin film made of a perovskite type oxide, Japanese Patent Laid-Open No. 57-
A sintering method as disclosed in Japanese Patent No.
Thermal spraying method or EV as disclosed in JP-A-3-156
D (Electorochemical Vapor Deposition) is known.

【0005】しかしながら、焼結法による場合には形成
される混合導電体の厚みを薄くすることができず、例え
ばガス分離装置に適用する場合にはガス分離に要する動
力(電力または吸引力)が大となってしまう。また溶射
法による場合には形成される混合導電体が多孔質となり
緻密性に劣るため、分離されるガスの純度が低下し、更
にEVDにあっては腐食性ガスを用いるため混合導電体
を表面に形成する基板が変質することがある。
However, in the case of the sintering method, the thickness of the mixed conductor formed cannot be made thin. For example, when the mixed conductor is applied to a gas separation device, the power (electric power or suction force) required for gas separation is required. It becomes big. Further, in the case of the thermal spraying method, the mixed conductor formed is porous and inferior in denseness, so that the purity of the gas to be separated is lowered, and in EVD, since a corrosive gas is used, the surface of the mixed conductor is reduced. The substrate formed on the substrate may deteriorate.

【0006】[0006]

【課題を解決するための手段】上記課題を解決すべく本
発明は、Ca原子を含む金属化合物原料、Fe原子を含む
金属化合物原料及びTi原子を含む金属化合物原料をそ
れぞれ別々に加熱気化せしめ、次いでこれら気化した金
属化合物原料をキャリヤガスにて混合部まで搬送して混
合し、更に混合した金属化合物原料をキャリヤガスにて
基板をセットした反応部まで搬送し、この反応部にO2
を含む反応ガスを導入して基板表面にCaTi1-xFex3
の結晶を析出させるようにした。
In order to solve the above-mentioned problems, the present invention separately heat vaporizes a metal compound raw material containing a Ca atom, a metal compound raw material containing a Fe atom and a metal compound raw material containing a Ti atom, Next, these vaporized metal compound raw materials are conveyed to the mixing section by the carrier gas and mixed, and further the mixed metal compound raw materials are conveyed to the reaction section where the substrate is set by the carrier gas, and O 2 is supplied to the reaction section.
Of a reaction gas containing carbon is introduced onto the surface of the substrate to produce CaTi 1-x Fe x O 3
Was allowed to precipitate.

【0007】[0007]

【作用】腐食性ガスを発生しない有機金属化合物等を用
いるため基板を変質させることがなく、しかも薄く緻密
な膜を形成することができる。
Since an organic metal compound or the like that does not generate a corrosive gas is used, the substrate is not altered and a thin and dense film can be formed.

【0008】[0008]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。ここで、図1は本発明方法を実施するCVD
装置の概略構成図であり、CVD装置はブロック1にブ
ロック内で集合する孔2a,2b,2c,2dを穿設
し、孔2a,2b,2cの開口には筒状チャンバー3
a,3d,3cの一端を接続し、各筒状チャンバー3
a,3d,3cの他端はN2,Ar,Heなどのキャリヤ
ガス導入口ととするとともに周囲には加熱炉4a,4
b,4cを設け、筒状チャンバー3a,3d,3c内を
気化室にし、これら気化室内に原料を搭載するボート5
a,5d,5cを配置している。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 shows a CVD for carrying out the method of the present invention.
1 is a schematic configuration diagram of an apparatus, in which a CVD apparatus has holes 2a, 2b, 2c and 2d which are assembled in the block 1 in a block 1, and a cylindrical chamber 3 is provided at openings of the holes 2a, 2b and 2c.
a, 3d, 3c are connected at one end, and each cylindrical chamber 3
The other ends of a, 3d, 3c are used as carrier gas inlets for N 2 , Ar, He, etc., and heating furnaces 4a, 4 are provided around them.
b, 4c are provided, the insides of the cylindrical chambers 3a, 3d, 3c are vaporized chambers, and the boat 5 for loading the raw materials into these vaporized chambers
a, 5d, and 5c are arranged.

【0009】また、小径の孔2dには筒状の反応チャン
バー6の先端を接続し、反応チャンバー6内にはアルミ
ナ、安定化ジルコニア等からなる基板7がセットされ、
反応チャンバー6外周には加熱炉8を設け、更に基板7
よりも上流位置には混合器9を配置し、この混合器9の
部分を貫通するように反応チャンバー6の先端部近傍か
ら基板7に向けて反応ガス(O2,H2O,H2+CO
2等)の供給管10を挿入している。
The tip of a cylindrical reaction chamber 6 is connected to the small diameter hole 2d, and a substrate 7 made of alumina, stabilized zirconia or the like is set in the reaction chamber 6,
A heating furnace 8 is provided on the outer periphery of the reaction chamber 6, and a substrate 7
A mixer 9 is arranged at a position further upstream than the reaction gas (O 2 , H 2 O, H 2 + CO) from the vicinity of the tip of the reaction chamber 6 toward the substrate 7 so as to penetrate the portion of the mixer 9.
2 etc.) supply tube 10 is inserted.

【0010】上記の装置は、異なる原料毎に最適の気化
温度を設定するとともに、混合部及び反応部の温度をコ
ントロールできる点を特長としており、このため、各加
熱炉4a,4b,4c,8内及び孔2a,2b,2cの
合流部に熱電対温度計11を挿入し、また基板7の位置
を移動可能として合流部から基板7までの混合部の長さ
Lを調整可能としている。
The above apparatus is characterized in that the optimum vaporization temperature can be set for each different raw material and the temperatures of the mixing section and the reaction section can be controlled. Therefore, each heating furnace 4a, 4b, 4c, 8 A thermocouple thermometer 11 is inserted inside and at the confluence of the holes 2a, 2b, 2c, and the position of the substrate 7 is movable so that the length L of the mixing part from the confluence to the substrate 7 can be adjusted.

【0011】以上のCVD装置を用いてアルミナ基板7
の表面にCaTi1-xFex3薄膜を形成する方法を以下に
説明する。先ず、Ca原子を含む金属化合物原料として
Ca(C111922を、Fe原子を含む金属化合物原料
としてFe(C111922またはFe(C572
3を、Ti原子を含む金属化合物原料としてTi(C11
1924またはTi(OCH34を用意し、Ca(C11
1922をボート5aに、Fe(C111922または
Fe(C5723をボート5dに、Ti(C11
1924またはTi(OCH34をボート5cにそれぞ
れセットする。ここで、Ti原子を含む原料として液体
の原料Ti(O-i-C374を用いる場合にはボート5
cに代えて図の想像線で示すような加圧容器12を用い
る。尚、以下にはFe原料としてはFe(C572
3を、Ti原料としてはTi(OCH34を用いた例を記
載する。
Alumina substrate 7 is formed by using the above CVD apparatus.
A method of forming a CaTi 1-x Fe x O 3 thin film on the surface of the will be described below. First, Ca (C 11 H 19 O 2 ) 2 is used as a metal compound raw material containing Ca atoms, and Fe (C 11 H 19 O 2 ) 2 or Fe (C 5 H 7 O 2 ) is used as a metal compound raw material containing Fe atoms.
3 as Ti (C 11 H) as a metal compound raw material containing a Ti atom.
19 O 2 ) 4 or Ti (OCH 3 ) 4 is prepared, and Ca (C 11 H
19 O 2 ) 2 in the boat 5a, Fe (C 11 H 19 O 2 ) 2 or Fe (C 5 H 7 O 2 ) 3 in the boat 5d, Ti (C 11 H 2
19 O 2 ) 4 or Ti (OCH 3 ) 4 is set on the boat 5c, respectively. Here, the boat 5 in the case of using a raw material Ti (O-i-C 3 H 7) 4 as a raw material liquid containing Ti atoms
Instead of c, a pressure vessel 12 as shown by the imaginary line in the figure is used. In the following, Fe (C 5 H 7 O 2 ) is used as the Fe raw material.
3 and an example using Ti (OCH 3 ) 4 as the Ti raw material will be described.

【0012】上記のように各ボート5a,5b,5cに
原料をセットしたら、反応チャンバー6内の圧力を2〜
760torrの範囲で望ましい値に設定する。そして加熱
炉4a,4b,4cで各ボート5a,5b,5c内の原
料を加熱気化する。具体的な加熱温度としては、Ca
(C111922は200〜500℃、Fe(C5
723は150〜160℃、Ti(OCH34は20〜
25℃とし、更に反応チャンバ6内は400〜900℃
の範囲で調整した。また、キャリヤガスはN2(100
〜200cc/min)とし、反応ガスはO2(30〜120c
c/min)とし、更に混合部の長さLは5〜50cmで調整
し、基板表面にCaTi1-xFex3の結晶を析出させた。
尚、混合部の温度は気化した金属化合物が再結晶する温
度よりも高く且つ金属酸化物の核が生成される温度より
も低くコントロールする。
After the raw materials are set in the boats 5a, 5b and 5c as described above, the pressure in the reaction chamber 6 is set to 2
Set to a desired value in the range of 760 torr. Then, the raw materials in the boats 5a, 5b, 5c are heated and vaporized in the heating furnaces 4a, 4b, 4c. The specific heating temperature is Ca
(C 11 H 19 O 2 ) 2 is 200 to 500 ° C., and Fe (C 5 H 2
7 O 2 ) 3 is 150 to 160 ° C., Ti (OCH 3 ) 4 is 20 to 160 ° C.
25 ° C., and the temperature in the reaction chamber 6 is 400 to 900 ° C.
Adjusted within the range. The carrier gas is N 2 (100
Up to 200 cc / min) and the reaction gas is O 2 (30 to 120 c
c / min), and further, the length L of the mixing portion was adjusted to 5 to 50 cm to deposit crystals of CaTi 1-x Fe x O 3 on the surface of the substrate.
The temperature of the mixing portion is controlled to be higher than the temperature at which the vaporized metal compound recrystallizes and lower than the temperature at which nuclei of the metal oxide are generated.

【0013】以上の実験で、以下の点が明らかになっ
た。 (1)反応チャンバ6内の温度を500℃以上とし、混
合部の長さLを20cm以上とすることで、CaTi1-xFe
x3単相が得られた。 (2)CaとFe及びTiの比は原料の気化温度で制御す
ることができる。 (3)反応チャンバ6内の圧力が2〜200torr、温度
が600℃以上、混合部の長さLが20cm以上の条件で
作製した膜はガス透過性試験の結果緻密であった。 (4)混合器を用いることで混合部の長さLを10cmに
減少させることができた。
From the above experiment, the following points were clarified. (1) The temperature in the reaction chamber 6 is set to 500 ° C. or higher, and the length L of the mixing section is set to 20 cm or more, so that CaTi 1-x Fe
An xO 3 single phase was obtained. (2) The ratio of Ca to Fe and Ti can be controlled by the vaporization temperature of the raw material. (3) As a result of the gas permeability test, the film produced under the conditions that the pressure in the reaction chamber 6 was 2 to 200 torr, the temperature was 600 ° C. or higher, and the length L of the mixing part was 20 cm or higher was dense. (4) The length L of the mixing section could be reduced to 10 cm by using the mixer.

【0014】図2は本発明方法によって製作されたCa
Ti1-xFex3薄膜を適用したガス分離装置の断面図で
あり、このガス分離装置はケース20内に酸素イオン電
子混合導電体(CaTi1-xFex3)からなる隔壁21を
設け、一方を空気にさらし、他方を吸引すると、隔壁内
の電子導電により短絡される。すると、高酸素分圧室か
ら他方へ酸素が透過する。尚、本発明によって作製され
たCaTi1-xFex3薄膜はガス分離装置に限らず、燃料
電池の電極等にも用いることができる。
FIG. 2 shows the Ca produced by the method of the present invention.
FIG. 2 is a cross-sectional view of a gas separation device to which a Ti 1-x Fe x O 3 thin film is applied, and this gas separation device has a partition wall 21 made of an oxygen ion electron mixed conductor (CaTi 1-x Fe x O 3 ) in a case 20. When one is exposed to air and the other is sucked, a short circuit occurs due to electronic conduction in the partition. Then, oxygen permeates from the high oxygen partial pressure chamber to the other. The CaTi 1-x Fe x O 3 thin film produced by the present invention can be used not only for gas separation devices but also for electrodes of fuel cells and the like.

【0015】[0015]

【発明の効果】以上に説明した如く本発明によれば、混
合導電体としてCa1-xFexTiO3を選定することにより
高温且つ高真空(低酸素濃度)においてもイオン伝導性
及び電子伝導性を発揮させることができ、しかも斯かる
混合導電体を基板表面に形成する方法として、化学気相
析出法を応用するようにしたので、薄く且つ緻密な混合
導電体の結晶を基板表面に形成することができ、ガス分
離装置や燃料電池に適用して高性能でランニングコスト
の低いものを製造することができる。
As described above, according to the present invention, by selecting Ca 1-x Fe x TiO 3 as a mixed conductor, ionic conductivity and electronic conductivity can be obtained even at high temperature and high vacuum (low oxygen concentration). The chemical vapor deposition method is applied as a method of forming the mixed conductor on the surface of the substrate so that thin and dense mixed conductor crystals can be formed on the surface of the substrate. When applied to a gas separation device or a fuel cell, it is possible to manufacture a high-performance product with low running cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施するCVD装置の概略構成図FIG. 1 is a schematic configuration diagram of a CVD apparatus for carrying out the method of the present invention.

【図2】本発明方法によって得られた混合導電体を用い
たガス分離装置の概略構成図
FIG. 2 is a schematic configuration diagram of a gas separation device using a mixed conductor obtained by the method of the present invention.

【符号の説明】[Explanation of symbols]

1…ブロック、2a,2b,2c,2d…孔、3a,3
d,3c…筒状チャンバー、4a,4b,4c,8…加
熱炉、5a,5d,5c…ボート、6…反応チャンバ
ー、7…基板、9…混合器、10…反応ガス供給管、2
1…隔壁。
1 ... Block, 2a, 2b, 2c, 2d ... Hole, 3a, 3
d, 3c ... Cylindrical chamber, 4a, 4b, 4c, 8 ... Heating furnace, 5a, 5d, 5c ... Boat, 6 ... Reaction chamber, 7 ... Substrate, 9 ... Mixer, 10 ... Reaction gas supply pipe, 2
1 ... Partition wall.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Ca原子を含む金属化合物原料、Fe原子
を含む金属化合物原料及びTi原子を含む金属化合物原
料をそれぞれ別々に加熱気化せしめ、次いでこれら気化
した金属化合物原料をキャリヤガスにて混合部まで搬送
して混合し、更に混合した金属化合物原料をキャリヤガ
スにて基板をセットした反応部まで搬送し、この反応部
にO2を含む反応ガスを導入して基板表面にCaTi1-x
ex3の結晶を析出させるようにしたことを特徴とする
CaTi1-xFex3薄膜の形成方法。
1. A metal compound raw material containing a Ca atom, a metal compound raw material containing an Fe atom and a metal compound raw material containing a Ti atom are separately heated and vaporized, and then these vaporized metal compound raw materials are mixed with a carrier gas. To the reaction part where the substrate is set by the carrier gas, and the reaction gas containing O 2 is introduced into this reaction part to introduce CaTi 1-x F
A method for forming a CaTi 1-x Fe x O 3 thin film, characterized in that crystals of e x O 3 are deposited.
JP4093334A 1992-03-19 1992-03-19 Formation of thin film of cati1-xfexo3 Withdrawn JPH05263254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4093334A JPH05263254A (en) 1992-03-19 1992-03-19 Formation of thin film of cati1-xfexo3

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4093334A JPH05263254A (en) 1992-03-19 1992-03-19 Formation of thin film of cati1-xfexo3

Publications (1)

Publication Number Publication Date
JPH05263254A true JPH05263254A (en) 1993-10-12

Family

ID=14079374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4093334A Withdrawn JPH05263254A (en) 1992-03-19 1992-03-19 Formation of thin film of cati1-xfexo3

Country Status (1)

Country Link
JP (1) JPH05263254A (en)

Similar Documents

Publication Publication Date Title
US5332597A (en) Method for manufacturing inorganic membranes by organometallic chemical vapor infiltration
EP0481679B1 (en) Solid oxide electrochemical cell fabrication process
US5750013A (en) Electrode membrane assembly and method for manufacturing the same
US4895576A (en) Method of doping interconnections for electrochemical cells
JPH0340904A (en) Method and apparatus for obtaining pure oxygen
US3635812A (en) Solid oxygen-ion electrolyte cell for the dissociation of steam
WO2012036057A1 (en) Gas-decomposition device, electrochemical reaction device, and method for manufacturing said devices
US20030224232A1 (en) Method for manufacturing fuel cells, and articles made therewith
EP0417306B1 (en) Method of producing thin film
EP0550070B1 (en) Method for manufacturing inorganic membranes by organometallic chemical vapor infiltration
JP4983091B2 (en) Method for forming electrolyte membrane, film forming apparatus, and solid fuel cell
Meng et al. Progress in ion-transport inorganic membranes by novel chemical vapor deposition (CVD) techniques
JP4221526B2 (en) Film forming method for forming metal oxide on substrate surface
Goto et al. Preparation of iridium clusters by MOCVD and their electrochemical properties
Kovrova et al. Films of certain oxides of rare-earth elements as the activators of platinum electrode on ZrO 2+ 10 mol% Y 2 O 3 electrolyte
JPH05263254A (en) Formation of thin film of cati1-xfexo3
Gelfond et al. Chemical vapor deposition of electrolyte thin films based on yttria-stabilized zirconia
Ogumi et al. Electrochemistry using plasma
US10381655B2 (en) Surface modified SOFC cathode particles and methods of making same
JPH1173978A (en) Electrochemical cell, electrochemical device and manufacture of the electrochemical cell
JPH04219301A (en) Production of oxide superconductor thin film
JPH0718451A (en) Method and device for forming oxide film on porous substrate
JP3616243B2 (en) Electrochemical vapor deposition apparatus and solid electrolyte film forming method using the same
JP3152803B2 (en) Method for manufacturing solid oxide fuel cell
JPH07316819A (en) Production of metal oxide film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608