JPH05263137A - Production of seamless tube of martensitic stainless steel excellent in corrosion resistance - Google Patents

Production of seamless tube of martensitic stainless steel excellent in corrosion resistance

Info

Publication number
JPH05263137A
JPH05263137A JP3110492A JP3110492A JPH05263137A JP H05263137 A JPH05263137 A JP H05263137A JP 3110492 A JP3110492 A JP 3110492A JP 3110492 A JP3110492 A JP 3110492A JP H05263137 A JPH05263137 A JP H05263137A
Authority
JP
Japan
Prior art keywords
corrosion resistance
transformation point
stainless steel
martensitic stainless
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3110492A
Other languages
Japanese (ja)
Other versions
JP2672429B2 (en
Inventor
Hitoshi Asahi
均 朝日
Satoru Kawakami
哲 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4031104A priority Critical patent/JP2672429B2/en
Publication of JPH05263137A publication Critical patent/JPH05263137A/en
Application granted granted Critical
Publication of JP2672429B2 publication Critical patent/JP2672429B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a seamless stainless steel tube excellent in corrosion resistance by subjecting a stainless steel containing specific amounts of C, Si, Mn, P, S, Cr, Ni, Al, N, Ti, Zr, and REM to heat treatment under specific conditions. CONSTITUTION:A steel which has a composition consisting of, by weight, <=0.05% C, <=0.5% Si, <=1% Mn, <=0.03% P, <=0.01% S, 11-17% Cr, 1.5-5% Ni, <=0.05% Al, 0.02-0.1% N, further one or >=2 elements among 0.003-0.4% REM, and the balance essentially Fe and satisfying C%+0.8N%>0.06 is hot- worked, subjected to natural air cooling down to room temp., reheated up to a temp. in the range between (Ac3 transformation point + 10 deg.C) and (Ac3 transformation point + 200 deg.C), cooled down to room temp. at rate not lower than air cooling rate, and successively subjected to tempering treatment at a temp. not higher than the Ac1 transformation point. By this method, the seamless tube of martensitic stainless steel excellent in CO2 corrosion resistance and having sulfide stress corrosion cracking resistance can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐CO2 腐食特性に優
れ、耐硫化物応力割れ性を有するマルテンサイト系ステ
ンレス鋼継目無鋼管の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a martensitic stainless steel seamless steel pipe having excellent CO 2 corrosion resistance and sulfide stress cracking resistance.

【0002】[0002]

【従来の技術】近年、CO2 を多量に含むガスを生産す
るガス井の開発や、2次回収のためのCO2 インジェク
ションが広く行われるようになっている。このような環
境では鋼管の腐食が激しいため、耐CO2 腐食特性に優
れたマンテンサイト系ステンレス鋼管が多く使用されて
いる。特に、低〜中CでNiを数%含有するタイプのマ
ルテンサイト系ステンレス鋼は耐食性が優れており、油
井管やラインパイプとしてCO2 だけでなく微量のH2
Sも含むような厳しい腐食環境下にて使用されることが
望まれている。
2. Description of the Related Art In recent years, development of gas wells for producing gas containing a large amount of CO 2 and CO 2 injection for secondary recovery have been widely performed. In such an environment, since the steel pipe is severely corroded, many mantensite stainless steel pipes excellent in CO 2 corrosion resistance are used. In particular, martensite stainless steel of a type containing low to medium C and containing a few% of Ni has excellent corrosion resistance, and not only CO 2 but also a trace amount of H 2 as an oil country tubular good or a line pipe.
It is desired to be used in a severe corrosive environment containing S.

【0003】このタイプの鋼としては、AISIに規定
されているAISI 414,431などが良く知られ
ている。しかしながら、これらの鋼は鋳鋼として用いら
れることを前提としているために熱間加工性が著しく悪
い。また微量のH2 Sを含むCO2 腐食環境下では容易
に硫化物応力割れを生じてしまう。これらの鋼の熱間加
工性ならびに耐食性を改善した鋼が特公昭59−159
77号公報、特開昭60−174859号公報などに提
示されている。しかしながら、これらのマルテンサイト
系ステンレス鋼は耐食性を向上させるためにCならびに
Nの添加量を著しく低下させているか、あるいは低C化
しつつ数%のMoを添加しているために、CO2 耐食性
は向上しているが硫化物応力割れ抵抗性は依然十分でな
く、さらに鋼を加熱した時にオーステナイト基地に熱間
加工性を悪化させるδフェライト相が形成されるという
欠点をもつ。従って、シームレス圧延のように苛酷な加
工条件下では割れや疵を発生し、歩留低下によるコスト
アップが避けられず、このような成分系で高耐食性を有
する継目無鋼管の製造はこれまで非常に困難であった。
As this type of steel, AISI 414, 431 and the like specified in AISI are well known. However, since these steels are premised on being used as cast steel, their hot workability is extremely poor. Further, sulfide stress cracking easily occurs in a CO 2 corrosive environment containing a trace amount of H 2 S. Steels having improved hot workability and corrosion resistance of these steels are disclosed in JP-B-59-159.
77, JP-A-60-174859 and the like. However, these martensitic stainless steels have remarkably reduced the amounts of C and N added in order to improve the corrosion resistance, or have a low C content and a few% of Mo added, and therefore have a CO 2 corrosion resistance. Although it is improved, the sulfide stress cracking resistance is still insufficient, and furthermore, when the steel is heated, a δ ferrite phase which deteriorates the hot workability is formed in the austenite matrix. Therefore, under severe processing conditions such as seamless rolling, cracks and flaws occur, cost increase due to yield reduction is unavoidable, and the production of seamless steel pipes with high corrosion resistance with such a composition system has been extremely difficult until now. It was difficult for me.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記問題点
を解消するものであって、含有成分を調整すると共に、
安定した組織とすることにより耐食性に優れたマルテン
サイト系ステンレス鋼継目無鋼管の製造法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems by adjusting the contained components and
An object of the present invention is to provide a method for producing a martensitic stainless steel seamless steel pipe having excellent corrosion resistance by forming a stable structure.

【0005】[0005]

【課題を解決するための手段】本発明者らは多くの実験
結果から、耐CO2 腐食性は、Cを低減化し必要量のC
rを添加しておけば維持されること、耐硫化物応力割れ
性は、割れ抵抗性を示す組織制御を行うことで向上する
ことを知見した。また、熱間加工性は、P,Sなどを低
減化して介在物の形成を抑えることと、CおよびNの添
加量を制御してさらにNiを添加することにより、変形
抵抗の異なる異相の相分率および形状を制御するような
冶金的操作を行うことで維持されることを知見した。特
に、本発明者らはCならびにNの効果に着目し次のよう
な知見を得た。
From the results of many experiments, the present inventors have found that the CO 2 corrosion resistance reduces C and reduces the required amount of C.
It has been found that if r is added, the sulfide stress cracking resistance can be maintained and that the sulfide stress cracking resistance can be improved by controlling the structure showing the cracking resistance. The hot workability is obtained by reducing P, S, etc. to suppress the formation of inclusions, and by controlling the addition amount of C and N, and further adding Ni, a different phase having different deformation resistance is obtained. It was found to be maintained by performing metallurgical operations such as controlling the fraction and shape. In particular, the present inventors paid attention to the effects of C and N and obtained the following findings.

【0006】すなわち図1は、ベース成分を1.5%N
i−12.5%Cr鋼としてCおよびN含有量を変えた
場合の耐CO2 腐食特性ならびに熱間加工時の絞り値を
示す。図1において、C.R.は40atm のCO2 と平
衡した150℃の人工海水中における年間の腐食速度で
あり、C.R.<0.1mm/yであれば十分な耐食性を有
すると評価できる。また、R.A.は1250℃に加熱
した試料を900℃で歪速度3 sec-1の条件にて単軸引
張変形したときの絞り率であり、70%以上となれば熱
間変形能が良好である。なお、CO2 腐食試験には熱間
加工後、焼入れ・焼きもどし処理を行い、降伏強度が6
50MPa 程度を示すものを用いた。図1より、耐CO2
腐食特性を満足するためにはC<0.05%にする必要
があり、また、十分な熱間加工性を有するためには、C
%+0.8N%>0.06にする必要がある(各元素の
含有量の単位はwt%)。さらに、これらの鋼の硫化物応
力割れは粒界で生じており、これは粒界に偏析したPに
より粒界強度が低下した結果である。従って、Pの添加
量を低減することが有用であるが、とりわけステンレス
鋼では低P化は難しく、コストを大幅に上昇させる。と
ころで、Pとの安定な化合物を形成するTi,Zr,R
EMを添加すると固溶Pが減少し、実質的に低Pとな
り、粒界の偏析Pが減少する効果を見出した。
That is, in FIG. 1, the base component is 1.5% N
2 shows the CO 2 corrosion resistance characteristics and the reduction value during hot working when the C and N contents were changed as i-12.5% Cr steel. In FIG. 1, C.I. R. Is the annual corrosion rate in 150 ° C. artificial seawater equilibrated with 40 atm CO 2 . R. If it is <0.1 mm / y, it can be evaluated as having sufficient corrosion resistance. In addition, R. A. Is the draw ratio when a sample heated to 1250 ° C. is uniaxially tensile deformed at 900 ° C. under a strain rate of 3 sec −1 , and if it is 70% or more, the hot deformability is good. In addition, in the CO 2 corrosion test, after hot working, quenching and tempering treatment was performed, and the yield strength was 6
The one showing about 50 MPa was used. From Figure 1, CO 2 resistance
In order to satisfy the corrosion property, C <0.05% is required, and in order to have sufficient hot workability, C is required.
% + 0.8 N%> 0.06 (unit of content of each element is wt%). Further, sulfide stress cracking of these steels occurs at the grain boundaries, which is a result of a decrease in the grain boundary strength due to P segregated at the grain boundaries. Therefore, it is useful to reduce the amount of P added, but especially for stainless steel, it is difficult to lower the P, and the cost is significantly increased. By the way, Ti, Zr, R forming a stable compound with P
It has been found that when EM is added, the solid solution P is reduced to substantially lower P, and the segregation P at grain boundaries is reduced.

【0007】本発明は以上に述べた知見に基づいて構成
したものであって、その要旨とするところは下記の通り
である。すなわち重量%として、C≦0.05%、Si
≦0.50%、Mn≦1.0%、P≦0.03%、S≦
0.01%、Cr:11〜17%、Ni:1.5〜5
%、Al≦0.05%、N:0.02〜0.1%で、か
つC%+0.8N%>0.06を満足し、さらにTi:
0.005〜0.1%、Zr:0.01〜0.2%、R
EM:0.003〜0.4%の1種または2種以上を含
み、あるいはさらにCu:0.5〜2%またはMo:
0.3〜2.0%の1種または2種を含んで、残部が実
質的にFeおよび不可避的不純物からなる鋼を熱間加工
し室温まで自然放冷した後、Ac3 変態点+10℃〜A
3 変態点+200℃の温度に加熱し室温まで空冷以上
の速度にて冷却し、続いて、Ac1 変態点以下の温度で
焼きもどし処理する耐食性に優れたマルテンサイト系ス
テンレス鋼継目無鋼管の製造法である。
The present invention is constructed on the basis of the above-mentioned findings, and the gist thereof is as follows. That is, as weight%, C ≦ 0.05%, Si
≦ 0.50%, Mn ≦ 1.0%, P ≦ 0.03%, S ≦
0.01%, Cr: 11 to 17%, Ni: 1.5 to 5
%, Al ≦ 0.05%, N: 0.02 to 0.1%, and C% + 0.8N%> 0.06, and Ti:
0.005-0.1%, Zr: 0.01-0.2%, R
EM: 0.003 to 0.4% of 1 or 2 or more, or further Cu: 0.5 to 2% or Mo:
Steel containing 0.3 to 2.0% of 1 or 2 and the balance substantially consisting of Fe and unavoidable impurities is hot-worked and naturally cooled to room temperature, and then Ac 3 transformation point + 10 ° C. ~ A
A martensitic stainless steel seamless steel pipe with excellent corrosion resistance, which is heated to a temperature of c 3 transformation point + 200 ° C., cooled to room temperature at a rate of air cooling or more, and subsequently tempered at a temperature of Ac 1 transformation point or less. It is a manufacturing method.

【0008】以下に本発明について詳細に説明する。ま
ず、鋼成分の限定理由について述べる。CはCr炭化物
などを形成し耐食性を劣化させる元素であるが、典型的
なオーステナイト形成元素であり、熱間加工温度域であ
る900〜1250℃でδフェライト相の発生を抑制す
る効果があるために添加する。ただし、0.05%を越
える量を添加するとCr炭化物などの炭化物が多量に析
出してCr欠乏層を形成するために耐CO2 腐食特性が
低下する。また、粒界に炭化物が析出しやすくなるため
に耐硫化物応力割れ性が著しく低下する。従ってC含有
量は0.05%以下とした。
The present invention will be described in detail below. First, the reasons for limiting the steel components will be described. C is an element that forms Cr carbide and deteriorates the corrosion resistance, but is a typical austenite forming element and has an effect of suppressing the generation of the δ ferrite phase in the hot working temperature range of 900 to 1250 ° C. Added to. However, when an amount exceeding 0.05% is added, a large amount of carbides such as Cr carbides are deposited to form a Cr-deficient layer, and the CO 2 corrosion resistance is deteriorated. Further, carbides are likely to precipitate at the grain boundaries, so that the sulfide stress cracking resistance is significantly reduced. Therefore, the C content is set to 0.05% or less.

【0009】Siは製鋼上脱酸材として添加されるが、
鋼の中に0.50%を越えて含有されると靭性および耐
硫化物応力割れ性を低下するために、0.50%以下と
した。Mnは介在物を形成し腐食環境下で割れ抵抗性を
損なう元素であるが、オーステナイト単相化するために
有用な成分であるために添加する。ただし、1.0%を
越えて添加すると多量の介在物を形成するために、腐食
環境下での割れ抵抗性と靭性が低下する。従って、Mn
の含有量は1.0%以下とした。
Si is added as a deoxidizer for steelmaking,
When it is contained in the steel in an amount exceeding 0.50%, the toughness and the sulfide stress cracking resistance are deteriorated, so the content is set to 0.50% or less. Mn is an element that forms inclusions and impairs crack resistance in a corrosive environment, but is added because it is a useful component for achieving austenite single phase. However, if added in excess of 1.0%, a large amount of inclusions are formed, so that the crack resistance and toughness in a corrosive environment deteriorate. Therefore, Mn
Content was 1.0% or less.

【0010】Pは粒界に偏析して粒界強度を弱め、熱間
加工性および耐硫化物応力割れ性を低下させるので0.
03%以下とした。Sは硫化物として介在物を形成し熱
間加工性を低下させるため、その上限を0.01%とし
た。Crは本発明の目的とする耐CO2 腐食性を付与
し、ステンレス鋼としての腐食性を有するためには、1
1%以上の含有が必要である。しかし、17%を越えて
添加するとδフェライト相が生成しやすくなるために、
その限定範囲を11〜17%とした。
P segregates at the grain boundaries, weakens the grain boundary strength, and reduces hot workability and sulfide stress cracking resistance.
It was set to 03% or less. Since S forms inclusions as sulfides and deteriorates hot workability, the upper limit was made 0.01%. Cr imparts the CO 2 corrosion resistance which is the object of the present invention, and in order to have the corrosion resistance as stainless steel, 1
It is necessary to contain 1% or more. However, if more than 17% is added, the δ ferrite phase is likely to be generated,
The limited range was set to 11 to 17%.

【0011】NiはCr含有鋼においては耐食性を向上
させる効果がある。しかも、強力なオーステナイト形成
元素であり、高温加熱時にδフェライト相の形成を抑制
するうえ、その形状を細く短くし、熱間加工時にδフェ
ライト相内部に形成されるクラックの成長を抑える効果
があることから、熱間加工性を向上させる効果も有す
る。ただし、Ni:1.5%以下の添加ではそれらの効
果を示さず、また、5%を越えて添加するとAc1 点が
非常に低くなり調質が困難になることと、残留オーステ
ナイト相が形成されて強度・靭性を損なうために、その
限定範囲を1.5〜5%とした。
Ni has the effect of improving the corrosion resistance in Cr-containing steel. Moreover, it is a strong austenite-forming element, and has the effect of suppressing the formation of the δ ferrite phase during high-temperature heating, making the shape thin and short, and suppressing the growth of cracks formed inside the δ ferrite phase during hot working. Therefore, it also has an effect of improving hot workability. However, addition of Ni: 1.5% or less does not show these effects, and if added over 5%, the Ac 1 point becomes extremely low and refining becomes difficult, and a retained austenite phase is formed. In order to reduce the strength and toughness of the steel, the limited range is set to 1.5 to 5%.

【0012】AlはSiと同様に脱酸剤として添加され
残有されたもので、0.05%を越えて添加するとAl
Nが多数形成されて著しく靭性が低下する。従って、添
加量の上限を0.05%とした。
Similar to Si, Al is added as a deoxidizing agent and remains. If added in excess of 0.05%, Al
A large amount of N is formed and the toughness is significantly reduced. Therefore, the upper limit of the amount added is set to 0.05%.

【0013】Nは耐食性に対し無害であるうえに、Cと
同様に典型的なオーステナイト形成元素であり、熱間加
工温度域である、900〜1250℃でδフェライト相
の形成を抑える効果がある。その効果は、前述のように
1.5%Ni−12.5%Cr鋼をベース成分とする場
合には、C%+0.8N%>0.06(C,Nはwt%)
を満たす添加量の範囲において有効である。従って、C
<0.05%の場合に熱間加工温度域にてδフェライト
相を発生させず、良好な熱間加工性を得るためにはNを
0.02%以上添加する必要がある。また、通常の溶製
工程においては0.1%以上の添加は困難であるため、
その添加量の範囲を0.02〜0.1%とした。
N is harmless to the corrosion resistance and is a typical austenite forming element like C, and has the effect of suppressing the formation of the δ ferrite phase in the hot working temperature range of 900 to 1250 ° C. .. As described above, when 1.5% Ni-12.5% Cr steel is used as a base component as described above, C% + 0.8N%> 0.06 (C and N are wt%).
It is effective in the range of the addition amount satisfying the above conditions. Therefore, C
In the case of <0.05%, it is necessary to add N by 0.02% or more in order not to generate the δ ferrite phase in the hot working temperature range and to obtain a good hot workability. In addition, since it is difficult to add 0.1% or more in the usual melting process,
The range of the addition amount was 0.02 to 0.1%.

【0014】CuはNiと同様に強力なオーステナイト
形成元素であり、Ac1 変態点を低下させない効果もあ
る。しかし、単独で2.0%を越えて添加すると熱間脆
性が生じることと、Niに比べて耐食性・相の安定性を
もたらす効果が少ないために単独での添加は効果を示さ
ない。従って、Cuを添加する場合はその添加量を2.
0%以下とし、必ずNiと同時に添加することとした。
MoはCrと同様耐CO2 耐食性を向上させる効果を有
するが添加量が0.3%以下では効果が顕著でなく、一
方、2.0%を越えて添加するとδフェライト相が生成
しやすくなるため、上限を2.0%とした。
Cu, like Ni, is a strong austenite forming element and also has an effect of not lowering the Ac 1 transformation point. However, when added alone in excess of 2.0%, hot brittleness occurs, and the effect of providing corrosion resistance and phase stability is less than that of Ni, so addition alone does not show an effect. Therefore, when Cu is added, the addition amount should be 2.
It was set to 0% or less, and it was always added at the same time as Ni.
Mo has the effect of improving the CO 2 corrosion resistance similarly to Cr, but the effect is not remarkable if the addition amount is 0.3% or less, while if added in excess of 2.0%, the δ ferrite phase is easily generated. Therefore, the upper limit is set to 2.0%.

【0015】Ti,Zr,REMは硫化物応力割れ抵抗
性に有害なPとの安定な化合物を形成し、固溶Pを減少
させて実質的な低P化を図る効果を有する。各々0.0
05%,0.01%,0.01%以下では効果が明瞭で
はなく、また多量に添加すると粗大な酸化物を形成して
靭性を劣化させるため各々上限を0.1%,0.2%,
0.4%とした。なお、これらの添加はAl,Siで脱
酸を終了した後に行う方が効果的である。なぜなら、酸
素が多い段階で添加すると大きな酸化物を形成しPとの
化合物を形成する能力が減じるからである。また、これ
らのPと化合物の晶・析出温度は極めて高いため、凝固
からの冷却途上で晶・析出が起こる。
Ti, Zr, and REM form a stable compound with P that is harmful to sulfide stress cracking resistance, and have the effect of reducing the solid solution P to substantially lower the P content. 0.0 each
If the amount is less than 0.05%, 0.01%, or 0.01%, the effect is not clear, and if added in a large amount, coarse oxides are formed and the toughness deteriorates, so the upper limits are 0.1% and 0.2%, respectively. ,
It was 0.4%. It should be noted that it is more effective to add these after deoxidizing with Al and Si. This is because when added at a stage where oxygen is large, the ability to form a large oxide and form a compound with P is reduced. Further, since the crystallizing / precipitating temperature of these P and the compound is extremely high, crystallizing / precipitating occurs during cooling from solidification.

【0016】このような鋼は圧延加工後室温まで冷却し
た状態でマルテンサイト組織であり、直ちに焼きもどし
を行っても良いが、通常再オーステナイト後焼きもどし
を施す。この熱処理条件の限定理由について述べる。加
熱温度は、Cr含有ステンレス鋼のγループ内におい
て、炭化物が完全に固溶せず結晶粒の粗大化が生じない
温度を上限とし、またオーステナイト相が安定となる最
低の温度を下限とした。すなわち、Ac3 変態点+20
0℃以上の温度に加熱すると炭化物が完全に固溶するた
めに、冷却時にCr炭化物などが粒界に多量に析出し耐
食性が著しく低下し、さらに結晶粒の粗大化が生じるた
めに、靭性が低下する。また、Ac3 変態点+10℃以
下の低い温度に加熱した場合は、オーステナイト相が安
定せず、安定した強度を得ることが困難である。従っ
て、加熱処理温度はAc3 変態点+10℃〜Ac3 変態
点+200℃とした。
Such a steel has a martensitic structure in a state where it is cooled to room temperature after rolling and may be immediately tempered, but it is usually re-austenite-tempered. The reasons for limiting the heat treatment conditions will be described. The upper limit of the heating temperature was the temperature at which the carbide was not completely dissolved in the γ loop of the Cr-containing stainless steel and coarsening of the crystal grains did not occur, and the lower limit was the lowest temperature at which the austenite phase was stable. That is, Ac 3 transformation point +20
When heated to a temperature of 0 ° C. or higher, the carbide completely dissolves in solid solution, so that a large amount of Cr carbide and the like precipitates at the grain boundaries during cooling, significantly lowering the corrosion resistance, and further coarsening the crystal grains, resulting in toughness. descend. When heated to a low temperature of Ac 3 transformation point + 10 ° C. or lower, the austenite phase is not stable and it is difficult to obtain stable strength. Therefore, the heat treatment temperature was set to Ac 3 transformation point + 10 ° C to Ac 3 transformation point + 200 ° C.

【0017】この加熱後の冷却速度が空冷よりも遅いと
粒界に炭化物が板状に析出し、靭性が著しく低下するた
めに空冷以上の冷却速度に限定した。こうして室温まで
冷却するとマルテンサイト変態が生じて、マルテンサイ
ト単相組織となる。このマルテンサイト組織中の残留応
力を回復により消滅させ、過飽和炭素原子を炭化物とし
て析出させることによって、靭性・延性を高め、所望の
強度を得るために焼きもどし処理を施す。このとき、A
1 変態点以上の温度に加熱すると逆変態が生じて靭性
が著しく低下するために、焼きもどし処理はAc1 変態
点以下の温度にて行う。以上のような本発明法により製
造された鋼管は、耐CO2 腐食特性・耐硫化物応力割れ
性だけでなく、靭性なども優れている。
If the cooling rate after this heating is slower than that of air cooling, carbide precipitates in the grain boundary in the form of a plate and the toughness remarkably deteriorates. When cooled to room temperature in this way, martensitic transformation occurs to form a martensitic single-phase structure. The residual stress in the martensite structure is eliminated by recovery, and supersaturated carbon atoms are precipitated as carbides to enhance toughness and ductility, and a tempering treatment is performed to obtain desired strength. At this time, A
When heated to a temperature above the c 1 transformation point, reverse transformation occurs and the toughness decreases significantly, so the tempering treatment is performed at a temperature below the Ac 1 transformation point. The steel pipe manufactured by the method of the present invention as described above is excellent not only in CO 2 corrosion resistance and sulfide stress cracking resistance but also in toughness.

【0018】[0018]

【実施例】まず、表1に示される化学成分の鋼を通常の
溶製工程にて鋳造した後、熱間圧延により鋼管を製造
し、加熱処理と焼きもどし処理を施したものを用いて、
強度、靭性、耐CO2 腐食性、耐硫化物応力割れ性を調
査した。そのときの熱処理温度と強度などの材質につい
ては表2に示す。
EXAMPLE First, after casting a steel having the chemical composition shown in Table 1 in a usual melting process, a steel pipe was manufactured by hot rolling and subjected to heat treatment and tempering treatment.
The strength, toughness, CO 2 corrosion resistance, and sulfide stress cracking resistance were investigated. Table 2 shows materials such as heat treatment temperature and strength at that time.

【0019】耐CO2 腐食性は40気圧のCO2 と平衡
した150℃の人工海水中での腐食速度で評価した。腐
食速度が0.1mm/年以下であれば耐食性を有すると見
なせる。耐硫化物応力割れ性は丸棒引張試験片を25℃
の5%NaCl溶液中に1気圧の99%CO2 +1%H
2 Sガスを飽和した腐食環境中で単軸引張応力を加え、
720時間で破壊が生じない最大初期応力と降伏応力の
比(Rs値)を求めた。Rs≧0.8であれば優れた特
性であるといえる。
The CO 2 corrosion resistance was evaluated by the corrosion rate in artificial seawater at 150 ° C. equilibrated with CO 2 at 40 atm. If the corrosion rate is 0.1 mm / year or less, it can be considered to have corrosion resistance. Resistance to sulfide stress cracking was measured at 25 ° C with a round bar tensile test piece.
99% CO 2 + 1% H at 1 atm in 5% NaCl solution
2 In a corrosive environment saturated with S gas, uniaxial tensile stress is applied,
The ratio (Rs value) of the maximum initial stress and the yield stress at which breakage did not occur at 720 hours was determined. If Rs ≧ 0.8, it can be said that the characteristics are excellent.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】表2の結果より、本発明法により製造され
た鋼管は良好な耐CO2 腐食性、耐硫化物応力割れ性な
らびに高靭性を示すのに対し、本発明の範囲から外れた
比較法ではいずれかの特性が劣っていることが明らかで
ある。
From the results shown in Table 2, the steel pipes produced by the method of the present invention show good CO 2 corrosion resistance, sulfide stress cracking resistance and high toughness, while the comparative method out of the range of the present invention. It is clear that one of the characteristics is inferior.

【0023】[0023]

【発明の効果】以上説明したように本発明法は、C量を
低くすると共にCr,Moを含有させて耐CO2 耐食性
を向上し、Ti,Zr,REM添加により耐硫化物応力
腐食割れ性を低減し、また、熱間加工性はC,Nのバラ
ンスとNiまたはNiとCの含有によるδフェライト相
の発生を低減することにより良好にし、所望の強度と優
れた靭性を有するマルテンサイト系ステンレス鋼継目無
鋼管を得ることができる。
As described above, according to the method of the present invention, the amount of C is reduced and Cr and Mo are contained to improve the CO 2 corrosion resistance, and the addition of Ti, Zr and REM improves the sulfide stress corrosion cracking resistance. And the hot workability is improved by reducing the balance of C and N and the generation of the δ ferrite phase due to the inclusion of Ni or Ni and C, and the martensite system having desired strength and excellent toughness. A stainless steel seamless steel pipe can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】マルテンサイト系ステンレス鋼の耐CO2 腐食
特性(C.R.)ならびに熱間加工時の絞り値(R.
A.)に及ぼすCとN量との関係を示す図。
FIG. 1 shows the CO 2 corrosion resistance (CR) of martensitic stainless steel and the reduction value (R.
A. ) A graph showing the relationship between C and N content.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C ≦0.05%、 Si≦0.50%、 Mn≦1.0%、 P ≦0.03%、 S ≦0.01%、 Cr:11〜17%、 Ni:1.5〜5%、 Al≦0.05%、 N :0.02〜0.1%で、かつC%+0.8N%>
0.06を満足し、さらに Ti:0.005〜0.1%、 Zr:0.01〜0.2%、 REM:0.003〜0.4%の1種または2種以上 を含み、残部が実質的にFeおよび不可避的不純物から
なる鋼を熱間加工した後室温まで自然放冷後、Ac3
態点+10℃〜Ac3 変態点+200℃に再加熱した
後、室温まで空冷以上の速度にて冷却し、続いて、Ac
1 変態点以下の温度で焼きもどし処理することを特徴と
する耐食性に優れたマルテンサイト系ステンレス鋼継目
無鋼管の製造法。
1. By weight%, C ≦ 0.05%, Si ≦ 0.50%, Mn ≦ 1.0%, P ≦ 0.03%, S ≦ 0.01%, Cr: 11 to 17% , Ni: 1.5 to 5%, Al ≦ 0.05%, N: 0.02 to 0.1%, and C% + 0.8N%>
0.06 is satisfied, and further, one or more of Ti: 0.005 to 0.1%, Zr: 0.01 to 0.2%, and REM: 0.003 to 0.4% is included, After hot-working steel having the balance substantially Fe and unavoidable impurities, it is naturally cooled to room temperature, reheated to Ac 3 transformation point + 10 ° C to Ac 3 transformation point + 200 ° C, and then air-cooled to room temperature or higher. Cooling at speed, followed by Ac
A method for producing a seamless martensitic stainless steel pipe with excellent corrosion resistance, characterized by performing tempering at a temperature not higher than one transformation point.
【請求項2】 重量%で、 C ≦0.05%、 Si≦0.50%、 Mn≦1.0%、 P ≦0.03%、 S ≦0.01%、 Cr:11〜17%、 Ni:1.5〜5%、 Al≦0.05%、 N :0.02〜0.1%で、かつC%+0.8N%>
0.06を満足し、さらに Ti:0.005〜0.1%、 Zr:0.01〜0.2%、 REM:0.003〜0.4%の1種または2種以上を
含み、また、さらに Cu:0.5〜2%、 Mo:0.3〜2.0%の1種または2種を含み、 残部が実質的にFeおよび不可避的不純物からなる鋼を
熱間加工した後室温まで自然放冷後、Ac3 変態点+1
0℃〜Ac3 変態点+200℃に再加熱した後、室温ま
で空冷以上の速度にて冷却し、続いて、Ac1 変態点以
下の温度で焼きもどし処理することを特徴とする耐食性
に優れたマルテンサイト系ステンレス鋼継目無鋼管の製
造法。
2. In% by weight, C ≦ 0.05%, Si ≦ 0.50%, Mn ≦ 1.0%, P ≦ 0.03%, S ≦ 0.01%, Cr: 11 to 17% , Ni: 1.5 to 5%, Al ≦ 0.05%, N: 0.02 to 0.1%, and C% + 0.8N%>
0.06 is satisfied, and further, one or more of Ti: 0.005 to 0.1%, Zr: 0.01 to 0.2%, and REM: 0.003 to 0.4% is included, In addition, after hot working a steel containing one or two of Cu: 0.5 to 2% and Mo: 0.3 to 2.0%, the balance being substantially Fe and unavoidable impurities. After allowing to cool naturally to room temperature, Ac 3 transformation point +1
After being reheated to 0 ° C to Ac 3 transformation point + 200 ° C, it is cooled to room temperature at a rate of air cooling or more, and subsequently, tempered at a temperature of Ac 1 transformation point or less, which is excellent in corrosion resistance. Martensitic stainless steel seamless steel pipe manufacturing method.
JP4031104A 1992-02-18 1992-02-18 Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance Expired - Lifetime JP2672429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4031104A JP2672429B2 (en) 1992-02-18 1992-02-18 Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4031104A JP2672429B2 (en) 1992-02-18 1992-02-18 Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JPH05263137A true JPH05263137A (en) 1993-10-12
JP2672429B2 JP2672429B2 (en) 1997-11-05

Family

ID=12322099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4031104A Expired - Lifetime JP2672429B2 (en) 1992-02-18 1992-02-18 Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP2672429B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136109A (en) * 1995-04-21 2000-10-24 Kawasaki Steel Corporation Method of manufacturing high chromium martensite steel pipe having excellent pitting resistance
WO2008026594A1 (en) 2006-08-31 2008-03-06 Sumitomo Metal Industries, Ltd. Martensitic stainless steel for welded structure
CN115369313A (en) * 2021-05-17 2022-11-22 宝山钢铁股份有限公司 High-toughness corrosion-resistant martensitic stainless steel oil casing pipe and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173245A (en) * 1983-03-24 1984-10-01 Sumitomo Metal Ind Ltd Steel for oil well pipe excellent in corrosion resistance
JPH0375337A (en) * 1989-08-16 1991-03-29 Nippon Steel Corp Martensitic stainless steel having high strength and excellent corrosion resistance and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173245A (en) * 1983-03-24 1984-10-01 Sumitomo Metal Ind Ltd Steel for oil well pipe excellent in corrosion resistance
JPH0375337A (en) * 1989-08-16 1991-03-29 Nippon Steel Corp Martensitic stainless steel having high strength and excellent corrosion resistance and its manufacture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136109A (en) * 1995-04-21 2000-10-24 Kawasaki Steel Corporation Method of manufacturing high chromium martensite steel pipe having excellent pitting resistance
WO2008026594A1 (en) 2006-08-31 2008-03-06 Sumitomo Metal Industries, Ltd. Martensitic stainless steel for welded structure
US8163233B2 (en) 2006-08-31 2012-04-24 Sumitomo Metal Industries, Ltd. Martensitic stainless steel for welded structures
JP2012177205A (en) * 2006-08-31 2012-09-13 Sumitomo Metal Ind Ltd Martensitic stainless steel for welded structure
JP5088323B2 (en) * 2006-08-31 2012-12-05 住友金属工業株式会社 Martensitic stainless steel for welded structures
CN115369313A (en) * 2021-05-17 2022-11-22 宝山钢铁股份有限公司 High-toughness corrosion-resistant martensitic stainless steel oil casing pipe and manufacturing method thereof

Also Published As

Publication number Publication date
JP2672429B2 (en) 1997-11-05

Similar Documents

Publication Publication Date Title
JP5967066B2 (en) High strength stainless steel seamless steel pipe for oil well with excellent corrosion resistance and method for producing the same
JP6369662B1 (en) Duplex stainless steel and manufacturing method thereof
JP5499575B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
US6793744B1 (en) Martenstic stainless steel having high mechanical strength and corrosion
CA3019483A1 (en) High-strength steel material and production method therefor
JPH10503809A (en) Martensitic stainless steel with sulfide stress cracking resistance with excellent hot workability
KR101539520B1 (en) Duplex stainless steel sheet
JP4470617B2 (en) High strength stainless steel pipe for oil wells with excellent carbon dioxide corrosion resistance
JP3483493B2 (en) Cast steel for pressure vessel and method of manufacturing pressure vessel using the same
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP4289109B2 (en) High strength stainless steel pipe for oil well with excellent corrosion resistance
JP3539250B2 (en) 655 Nmm-2 class low C high Cr alloy oil country tubular good with high stress corrosion cracking resistance and method of manufacturing the same
JP2672437B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP3814836B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP7207557B2 (en) Stainless seamless steel pipe for oil country tubular goods and manufacturing method thereof
JP2000160300A (en) 655 Nmm-2 CLASS LOW-C HIGH-Cr ALLOY OIL WELL PIPE WITH HIGH CORROSION RESISTANCE, AND ITS MANUFACTURE
JP2672429B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPH07179943A (en) Production of high toughness martensitic strainless steel pipe excellent in corrosion resistance
JP3250263B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP2672430B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP3417016B2 (en) Manufacturing method of high toughness martensitic stainless steel seamless steel pipe with excellent hot workability and corrosion resistance
CN114450430A (en) Stainless steel seamless steel pipe and method for manufacturing same
JP2580407B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPH0860238A (en) Production of martensitic stainless steel excellent in hot workability and sulfide stress cracking resistance
JP2001032047A (en) 862 N/mm2 CLASS LOW C HIGH Cr ALLOY OIL WELL PIPE HAVING HIGH CORROSION RESISTANCE AND ITS PRODUCTION

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070711

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 15