JPH05262578A - Ceramic superconducting form - Google Patents

Ceramic superconducting form

Info

Publication number
JPH05262578A
JPH05262578A JP4092024A JP9202492A JPH05262578A JP H05262578 A JPH05262578 A JP H05262578A JP 4092024 A JP4092024 A JP 4092024A JP 9202492 A JP9202492 A JP 9202492A JP H05262578 A JPH05262578 A JP H05262578A
Authority
JP
Japan
Prior art keywords
superconducting
pores
ceramic
powder
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4092024A
Other languages
Japanese (ja)
Inventor
Naoki Kimura
直樹 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4092024A priority Critical patent/JPH05262578A/en
Publication of JPH05262578A publication Critical patent/JPH05262578A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide the subject form giving excellent superconducting characteristics esp. under magnetic field. CONSTITUTION:2-30vol.% of pores of submicron order playing as a role of the pinning sites for magnetic flux are dispersed uniformly in a ceramic superconducting form. Thereby, magnetic flux will be pinned, and the superconducting characteristics of the ceramic form can be improved esp. under magnetic field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に磁場下において、
高い超電導特性を発揮するセラミックス超電導成形体に
関する。
BACKGROUND OF THE INVENTION The present invention is particularly useful in magnetic fields.
The present invention relates to a ceramics superconducting compact that exhibits high superconducting properties.

【0002】[0002]

【従来の技術】近年、液体窒素温度で超電導を示すY−
Ba−Cu−O系,Bi−(Pb)−Sr−Ca−Cu
−O系,Tl−Ba−Ca−Cu−O系等のセラミック
ス超電導体が見出され、マグネットや電力ケーブル等の
導体としての実用化研究が盛んに進められている。
2. Description of the Related Art In recent years, Y- which exhibits superconductivity at liquid nitrogen temperature
Ba-Cu-O system, Bi- (Pb) -Sr-Ca-Cu
Ceramic superconductors such as -O type and Tl-Ba-Ca-Cu-O type have been found, and researches for practical use as conductors for magnets, power cables and the like have been actively pursued.

【0003】[0003]

【発明が解決しようとする課題】ところで、これらのセ
ラミックス超電導体の超電導特性を向上させるには、超
電導体相の占積率を高めることの他、セラミックス超電
導体内に磁束を拘束するピンニングサイトを多数分布さ
せることが考えられるが、後者については、未だ有効な
ピンニングサイトが見出だされず、従って、特に磁場下
での超電導特性に高い値が得られないという問題があっ
た。
By the way, in order to improve the superconducting properties of these ceramic superconductors, in addition to increasing the space factor of the superconductor phase, many pinning sites for restraining magnetic flux are provided in the ceramic superconductor. Although it may be distributed, in the latter case, an effective pinning site has not been found yet, so that there is a problem in that a high value of superconducting properties cannot be obtained particularly under a magnetic field.

【0004】[0004]

【課題を解決するための手段】本発明は、かかる状況に
鑑み鋭意研究を行ない、セラミックス超電導体中に含有
される微細な気孔は磁束をピンニングする作用を有する
ことを知見し、更に研究を進めて本発明を完成するに至
ったものである。即ち本発明は、セラミックス超電導成
形体中にサブミクロンオーダーの気孔が、2〜30容量
%、均一に分散して含有されていることを特徴とするも
のである。
DISCLOSURE OF THE INVENTION The present invention has conducted intensive studies in view of the above situation, and found that the fine pores contained in the ceramic superconductor have a function of pinning the magnetic flux, and further research is conducted. The present invention has thus been completed. That is, the present invention is characterized in that submicron-order pores of 2 to 30% by volume are uniformly dispersed and contained in the ceramic superconducting compact.

【0005】本発明において、サブミクロンオーダーの
気孔とは、直径が約1μmφ以下の大きさの空孔のこと
で、内部が真空であってもガスが含まれていてもどちら
でもよい。気孔の大きさをサブミクロンオーダーに限定
した理由は、サブミクロンオーダーを超えると気孔のピ
ンニング効果が十分に得られない為である。本発明にお
いて、サブミクロンオーダーの気孔の含有量を2〜30容
量%に限定した理由は、2容量%未満では、セラミック
ス超電導体内の磁束を拘束するピンニングサイトとして
の効果が十分に発揮されない為である。又30容量%を超
えると気孔同士が合体して気孔を微細な状態に保持でき
なくなり、しかも超電導体相の占積率が減少してJcが
低下する為である。気孔の含有量は、特には5〜15容量
%が好ましい。
In the present invention, the submicron order pores are pores having a diameter of about 1 μmφ or less, which may be vacuum or may contain gas. The reason why the size of the pores is limited to the submicron order is that if the size exceeds the submicron order, the pinning effect of the pores cannot be sufficiently obtained. In the present invention, the reason why the content of submicron-order pores is limited to 2 to 30% by volume is that if the content is less than 2% by volume, the effect as a pinning site for restraining the magnetic flux in the ceramic superconductor is not sufficiently exhibited. is there. On the other hand, if it exceeds 30% by volume, the pores are united with each other and the pores cannot be maintained in a fine state, and moreover, the space factor of the superconductor phase is reduced and Jc is lowered. The content of pores is particularly preferably 5 to 15% by volume.

【0006】本発明のセラミックス超電導成形体には、
前述のBi系等のセラミックス超電導体の他、任意のセ
ラミックス超電導体が適用される。本発明のセラミック
ス超電導成形体は、通常の粉末焼結法、即ち、セラミッ
クス超電導体となし得る原料粉末を所望形状に圧粉成形
し、又は前記原料粉末を金属製パイプ内に充填し、これ
を所定形状に延伸加工して複合線材となし、これらの圧
粉成形体又は複合線材を所定温度で加熱焼結する方法に
より製造されるが、原料粉末には、できるだけ粒径の揃
ったサブミクロンオーダーの微粉末を用いるのが得られ
る酸化物超電導成形体中に分散する気孔が微細となり好
ましい。本発明のセラミックス超電導成形体は、結晶配
向性にも優れているもので、これは原料粉末が微細な為
に延伸加工時の粉末粒子の回転移動が容易な為と考えら
れる。サブミクロンオーダーの原料微粉末を製造する方
法としては、酸化物超電導体の構成元素を溶かした溶液
を高温の酸化雰囲気中で噴霧して前駆体粉末に反応させ
る方法が好適である。前記溶液の噴霧法としては、超音
波霧化装置やガスノズル噴霧装置等が適用される。
The ceramic superconducting molded article of the present invention comprises:
Any ceramic superconductor other than the above-described Bi-based ceramic superconductor is applied. The ceramics superconducting compact of the present invention is a usual powder sintering method, that is, powder compacting a raw material powder that can be a ceramics superconductor into a desired shape, or filling the raw material powder into a metal pipe, It is manufactured by a method in which it is drawn into a predetermined shape to form a composite wire rod, and these powder compacts or composite wire rods are heated and sintered at a predetermined temperature. It is preferable to use the above fine powder because fine pores are dispersed in the obtained oxide superconducting molded body. The ceramic superconducting compact of the present invention is also excellent in crystal orientation, and it is considered that this is because the raw material powder is so fine that the powder particles can easily rotate and move during stretching. As a method for producing a submicron-order raw material fine powder, a method in which a solution in which constituent elements of an oxide superconductor are dissolved is sprayed in a high-temperature oxidizing atmosphere to react with a precursor powder is suitable. As the method of spraying the solution, an ultrasonic atomizer, a gas nozzle sprayer, or the like is applied.

【0007】前述のセラミックス超電導体となし得る原
料粉末とは、前述のY系、Bi系、Tl系等のセラミッ
クス超電導体粉末を始め、酸素含有雰囲気中で加熱処理
することによりセラミックス超電導体に反応する中間
体、例えばセラミックス超電導体の構成元素の混合体、
又は共沈混合物、又は前記構成元素の酸化物又は炭酸塩
の一次原料粉を各々所定量配合し混合して混合原料とな
し、この混合原料を仮焼成した酸素欠損型複合酸化物粉
末等が用いられる。又原料粉末を金属製パイプ内に充填
するには、原料粉末をそのまま充填する方法の他、原料
粉末を予めCIP法等により所定形状に成形したり、或
いはこの成形体を更に加熱焼結したものを充填する方法
等が用いられる。このように原料粉末を成形体や焼結体
に加工してから充填すると、得られるセラミックス超電
導成形体の密度が高まり、Jc等の特性が一段と向上す
る。
The raw material powders that can be used as the above-mentioned ceramics superconductor include the above-mentioned Y-based, Bi-based, Tl-based ceramics superconductor powders, etc., and react with the ceramics superconductor by heat treatment in an oxygen-containing atmosphere. An intermediate, such as a mixture of constituent elements of a ceramic superconductor,
Alternatively, a coprecipitated mixture, or a primary raw material powder of the oxide or carbonate of the above-mentioned constituent elements is mixed in a predetermined amount to form a mixed raw material, and an oxygen-deficient complex oxide powder obtained by calcination of the mixed raw material is used Be done. To fill the raw material powder into the metal pipe, in addition to the method of directly filling the raw material powder, the raw material powder is preliminarily molded into a predetermined shape by the CIP method or the molded body is further heat-sintered. And the like are used. When the raw material powder is processed into a compact or a sintered compact as described above and then filled, the density of the obtained ceramic superconducting compact increases, and the characteristics such as Jc are further improved.

【0008】前述の多層複合ビレットに施す延伸加工に
は、押出、引抜き、スエージング、圧延、鍛造、プレス
圧縮等の任意の加工法が適用できるが、圧延加工法又は
プレス圧縮加工法が超電導体層の密度をより高めること
ができて好ましい。又複合ビレットを延伸加工して得ら
れた複合線材に施す加熱処理は原料粉末をセラミックス
超電導体に反応させる為に行うものである。この最後に
施す加熱処理は、延伸加工材をマグネットコイル等に成
形したあと施した方が内部のセラミックス超電導体に割
れ等が入り難く好ましい。本発明のサブミクロンオーダ
ーの気孔を2〜30容量%含有するセラミックス超電導成
形体は、例えば原料粉末にサブミクロンオーダーの微細
粉を用いることにより製造し得るものであり、前記のサ
ブミクロンオーダーの気孔は、前述のような従来の製造
法によって消失することはない。
For the stretching process applied to the above-mentioned multilayer composite billet, any processing method such as extrusion, drawing, swaging, rolling, forging, and press compression can be applied, but the rolling processing method or the press compression processing method is a superconductor. It is preferable because the density of the layer can be further increased. The heat treatment applied to the composite wire obtained by drawing the composite billet is performed in order to react the raw material powder with the ceramic superconductor. This last heat treatment is preferably performed after the drawn material is formed into a magnet coil or the like because cracks and the like are less likely to occur in the ceramic superconductor inside. The ceramic superconducting compact containing 2 to 30% by volume of submicron-order pores of the present invention can be produced, for example, by using a submicron-order fine powder as a raw material powder, and the submicron-order pores described above can be produced. Is not lost by the conventional manufacturing method as described above.

【0009】[0009]

【作用】本発明のセラミックス超電導成形体は、サブミ
クロンオーダーの気孔を2〜30容量%、均一に分散し含
有したものなので、前記気孔が磁束の有効なピンニング
サイトとして作用し、特に磁場下において高い超電導特
性が得られる。
The ceramic superconducting molded article of the present invention contains the submicron-order pores in an amount of 2 to 30% by volume, and the pores act as effective pinning sites for magnetic flux, especially under a magnetic field. High superconducting properties can be obtained.

【0010】[0010]

【実施例】以下に本発明を実施例により詳細に説明す
る。 実施例1 先ず原料粉末をエーロゾル法により作製した。即ち、B
i,Sr,Ca,Cuの硝酸塩をBi:Sr:Ca:C
uが原子比で2:2:1:2になるようにそれぞれ配合
し、これを水に溶かして種々濃度の原料溶液を作製し
た。次にこの原料溶液を超音波霧化装置を用いて霧化
し、この霧状体を 800〜 930℃に加熱した石英管内にエ
アをキャリアガスに用いて導入して超電導前駆体粉末に
反応生成せしめ、この前駆体粉末を吸引してフィルター
上に捕集した。噴霧速度を0.05ml/sec に設定した場
合、0.05ml/sec ±20%又は0.05ml/sec ±50%に振ら
せた場合の3通りに変化させて3種の粒度分布の前駆体
粉末を作製した。このようにして得られた3種の前駆体
粉末にバインダーを微量添加し、これを1〜50MPa の
範囲で種々の圧力をかけてプレス成形して20×5×1mm
の棒材となした。次にこの棒材に大気中で、 860℃×20
時間の加熱処理を施してセラミックス超電導棒状体を製
造した。
EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 First, a raw material powder was prepared by an aerosol method. That is, B
i: Sr, Ca, Cu nitrate is added to Bi: Sr: Ca: C
u were mixed so that the atomic ratio was 2: 2: 1: 2, and these were dissolved in water to prepare raw material solutions of various concentrations. Next, this raw material solution is atomized using an ultrasonic atomizer, and this atomized material is introduced into a quartz tube heated to 800 to 930 ° C by using air as a carrier gas to react and generate a superconducting precursor powder. The precursor powder was sucked and collected on the filter. When the spraying speed is set to 0.05 ml / sec, the precursor powder with 3 kinds of particle size distribution is prepared by changing the spraying speed to 0.05 ml / sec ± 20% or 0.05 ml / sec ± 50%. did. A small amount of a binder is added to the thus obtained three kinds of precursor powders, and the mixture is press-molded under various pressures within the range of 1 to 50 MPa to obtain 20 × 5 × 1 mm.
It was used as a bar material. Next, this bar is exposed to air at 860 ℃ × 20
The ceramics superconducting rod-shaped body was manufactured by performing heat treatment for a period of time.

【0011】比較例1 BiCO3,SrCO3,CaCO3,CuOの各々の出発原
料をBi:Sr:Ca:Cuが原子比で2:2:1:2
になるように配合して混合し、この混合粉を大気中で 8
50℃×20時間仮焼成し、この仮焼成体を粉砕混合して仮
焼成粉体となし、この仮焼成粉体をプレス成形して20×
5×1mmの棒材となした。次にこの棒材に大気中で、 8
60℃×20時間の加熱処理を施してセラミックス超電導棒
状体を製造した。このようにして得られた種々のセラミ
ックス超電導棒状体について、結晶のC軸配向性及びJ
cを測定した。結果を、エーロゾル法の水溶液の噴霧速
度、前駆体粉末の粒径、超電導成形体内の気孔の含有量
等を併記して表1に示した。尚、Jcは液体窒素中(77
K)、1Tの磁場下で4端子法により測定した。又前駆
体粉末の粒径及び超電導成形体内の気孔の大きさは走査
型電子顕微鏡により、又結晶配向性はX線回折法により
それぞれ測定した。
Comparative Example 1 Bi: Sr: Ca: Cu was used as the starting material for each of BiCO 3, SrCO 3, CaCO 3, and CuO in an atomic ratio of 2: 2: 1: 2.
And mix to obtain 8
Preliminary firing at 50 ° C for 20 hours, pulverizing and mixing the preliminarily fired body into a preliminarily fired powder, and press-molding the preliminarily fired powder for 20 ×
It was made a 5 x 1 mm bar. Next, in the atmosphere,
A ceramic superconducting rod was manufactured by performing heat treatment at 60 ° C for 20 hours. With respect to various ceramics superconducting rods thus obtained, the C-axis orientation of the crystal and J
c was measured. The results are shown in Table 1 together with the spray rate of the aqueous solution of the aerosol method, the particle size of the precursor powder, the content of pores in the superconducting molded body, and the like. Jc is in liquid nitrogen (77
K) Measured by a 4-terminal method under a magnetic field of 1T. The particle size of the precursor powder and the size of the pores in the superconducting compact were measured by a scanning electron microscope, and the crystal orientation was measured by an X-ray diffraction method.

【0012】[0012]

【表1】 [Table 1]

【0013】表1より明らかなように、本発明例品(No
1〜5)は、結晶配向性並びにJcに優れるものであっ
た。Jcはプレス圧力が高い程又超電導成形体内の気孔
が小さい程、高い値のものとなった。又気孔含有量は10
容量%のものがJcがピークとなった。これに対し比較
例品のNo6は、気孔含有率が低かった為気孔によるピン
ニング効果が十分に発揮されず、又No7は気孔含有量が
多すぎて気孔同士が合体して粗大化し又超電導体相の量
が減少した為、いずれもJcが低下した。又No8,9は
前駆体粉末の粒径のバラツキが大きくなり、その結果超
電導成形体内の気孔が粗大化して結晶配向性が不良とな
り又気孔の磁束をピンニングする効果が低下して、いず
れもJcが低下した。又No10は、前駆体粉末、即ち仮焼
成粉粒子が粗大だった為、酸化物超電導成形体内の気孔
が大きくなりJcがかなり低下した。以上Bi系酸化物
超電導成形体の場合について説明したが、本発明は、他
の系の酸化物超電導成形体についても、サブミクロンオ
ーダーの気孔が均一に分散して含有されているものであ
れば、同様の効果が発現される。
As is clear from Table 1, the products of the present invention (No.
1 to 5) were excellent in crystal orientation and Jc. The higher the pressing pressure, and the smaller the pores in the superconducting molded body, the higher the value of Jc. Pore content is 10
The peak of Jc was obtained in the case of the volume%. On the other hand, No. 6 of the comparative example has a low porosity content, and therefore the pinning effect due to the porosity is not sufficiently exerted, and No. 7 has too much porosity and the pores are coalesced and coarsened. As a result, the Jc decreased in each case. In Nos. 8 and 9, the dispersion of the particle size of the precursor powder was large, and as a result, the pores in the superconducting compact were coarsened, the crystal orientation was poor, and the effect of pinning the magnetic flux in the pores was reduced. Has dropped. In No. 10, since the precursor powder, that is, the particles of the calcined powder were coarse, the pores in the oxide superconducting molded body were large and the Jc was considerably lowered. The case of the Bi-based oxide superconducting molded article has been described above, but the present invention is also applicable to oxide superconducting molded articles of other systems as long as submicron-order pores are uniformly dispersed and contained. , The same effect is exhibited.

【0014】[0014]

【効果】以上述べたように、本発明のセラミックス超電
導成形体は、特に磁場下における超電導特性に優れるも
ので、マグネットコイル用導体等に用いて、顕著な効果
を奏する。
As described above, the ceramic superconducting molded article of the present invention has excellent superconducting properties especially under a magnetic field, and when used as a conductor for a magnet coil or the like, a remarkable effect is exhibited.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 サブミクロンオーダーの気孔が、2〜30
容量%、均一に分散して含有されていることを特徴とす
るセラミックス超電導成形体。
1. Porosity of submicron order is 2 to 30
A ceramic superconducting compact characterized by being contained in a uniformly dispersed manner by volume%.
JP4092024A 1992-03-18 1992-03-18 Ceramic superconducting form Pending JPH05262578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4092024A JPH05262578A (en) 1992-03-18 1992-03-18 Ceramic superconducting form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4092024A JPH05262578A (en) 1992-03-18 1992-03-18 Ceramic superconducting form

Publications (1)

Publication Number Publication Date
JPH05262578A true JPH05262578A (en) 1993-10-12

Family

ID=14042971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4092024A Pending JPH05262578A (en) 1992-03-18 1992-03-18 Ceramic superconducting form

Country Status (1)

Country Link
JP (1) JPH05262578A (en)

Similar Documents

Publication Publication Date Title
JP2794299B2 (en) Method for producing metal oxide powder
JP2721189B2 (en) Method for producing oxide superconductor, composite oxide powder as precursor of oxide superconductor, and method for producing the same
JPH05262578A (en) Ceramic superconducting form
JPH01282107A (en) Method for manufacture of superconductive material and product obtained from it
DE3932423C2 (en)
JP2592872B2 (en) Manufacturing method of oxide superconducting wire
JPS63285812A (en) Manufacture of oxide superconductive wire material
JP2835083B2 (en) Manufacturing method of oxide superconductor
JPH06176637A (en) Manufacture of bi oxide superconductive wire
JPH0345301A (en) Manufacture of oxide superconductive tape wire
JP2767750B2 (en) Method for producing oriented oxide superconductor
JP2507937B2 (en) Manufacturing method of superconducting ceramic wire
JP2583575B2 (en) Manufacturing method of oxide superconducting wire
JP2574173B2 (en) Superconducting wire manufacturing method
Yoo et al. Synthesis and characterization of fine and homogeneous BSCCO-2223 precursor powder by spray pyrolysis process for PIT process
JPH0196016A (en) Starting material for conjugate oxide superconductor and production thereof
JPH02183918A (en) Manufacture of oxide superconductor
JP2966134B2 (en) Method for producing Bi-based oxide superconductor
Tsudo et al. Superconductivity of Bi Pb Sr Ca Cu O Ag systems
JPH01264930A (en) Production of oxide superconductor and applied product of said oxide superconductor
JPH05170515A (en) Production of oxide superconductor
JP2904348B2 (en) Method for manufacturing compound superconducting wire
JPH07300314A (en) Preform of oxide superconductor powder and production of oxide superconducting material using said preform
JPH01115865A (en) Formation of high-temperature superconductive ceramics
JPH02267151A (en) Superconducting ceramic raw material powder, its production and production of superconducting ceramic using the same