JPH05262564A - Sic-based refractory and its production - Google Patents

Sic-based refractory and its production

Info

Publication number
JPH05262564A
JPH05262564A JP4062717A JP6271792A JPH05262564A JP H05262564 A JPH05262564 A JP H05262564A JP 4062717 A JP4062717 A JP 4062717A JP 6271792 A JP6271792 A JP 6271792A JP H05262564 A JPH05262564 A JP H05262564A
Authority
JP
Japan
Prior art keywords
sic
refractory
weight
cristobalite
cri
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4062717A
Other languages
Japanese (ja)
Other versions
JP3026883B2 (en
Inventor
Shigeru Hanzawa
茂 半澤
Toshiharu Kinoshita
寿治 木下
Hideo Saito
日出男 斎藤
Osamu Yamakawa
治 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N G K ADRECH KK
NGK Insulators Ltd
Original Assignee
N G K ADRECH KK
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N G K ADRECH KK, NGK Insulators Ltd filed Critical N G K ADRECH KK
Priority to JP4062717A priority Critical patent/JP3026883B2/en
Publication of JPH05262564A publication Critical patent/JPH05262564A/en
Application granted granted Critical
Publication of JP3026883B2 publication Critical patent/JP3026883B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a refractory having high mechanical strength such as flexural strength and extremely excellent thermal shock resistance represented by little deformation and blistering and no crack generation, etc., after the use for a long period under repeated heating and cooling. CONSTITUTION:The objective refractory contains >=60wt.% of SiC aggregate particle, has the principal phase of grain-boundary part composed of a vitreous material consisting of 1.0-10.0wt.% of SiO2, <=0.05wt.% and >0wt.% of CaO, 0.05-1.0wt.% of V2O5 and 0.01-0.15wt.% of Al2O3 and contains cristobalite nearly uniformly distributing from the surface layer to the center part as a subsidiary phase of the SiC grain-boundary part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐熱衝撃性等の高温特性
に優れたSiC質耐火物とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a SiC refractory having excellent high temperature characteristics such as thermal shock resistance and a method for producing the same.

【0002】[0002]

【従来の技術】炭化珪素(SiC)質耐火物は、優れた
耐火性から、工業上重要な地位を占めており、例えば陶
磁器用の棚板、その他の焼成用治具、サヤなどに多用さ
れている。このようなSiC質耐火物の製造方法とし
て、従来、SiC粒子に10重量%程度の粘土を混合し
て、混練・成形・焼成し、珪酸塩鉱物、例えば粘土鉱物
によりSiC粒子を結合させてSiC質耐火物を製造す
る方法が知られている。ところが、このようにして製造
したSiC質耐火物は耐火度が低い粘土鉱物を結合組織
としているため、高温での軟化変形や酸化が生じ易いと
いう問題がある。そこで、近年、SiC粒子を微量の金
属酸化物等と共に混練・成形し、酸化性雰囲気中で焼成
するすることにより、SiC粒子を部分的に酸化させ、
その部分酸化により生じた二酸化珪素によってSiC粒
子を結合させる製造方法が注目されている。このように
製造したSiC質耐火物は、粘土鉱物結合のSiC質耐
火物と比べて高い高温強度を有するという優れた特性を
備えている。
2. Description of the Related Art Silicon carbide (SiC) -based refractory materials occupy an important position in the industry due to their excellent fire resistance. For example, they are widely used for shelf boards for ceramics, other firing jigs, and sheaths. ing. As a method for producing such a SiC-based refractory, conventionally, about 10% by weight of clay is mixed with SiC particles, and the mixture is kneaded, molded, and fired, and the SiC particles are combined with a silicate mineral, for example, a clay mineral to form SiC Methods for producing quality refractories are known. However, since the SiC refractory thus manufactured has a clay mineral having a low refractory degree as a connective structure, there is a problem that soft deformation and oxidation are likely to occur at high temperatures. Therefore, in recent years, SiC particles are partially kneaded and molded together with a small amount of a metal oxide and then baked in an oxidizing atmosphere to partially oxidize the SiC particles,
Attention has been focused on a manufacturing method in which SiC particles are bonded by silicon dioxide generated by the partial oxidation. The SiC refractory thus produced has the excellent property of having higher high-temperature strength than the clay mineral-bonded SiC refractory.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、SiC
粒子の部分酸化により生成する二酸化珪素は、SiC粒
子表面を覆うように形成され、高純度で比較的粗な組織
状態であるために互いに焼結し難いという問題がある。
二酸化珪素相互の焼結を促進させ緻密で強固な結合組織
を生成するためには、金属酸化物等の補助成分の種類や
添加量の適性化が重要であるが、従来の二酸化珪素で結
合したSiC質耐火物においては、結合組織の組成につ
いて十分な考慮が払われていなかったため、十分な高温
特性を発現できない上に、品質のばらつきも大きかっ
た。また、粒界結合部に副相として存在するクリストバ
ライトの総量及び分布が不均一で、SiC質耐火物の変
形、膨れ、割れ等が発生したり、耐熱衝撃性等が低下す
る原因となっていた。本発明は、このような従来のSi
C質耐火物の問題を解決し、耐熱衝撃性等の高温特性に
優れたSiC質耐火物とその製造方法を提供することを
目的とする。
[Problems to be Solved by the Invention] However, SiC
Silicon dioxide produced by partial oxidation of particles has a problem that it is difficult to sinter each other because it is formed so as to cover the surface of SiC particles and has a high purity and a relatively coarse texture.
In order to promote the mutual sintering of silicon dioxide and generate a dense and strong bond structure, it is important to optimize the type and amount of auxiliary components such as metal oxides. In the SiC refractory, sufficient consideration was not given to the composition of the connective structure, so that sufficient high-temperature characteristics could not be exhibited, and the quality of the refractories was large. In addition, the total amount and distribution of cristobalite existing as a sub-phase in the grain boundary bonding portion was non-uniform, which caused deformation, swelling, cracking, etc. of the SiC refractory, and reduced thermal shock resistance. .. The present invention uses such conventional Si
An object of the present invention is to provide a SiC refractory having excellent heat resistance and other high-temperature characteristics and a method for producing the same, by solving the problem of the C refractory.

【0004】[0004]

【課題を解決するための手段】そしてその目的は、本発
明によれば、SiC骨材粒子が60重量%以上で、粒界
結合部主相がSiO2 1.0〜10.0重量%、Ca
O 0.05重量%以下(但し必ず含有する)、V25
0.05〜1.0重量%、Al23 0.01〜0.
15重量%のガラス質からなる結合相を有するSiC質
耐火物であって、SiC粒界結合部に副相として存在す
るクリストバライト量が、表層部から中心部までほぼ均
一に分布されていることを特徴とするSiC質耐火物に
より達成することができる。
According to the present invention, the purpose of the present invention is to provide SiC aggregate particles in an amount of 60% by weight or more and a grain boundary bonding part main phase of SiO 2 1.0 to 10.0% by weight. Ca
O 0.05% by weight or less (but must be included), V 2 O 5
0.05 to 1.0 wt%, Al 2 O 3 0.01~0.
It is a SiC refractory material having a binder phase composed of 15% by weight of glass, and the amount of cristobalite existing as a subphase in the SiC grain boundary bond portion is distributed almost uniformly from the surface layer portion to the center portion. It can be achieved with the featured SiC refractory.

【0005】本発明においては、SiC粒界結合部に副
相として存在するクリストバライトの総量がSiC質耐
火物全体の0.1〜15.0重量%の範囲であることが
好ましく、また、SiC質耐火物の中心部の座標を0、
表層部の座標を100とした時、50〜100部分のク
リストバライトの重量%(Cri(50-100))と0〜50
部分のクリストバライトの重量%(Cri(0-50))の比
(Cri(50-100))/(Cri(0-50))が10以下であ
ることが好ましい。
In the present invention, the total amount of cristobalite existing as a subphase in the SiC grain boundary joint is preferably in the range of 0.1 to 15.0% by weight based on the entire SiC refractory material. The coordinates of the center of the refractory are 0,
Assuming that the coordinates of the surface layer are 100, the weight% (Cri (50-100) ) of cristobalite of 50 to 100 parts and 0 to 50
The ratio (Cri (50-100) ) / (Cri (0-50) ) of the weight% (Cri (0-50) ) of the cristobalite in the part is preferably 10 or less.

【0006】また、本発明によれば、SiC骨材粒子
に、V化合物及びCa化合物を混合し、これを成形した
後、該成形体を700〜1100℃の温度範囲で5時間
以上焼成し、その後更に1300〜1600℃の温度範
囲で3時間以上焼成することを特徴とするSiC質耐火
物の製造方法が提供される。
Further, according to the present invention, the V compound and the Ca compound are mixed with the SiC aggregate particles, the mixture is molded, and the molded body is fired in the temperature range of 700 to 1100 ° C. for 5 hours or more, Then, a method for producing a SiC-based refractory material is provided, which is further fired in a temperature range of 1300 to 1600 ° C. for 3 hours or more.

【0007】[0007]

【作用】本発明のSiC質耐火物は、SiC骨材粒子と
V化合物、Ca化合物とからなる成形体を、所定の雰囲
気中、所定温度で焼成し、その後更に所定温度で焼成す
ることにより製造される。この方法で製造されたSiC
質耐火物は、粒界結合部に副相として存在するシリカ
(SiO2)の多形の一種であるクリストバライトが、
表層部から中心部までほぼ均一に生成しているという特
徴を有し、昇温、冷却の繰り返し使用で長時間使用した
場合においても、変形や膨れが殆どなく、割れ等も生じ
ないという極めて優れた耐熱衝撃性を有している。
The SiC refractory material of the present invention is produced by firing a molded body composed of SiC aggregate particles, V compound and Ca compound at a given temperature in a given atmosphere and then at a given temperature. To be done. SiC manufactured by this method
The quality refractory is made of cristobalite, which is one of the polymorphs of silica (SiO 2 ) that exists as a subphase in the grain boundary joint part.
It has a characteristic that it is generated almost uniformly from the surface layer to the center, and it is extremely excellent in that it does not deform or swell even when it is used for a long time by repeatedly heating and cooling, and it does not cause cracks. It has excellent thermal shock resistance.

【0008】また、ガラス質からなる結合相の組成を上
記範囲内とすることによって、更に優れた高温特性が発
揮され、高温における耐軟化変形性、耐酸化性、機械的
強度及び熱衝撃強度が著しく向上する。これは、結合組
織の主成分をなすSiO2が、上記した焼成条件におい
て、SiC粒子の適度な部分酸化により適量生成される
と、珪酸塩鉱物中の成分であるAl23、SiO2、C
aO等及び別に添加したV25等のV化合物やCaO等
のCa化合物の適量の存在下で緻密で強固な結合状態を
呈するからである。このように緻密でSiC粒子を強固
に結合した結合組織が生成されるのは、SiCの部分酸
化により生成したSiO2が約2倍の体積増加を伴うこ
とによって耐火物組織内の微細気孔が充填されるととも
に、上述の各補助成分が適量存在することによりSiO
2相互の焼結反応を促進するためと考えられる。また、
結合相中にCaOを0.05重量%以下含有することは
耐酸化性、熱衝撃性、クリストバライトの生成量の制御
及びガラス相量の制御の点で効果があり、V25の0.
05〜1.0重量%の範囲での存在は、特に実用時にお
ける耐火物中のSiC粒子の酸化反応を抑制する効果が
ある。
Further, when the composition of the binder phase made of glass is within the above range, more excellent high temperature characteristics are exhibited, and the softening deformation resistance at high temperature, the oxidation resistance, the mechanical strength and the thermal shock strength are improved. Remarkably improved. This is because when SiO 2 which is the main component of the connective structure is produced in an appropriate amount by the partial oxidation of the SiC particles under the above-mentioned firing conditions, Al 2 O 3 , SiO 2 which are the components in the silicate mineral, C
This is because in the presence of an appropriate amount of aO or the like, a V compound such as V 2 O 5 or the like added separately, or a Ca compound such as CaO, a dense and strong bonded state is exhibited. Such a dense and tightly-bonded structure in which SiC particles are strongly bonded is generated because SiO 2 generated by partial oxidation of SiC is accompanied by a volume increase of about 2 times, thereby filling the fine pores in the refractory structure. And the presence of each of the above-mentioned auxiliary components in an appropriate amount
2 This is considered to promote the mutual sintering reaction. Also,
Binder phase that oxidation resistance containing 0.05 wt% or less of CaO in, thermal shock resistance, is effective in terms of control of the control and the glass phase of the amount of cristobalite, 0 V 2 O 5.
The presence in the range of 05 to 1.0% by weight has an effect of suppressing the oxidation reaction of the SiC particles in the refractory during practical use.

【0009】本発明のSiC質耐火物は、SiC骨材粒
子と、主としてガラス質からなる粒界結合部とから構成
される。SiC骨材粒子は60重量%以上、好ましくは
70〜85重量%以上で、残部の粒界結合部はSiO2
1.0〜10.0重量%、好ましくは2.0〜8重量
%、CaO 0.05重量%以下(但し必ず含有す
る)、V25 0.05〜1.0重量%、Al23
0.01〜0.15重量%のガラス質相から構成され
る。
The SiC refractory material of the present invention is composed of SiC aggregate particles and grain boundary joint portions mainly composed of glass. The content of the SiC aggregate particles is 60% by weight or more, preferably 70 to 85% by weight or more, and the remaining grain boundary bonding portions are SiO 2
1.0 to 10.0% by weight, preferably 2.0 to 8% by weight, CaO 0.05% by weight or less (but always included), V 2 O 5 0.05 to 1.0% by weight, Al 2 O 3
It is composed of 0.01 to 0.15% by weight of a glassy phase.

【0010】本発明においては、クリストバライトの総
量がSiC質耐火物全体の0.1〜15.0重量%の範
囲、好ましくは0.1〜8.0重量%の範囲にあること
が、SiC質耐火物の耐熱衝撃性等を向上させることが
でき好ましい。クリストバライトの総量が上記の範囲外
の場合には、高温下、長時間の使用時において、SiC
質耐火物の変形、膨れ、割れ等が発生する。
In the present invention, the total amount of cristobalite is in the range of 0.1 to 15.0% by weight, preferably in the range of 0.1 to 8.0% by weight, based on the entire SiC refractory. It is preferable because the thermal shock resistance of the refractory can be improved. If the total amount of cristobalite is out of the above range, SiC may be used at high temperature for a long time.
Deformation, swelling, or cracking of quality refractory material occurs.

【0011】また本発明において、SiC質耐火物の中
心部の座標を0、表層部の座標を100とした時、50
〜100部分(以下、表層部側と記載)のクリストバラ
イトの重量%(Cri(50-100))と0〜50部分(以
下、中心部側と記載)のクリストバライトの重量%(C
ri(0-50))の比(Cri(50-100))/(Cr
(0-50))が10以下であることが好ましく、5以下で
あれば更に好ましい。この比が10を超えると耐熱衝撃
性等が低下する。
In the present invention, when the coordinates of the center of the SiC refractory are 0 and the coordinates of the surface layer are 100, 50
% By weight (Cri (50-100) ) of cristobalite in the range of 100 to 100 parts (hereinafter referred to as the surface side) and% by weight (C in the range of 0 to 50 parts of the cristobalite in the following)
ri (0-50) ) ratio (Cri (50-100) ) / (Cr
i (0-50) ) is preferably 10 or less, more preferably 5 or less. When this ratio exceeds 10, the thermal shock resistance and the like decrease.

【0012】次に、本発明のSiC質耐火物の製造方法
について説明する。まず、SiC骨材粒子にV化合物及
びCa化合物を混合し、これを所望の形状に成形する。
ここでSiC骨材粒子の粒度としては、5メッシュ以下
(4000μm以下)のものが好ましく、6メッシュ以
下(3360μm以下)のものを用いることがさらに好
ましい。なお、SiC骨材粒子、V化合物及びCa化合
物以外に、ベントナイト、カオリン等の粘土鉱物を混合
することもできる。
Next, a method of manufacturing the SiC refractory material of the present invention will be described. First, a V compound and a Ca compound are mixed with SiC aggregate particles, and the mixture is molded into a desired shape.
Here, the particle size of the SiC aggregate particles is preferably 5 mesh or less (4000 μm or less), and more preferably 6 mesh or less (3360 μm or less). Clay minerals such as bentonite and kaolin can be mixed in addition to the SiC aggregate particles, the V compound and the Ca compound.

【0013】次に、酸化雰囲気中で、その最高保持温度
が通常700〜1100℃の範囲、好ましくは800〜
1000℃の範囲で5時間以上焼成し、このようにして
得られた焼成体を、さらに1300〜1600℃、好ま
しくは1300〜1500℃の温度範囲で3時間以上焼
成する。焼成温度が1300℃未満の場合、耐熱衝撃性
等が優れたSiC質耐火物を得ることができない。ま
た、焼成温度が1600℃を超えると、耐熱衝撃性は良
いものの多少曲げ強度が低下する。
Next, in an oxidizing atmosphere, its maximum holding temperature is usually in the range of 700 to 1100 ° C., preferably 800 to 1100 ° C.
It is fired in the range of 1000 ° C. for 5 hours or more, and the fired body thus obtained is further fired in the temperature range of 1300 to 1600 ° C., preferably 1300 to 1500 ° C. for 3 hours or more. If the firing temperature is less than 1300 ° C., a SiC refractory having excellent thermal shock resistance cannot be obtained. On the other hand, if the firing temperature exceeds 1600 ° C., the flexural strength is somewhat lowered although the thermal shock resistance is good.

【0014】[0014]

【実施例】以下、本発明を実施例に基づき更に詳細に説
明するが、本発明はこれらの実施例に限られるものでは
ない。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to these examples.

【0015】(実施例1〜10)粒度6メッシュ以下の
SiC骨材粒子90重量%に、ガラス質結合相の組成が
表1のAに示す組成となるようにCaO、V25、カオ
リナイトを加え、これに水分を外配量で5.0重量%添
加して混練した。この原料を400×350×10mm
(厚さ)に成形した後、乾燥させて水分を十分に除去し
た。これらの成形体を、表2に示すような条件にて焼成
し、その特性を評価した。その結果を表1に示す。
(Examples 1 to 10) 90% by weight of SiC aggregate particles having a particle size of 6 mesh or less were used so that the composition of the vitreous binder phase became the composition shown in A of Table 1, CaO, V 2 O 5 , and kaori. Knight was added, and 5.0% by weight of water was added thereto as an externally added amount, and the mixture was kneaded. This raw material is 400 × 350 × 10 mm
After molding to (thickness), it was dried to sufficiently remove water. These molded bodies were fired under the conditions shown in Table 2 and their characteristics were evaluated. The results are shown in Table 1.

【0016】なお、昇温速度はそれぞれ100℃/hrと
した。また、クリストバライト量の測定は、厚さ10m
m、縦横各50mmの試料を多数切り出し、厚さ2m
m、縦横各50mmになるまで削り込んで所定位置の試
料とし、特開平3−27791号公報記載の定量分析方
法に準拠して行った。すなわち、まず、上記所定位置の
試料を粒径200μm以下に打砕してふっ酸溶液中に混
在させ、予め求めておいたガラス質相を溶解するための
最適処理条件にてガラス質相を溶解処理した。次いで、
ガラス質相が分離された残渣を濾別し、この残渣を再び
新たな一定量のふっ酸溶液中に加えて、予め求めておい
たクリストバライトを溶解するための最適処理条件にて
溶解処理した。クリストバライトが分離された残渣を濾
別し、濾液中のSi量を吸光光度法により求め、SiO
2量に換算してクリストバライト量とした。また、耐熱
衝撃性は400×350×10mm(厚さ)のSiC質
焼結体を、その上に280×245×20mm(厚さ)
のAl23板を載置した状態で、炉内に1時間保持した
後室温中に引き出し、この時割れが生じるか否かによっ
て破壊強度を求めた。すなわち、割れが生じた温度が破
壊温度である。
The heating rate was 100 ° C./hr. The thickness of cristobalite is 10m.
A large number of samples of 50 mm in length and 50 mm in length and width are cut out and the thickness is 2 m
The sample was cut into pieces each having a length of 50 m and a length of 50 mm to obtain a sample at a predetermined position, and the sample was analyzed according to the quantitative analysis method described in JP-A-3-27791. That is, first, the sample at the above-mentioned predetermined position is crushed to a particle size of 200 μm or less and mixed in a hydrofluoric acid solution, and the vitreous phase is dissolved under the optimum treatment condition for dissolving the vitreous phase obtained in advance. Processed. Then
The residue from which the vitreous phase had been separated was filtered off, and this residue was again added to a fixed amount of hydrofluoric acid solution, and subjected to dissolution treatment under the optimum treatment conditions for dissolving cristobalite, which had been obtained in advance. The residue from which cristobalite was separated was filtered off, and the amount of Si in the filtrate was determined by an absorptiometric method.
The amount was converted to 2 and used as the amount of cristobalite. Moreover, the thermal shock resistance is 400 × 350 × 10 mm (thickness) of a SiC-based sintered body, on which 280 × 245 × 20 mm (thickness)
The Al 2 O 3 plate of No. 2 was placed in a furnace for 1 hour and then pulled out to room temperature, and the fracture strength was determined by whether or not cracking occurred at this time. That is, the temperature at which cracking occurs is the breaking temperature.

【0017】(実施例11)ガラス質からなる結合相が
表1のBに示す組成となるように各成分を添加した以外
は実施例8と同様にして焼結体を得、その特性を評価し
た。その結果を表1に示す。
(Example 11) A sintered body was obtained in the same manner as in Example 8 except that each component was added so that the glassy binder phase had the composition shown in B of Table 1, and the characteristics thereof were evaluated. did. The results are shown in Table 1.

【0018】(実施例12)ガラス質からなる結合相が
表1のCに示す組成となるように各成分を添加した以外
は実施例8と同様にして焼結体を得、その特性を評価し
た。その結果を表1に示す。
(Example 12) A sintered body was obtained in the same manner as in Example 8 except that each component was added so that the vitreous binder phase had the composition shown in Table 1C, and its characteristics were evaluated. did. The results are shown in Table 1.

【0019】(比較例1)ガラス質からなる結合相が表
1のDに示す組成となるように各成分を添加した以外は
実施例8と同様にして焼結体を得、その特性を評価し
た。その結果を表1に示す。
(Comparative Example 1) A sintered body was obtained in the same manner as in Example 8 except that the respective components were added so that the vitreous binder phase had the composition shown in Table 1D, and its characteristics were evaluated. did. The results are shown in Table 1.

【0020】(比較例2)一次焼成を行わなかった以外
は実施例6と同様にして焼結体を得、その特性を評価し
た。その結果を表1に示す。
(Comparative Example 2) A sintered body was obtained in the same manner as in Example 6 except that the primary firing was not performed, and its characteristics were evaluated. The results are shown in Table 1.

【0021】(比較例3)一次焼成を600℃で5時間
行った以外は実施例2と同様にして焼結体を得、その特
性を評価した。その結果を表1に示す。
Comparative Example 3 A sintered body was obtained in the same manner as in Example 2 except that the primary firing was carried out at 600 ° C. for 5 hours, and its characteristics were evaluated. The results are shown in Table 1.

【0022】(比較例4)二次焼成を1300℃で2時
間行った以外は実施例6と同様ににして焼結体を得、そ
の特性を評価した。その結果を表1に示す。
(Comparative Example 4) A sintered body was obtained in the same manner as in Example 6 except that the secondary firing was carried out at 1300 ° C for 2 hours, and its characteristics were evaluated. The results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】表1の結果より、本発明の要件を満たす実
施例1〜12については優れた耐熱衝撃性を有している
ことがわかる。一方、結合相にCaOを含有しない比較
例1はクリストバライトが過剰に存在して耐熱衝撃性が
大きく劣り、また、一次焼成を行わない比較例2、一次
焼成の温度が低い比較例3及び二次焼成の時間が短い比
較例4においてはクリストバライトの分布が不均一で、
いずれも耐熱衝撃性が低いことがわかる。
From the results shown in Table 1, it can be seen that Examples 1 to 12 satisfying the requirements of the present invention have excellent thermal shock resistance. On the other hand, Comparative Example 1 containing no CaO in the binder phase was inferior in thermal shock resistance due to excessive presence of cristobalite, and Comparative Example 2 in which primary firing was not performed, Comparative Example 3 in which primary firing temperature was low and Secondary In Comparative Example 4 where the firing time was short, the distribution of cristobalite was non-uniform,
It can be seen that both have low thermal shock resistance.

【0026】[0026]

【発明の効果】以上説明した通り、本発明によれば、曲
げ強度等の機械的強度が大であるとともに、昇温、冷却
の繰り返し使用で長時間使用した場合においても、変形
や膨れがほとんどなく、割れ等も生じないという極めて
優れた耐熱衝撃性を有するSiC質耐火物とその製造方
法を提供することができる。
As described above, according to the present invention, the mechanical strength such as bending strength is large, and even if it is used for a long time by repeatedly using temperature rising and cooling, there is almost no deformation or swelling. It is possible to provide a SiC refractory having extremely excellent thermal shock resistance that does not cause cracks and the like and a method for producing the same.

フロントページの続き (72)発明者 斎藤 日出男 岐阜県可児郡御嵩町井尻776番地の2 (72)発明者 山川 治 岐阜県可児市光陽台1丁目5番地Continued Front Page (72) Hideo Saito, Hideo Saito, 776 Ijiri, Mitake-machi, Kani-gun, Gifu Prefecture (72) Inventor, Osamu Yamakawa, 5-5 Koyodai, Kani-shi, Gifu Prefecture

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 SiC骨材粒子が60重量%以上で、粒
界結合部主相がSiO2 1.0〜10.0重量%、C
aO 0.05重量%以下(但し必ず含有する)、V2
5 0.05〜1.0重量%、Al23 0.01〜
0.15重量%のガラス質からなる結合相を有するSi
C質耐火物であって、SiC粒界結合部に副相として存
在するクリストバライト量が、表層部から中心部までほ
ぼ均一に分布されていることを特徴とするSiC質耐火
物。
1. A SiC aggregate particle is 60 wt% or more, a grain boundary bonding part main phase is SiO 2 1.0-10.0 wt%, and C
aO 0.05% by weight or less (but must be included), V 2
O 5 0.05 to 1.0 wt%, Al 2 O 3 0.01~
Si having 0.15% by weight of glassy binder phase
A C-type refractory, characterized in that the amount of cristobalite existing as a subphase in the SiC grain boundary joint is distributed substantially uniformly from the surface layer to the center.
【請求項2】 SiC粒界結合部に副相として存在する
クリストバライトの総量が、SiC質耐火物全体の0.
1〜15.0重量%の範囲であることを特徴とする請求
項1記載のSiC質耐火物。
2. The total amount of cristobalite existing as a sub-phase in the SiC grain boundary joint is 0.
The SiC refractory material according to claim 1, which is in the range of 1 to 15.0% by weight.
【請求項3】 SiC質耐火物の中心部の座標を0、表
層部の座標を100とした場合、50〜100部分のク
リストバライトの重量%(Cri(50-100))と0〜50
部分のクリストバライトの重量%(Cri(0-50))の比
(Cri(50- 100))/(Cri(0-50))が10以下であ
ることを特徴とする請求項1又は2に記載のSiC質耐
火物。
3. When the coordinates of the center of the SiC refractory are 0 and the coordinates of the surface layer are 100, the weight% (Cri (50-100) ) and 0 to 50 of the cristobalite in 50 to 100 parts are obtained.
3. The ratio (Cri (50-100 ) ) / (Cri (0-50) ) of the weight% (Cri (0-50) ) of the cristobalite of the part is 10 or less, 3. SiC refractory.
【請求項4】 SiC骨材粒子に、V化合物及びCa化
合物を混合し、これを成形した後、該成形体を700〜
1100℃の温度範囲で5時間以上かけて昇温または保
持して焼成することを特徴とするSiC質耐火物の製造
方法。
4. A SiC aggregate particle is mixed with a V compound and a Ca compound, and the mixture is molded.
A method for producing a SiC-based refractory material, which comprises firing at a temperature range of 1100 ° C. for 5 hours or more while raising or holding the temperature.
【請求項5】 請求項4の焼成に引き続いて、更に13
00〜1600℃の温度範囲で3時間以上かけて昇温ま
たは保持して焼成することを特徴とするSiC質耐火物
の製造方法。
5. Subsequent to the firing of claim 4, further 13
A method for producing a SiC-based refractory material, which comprises firing at a temperature range of 00 to 1600 ° C. for 3 hours or more while raising or holding the temperature.
JP4062717A 1992-03-19 1992-03-19 SiC refractory Expired - Lifetime JP3026883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4062717A JP3026883B2 (en) 1992-03-19 1992-03-19 SiC refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4062717A JP3026883B2 (en) 1992-03-19 1992-03-19 SiC refractory

Publications (2)

Publication Number Publication Date
JPH05262564A true JPH05262564A (en) 1993-10-12
JP3026883B2 JP3026883B2 (en) 2000-03-27

Family

ID=13208376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4062717A Expired - Lifetime JP3026883B2 (en) 1992-03-19 1992-03-19 SiC refractory

Country Status (1)

Country Link
JP (1) JP3026883B2 (en)

Also Published As

Publication number Publication date
JP3026883B2 (en) 2000-03-27

Similar Documents

Publication Publication Date Title
JP2980457B2 (en) Base for sanitary ware and its manufacturing method
US3067050A (en) Alumina refractories
JP4704111B2 (en) Oxide bonded silicon carbide material
EP2138474A1 (en) SIC material
US4300953A (en) Dense cordierite containing manganese
JPH10265259A (en) Fused silica-based refractory and its production
JPH01108177A (en) Ceramic foam
WO1999043628A1 (en) Ceramic body for sanitary earthenware and process for producing the same
JP3034808B2 (en) Thermal shock resistant ceramics and manufacturing method thereof
JP3142402B2 (en) SiC refractory
JPH05262564A (en) Sic-based refractory and its production
JPH07237958A (en) High-strength porcelain and production thereof
JP3368960B2 (en) SiC refractory
WO1995009820A1 (en) Body containing deposited corundum and process for producing the body
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
US3342615A (en) Manufacture of kiln furniture
JP3373312B2 (en) SiC-based kiln tool and method of manufacturing the same
JPH0747507B2 (en) Nitride-bonded SiC refractory
JP3111741B2 (en) High strength porcelain and its manufacturing method
US3226241A (en) Alumina refractories
JP3142360B2 (en) SiC refractory raw material, method of preparing the same, and SiC refractory obtained using the refractory raw material
JP2001302361A (en) Firing tool and method of producing the same
US1859227A (en) Process of making glass tank blocks and like refractories and article made thereby
Mostafa et al. Role of borate frit as co-flux in tile bodies
JP3027215B2 (en) Silicon nitride bonded SiC refractories

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 13