JPH0526173B2 - - Google Patents

Info

Publication number
JPH0526173B2
JPH0526173B2 JP57072363A JP7236382A JPH0526173B2 JP H0526173 B2 JPH0526173 B2 JP H0526173B2 JP 57072363 A JP57072363 A JP 57072363A JP 7236382 A JP7236382 A JP 7236382A JP H0526173 B2 JPH0526173 B2 JP H0526173B2
Authority
JP
Japan
Prior art keywords
light
polarization
optical element
analyzer
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57072363A
Other languages
Japanese (ja)
Other versions
JPS58189612A (en
Inventor
Kazuya Matsumoto
Kyonobu Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7236382A priority Critical patent/JPS58189612A/en
Priority to US06/382,202 priority patent/US4561032A/en
Publication of JPS58189612A publication Critical patent/JPS58189612A/en
Publication of JPH0526173B2 publication Critical patent/JPH0526173B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10534Heads for recording by magnetising, demagnetising or transfer of magnetisation, by radiation, e.g. for thermomagnetic recording
    • G11B11/10536Heads for recording by magnetising, demagnetising or transfer of magnetisation, by radiation, e.g. for thermomagnetic recording using thermic beams, e.g. lasers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10541Heads for reproducing
    • G11B11/10543Heads for reproducing using optical beam of radiation

Description

【発明の詳細な説明】 本発明は磁気光学効果を利用した磁気的記録情
報の読取光学系に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical system for reading magnetically recorded information using the magneto-optic effect.

従来、磁気光学カー(Kerr)効果を用いて、
磁気的記録情報を光学的に読み出す方法は公知で
あり、特に垂直磁気記録体からの極(Polar)カ
ー効果を用いた記録パターンの読取方法が広く用
いられている。このような記録パターンの光学的
観測、および電気的検出には、第1図Aに示す光
学系が使用されている。
Conventionally, using the magneto-optical Kerr effect,
Methods for optically reading magnetically recorded information are well known, and in particular, a method for reading recorded patterns using the Polar Kerr effect from a perpendicular magnetic recording medium is widely used. The optical system shown in FIG. 1A is used for optical observation and electrical detection of such recorded patterns.

第1図Aにおいて、2は偏光板、3は半透明
鏡、4は対物レンズ、5は垂直磁気記録体、6は
検光子、7はアイ・ピースレンズ、8は光電検出
器、あるいな磁気パターン観測面である。
In FIG. 1A, 2 is a polarizing plate, 3 is a semi-transparent mirror, 4 is an objective lens, 5 is a perpendicular magnetic recording medium, 6 is an analyzer, 7 is an eyepiece lens, 8 is a photoelectric detector or magnetic This is the pattern observation surface.

光束1は、偏光板2により直線偏光化された光
束となり、垂直磁気記録体5に入射する。ここ
で、従来の方式に用いる半透明鏡は偏光方向に関
係なくほぼ50%の透過及び反射率のものが用いら
れている。垂直磁気記録体5の磁化方向(上向
き、あるいは下向き)に対応し、光束の偏光面が
カー効果により互いに反対方向の回転を受けて反
射される。例えば、下向き方向磁化部により反射
させる光束の偏光面がθKの回転を受けたとする
と、上向き磁化部により反射される光束の偏光面
は−θKの回転を受ける。
The light beam 1 is linearly polarized by the polarizing plate 2 and enters the perpendicular magnetic recording medium 5 . Here, the semi-transparent mirror used in the conventional method has a transmittance and reflectance of approximately 50% regardless of the polarization direction. Corresponding to the magnetization direction (upward or downward) of the perpendicular magnetic recording body 5, the polarization planes of the light beam are rotated in opposite directions due to the Kerr effect and reflected. For example, if the plane of polarization of the light beam reflected by the downwardly magnetized portion is rotated by θ K , the plane of polarization of the beam reflected by the upwardly magnetized portion is rotated by −θ K .

第1図Bに示す如く入射光束をP偏光とした場
合、検光子6の偏光透過方向を上記偏光方向−θK
と垂直方向(Q方向)に配置すると、上向きの磁
化方向吹からの反射光は、検光子6により遮断さ
れ、下向き磁化方向部からの反射光の検光子6の
透過成分△が検光子6を通過する。この現象によ
り、垂直磁化パターンが検出、あるいは観測出来
る。
When the incident light flux is P-polarized light as shown in FIG .
When placed in the perpendicular direction (Q direction), the reflected light from the upward direction of magnetization is blocked by the analyzer 6, and the transmitted component Δ of the reflected light from the downward direction of magnetization passes through the analyzer 6. pass. This phenomenon allows perpendicular magnetization patterns to be detected or observed.

しかし従来の偏光方向に依存しない半透明鏡を
用いた光学系では、光束が2回も半透明鏡を通る
事で振幅が1/4に落ちる。更にカー効果による偏
光回転角θKが一般には大略1°以下であり、検光子
6を通過して得られるカー回転変調成分が非常に
微小な量であることを考えると、半透明鏡の部分
による光量損失が検出信号光の検出感度を低下さ
せることとなる。従つて、従来方式には以下の欠
点が存在する。
However, in conventional optical systems that use semi-transparent mirrors that do not depend on the polarization direction, the light beam passes through the semi-transparent mirror twice, causing its amplitude to drop to 1/4. Furthermore, considering that the polarization rotation angle θ K due to the Kerr effect is generally approximately 1° or less, and that the Kerr rotation modulation component obtained by passing through the analyzer 6 is extremely small, The loss of light amount caused by this decreases the detection sensitivity of the detection signal light. Therefore, the conventional method has the following drawbacks.

1 偏光特性を持たない半透明鏡を通過すること
により、入射光束の偏光方向成分及び磁気光学
カー効果による変調成分の光量が半分以上損な
われる為に、検出信号光の利用効率が悪く記録
パターンが検出しにくい。
1 By passing through a semi-transparent mirror that does not have polarization characteristics, more than half of the light intensity of the polarization direction component of the incident light flux and the modulation component due to the magneto-optic Kerr effect is lost, resulting in poor utilization efficiency of the detection signal light and the recording pattern. Hard to detect.

2 半透明鏡による信号光光量の損失の為、この
信号光から情報を有する偏光成分を分離する為
には極めて高い消光比の検光子を高い精度で位
置合せして配置せねばならず、コスト及び耐久
性からも好ましくない。一方、特開昭57−
44241号公報には、上記半透明鏡を代わりに偏
光ビームスプリツタを用いて、偏光回転角を見
かけ上増大させる磁気光学再生装置が提供され
ている。しかしながら、この装置においては、
偏光面の回転角を増大させることに囚われるあ
まり、偏光ビームスプリツタの特性が好適なも
のにはなつていなかつた。即ち、高いSN比で
記録パターンを読み取るためには、力−回転角
ではなく、力−回転変調成分光量を最大とする
必要があるが、上記例ではこのような考慮がな
されていなかつた。
2. Due to the loss of signal light intensity due to the semitransparent mirror, in order to separate the polarized light component containing information from this signal light, an analyzer with an extremely high extinction ratio must be aligned and placed with high precision, which increases the cost. It is also unfavorable from the viewpoint of durability. On the other hand, JP-A-57-
Japanese Patent No. 44241 provides a magneto-optical reproducing device that uses a polarizing beam splitter instead of the semi-transparent mirror to apparently increase the polarization rotation angle. However, in this device,
Due to the focus on increasing the rotation angle of the polarization plane, the characteristics of the polarization beam splitter have not been optimized. That is, in order to read the recorded pattern with a high signal-to-noise ratio, it is necessary to maximize the amount of light of the force-rotation modulation component rather than the force-rotation angle, but such consideration was not taken in the above example.

本発明は以上の従来の読取光学系の問題点を解
決し、大きなカー回転変調成分光量を得て、明る
い磁気パターンを検出する事が可能な記録パター
ン読取光学系を提供することを目的とする。
It is an object of the present invention to solve the problems of the conventional reading optical system described above, and to provide a recorded pattern reading optical system that can obtain a large amount of Kerr rotation modulation component light and detect a bright magnetic pattern. .

本発明の上記目的は、所定方向に偏向した光束
を磁気的にパターンが記録された記録体に入射せ
しめる手段と、前記パターンに応じて偏光状態に
変調を受けた記録体からの反射光を前記入射光束
と分離するビームスプリツタと、該ビームスプリ
ツタで分離された反射光の偏光状態を光強度変化
に変換して検出する手段とから成り、前記ビーム
スプリツタが、前記反射光の所定方向の偏光成分
に比べて、それと垂直な方向の偏光成分を相対的
に増加させる特性を有する記録パターン読取光学
系において、前記ビームスプリツタが、前記反射
光の所定方向の偏光成分の内、18〜52%を前記検
出手段に導き、反射光の所定方向と垂直な方向の
偏光成分の90%以上を検出手段に導くように構成
することによつて達成される。
The above object of the present invention is to provide a means for causing a light beam deflected in a predetermined direction to enter a recording medium on which a pattern is magnetically recorded, and a means for causing reflected light from the recording medium whose polarization state is modulated in accordance with the pattern to be reflected from the recording medium. It consists of a beam splitter that separates the incident light beam, and means that converts the polarization state of the reflected light separated by the beam splitter into a change in light intensity and detects the polarization state, and the beam splitter converts the reflected light in a predetermined direction. In the recording pattern reading optical system having a characteristic of relatively increasing a polarization component in a direction perpendicular to the polarization component in a predetermined direction of the reflected light, the beam splitter increases polarization components in a predetermined direction of the reflected light. This is achieved by configuring so that 52% of the reflected light is guided to the detection means, and 90% or more of the polarized light component in the direction perpendicular to the predetermined direction of the reflected light is guided to the detection means.

本発明の実施例を以下図に従い説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第2図に本発明の光学系の実施例を示す。ここ
で入射光束aの偏光方向は偏光子9によつて紙面
に平行なP偏光状態にした場合を考える。本実施
例に用いる光学素子10は、偏光特性を持たない
従来の半透明鏡とは異なり、透過率tと反射率r
が偏光方向により異なる性質を有する。即ち、光
学素子10のP偏光成分の振幅透過率tP、振幅反
射率rP、S偏光成分(第2図において、紙面に垂
直な偏光成分)の振幅透過率tS、振幅反射率rS
して、該光学素子は一般に|tP|≠|tS|、|rP
≠|rS|なる特性を有する半透明鏡である。
FIG. 2 shows an embodiment of the optical system of the present invention. Here, a case will be considered in which the polarization direction of the incident light beam a is made into a P polarization state parallel to the plane of the paper by the polarizer 9. The optical element 10 used in this example differs from a conventional semi-transparent mirror that does not have polarization characteristics, and has a transmittance t and a reflectance r.
has different properties depending on the polarization direction. That is, the amplitude transmittance t P of the P-polarized light component of the optical element 10, the amplitude reflectance r P , the amplitude transmittance t S of the S-polarized light component (the polarized light component perpendicular to the plane of the paper in FIG. 2 ) , and the amplitude reflectance r S , the optical element generally has |t P |≠|t S |, |r P |
It is a semi-transparent mirror with the characteristic ≠|r S |.

第2図における光学素子10、垂直磁気記録媒
体11及び検光子12の偏光特性をよく知られた
Jonesマトリツクスで表現すると次のようにな
る。まず光学素子10の透過Jonesマトリツクス
〓及び反射Jonesマトリツクス〓は、 〓=tP, O,O tS,〓=rP, O,O rS (1) となる。垂直磁気記録媒体11については、垂直
入射時の媒体振幅反射率をR、磁気光学カー効果
によるカー回転振幅反射率をKとすると、媒体
Jonesマトリツクス〓は、 〓=−R, K,K R (2) と表わされる。検光子12については、P偏光方
向に対し、第3図のように検光子透過軸Aを角度
θだけS偏光方向に傾けた時、消光率をηとする
と、透過Jonesマトリツクス〓は、 〓=cosθ, sinθ,−sinθ −cosθ1,0 0,ηcosθ, −sinθ,sinθ cosθ=cos2θ+√sin2θ, 1/2(1−√)sin2θ,1/2(1−√)sin2θ sin2θ+√cos2θ (3) となる。従つて第2図において、検光子12を透
過した検出光fの偏光状態を表わすJonesベクト
ルを〓とすると、光束bのJonesベクトルを〓と
して、 〓=〓〓〓〓〓 (4) と表せる。光束bを前述のようにP偏光方向の直
線偏光として、その振幅をV0としておくと、検
光子12を透過した検出光fの強度は(1)、(2)、
(3)、(4)式を用いて、 |V02|tP2〔|R|2|rP2(cos2θ+ηsin2
θ)−|R||K||rP||rS|(1−η)cosδsin2
θ〕(5) ここで、R=|R|ei〓,K=|K|ei〓,rP=|rP
irp,rS=|rS|eirs、δ=α−β+rP−rSで|K
2の項は、2次の微少量として省略した。
The polarization characteristics of the optical element 10, perpendicular magnetic recording medium 11 and analyzer 12 in FIG.
Expressed using Jones matrix, it is as follows. First, the transmission Jones matrix and reflection Jones matrix of the optical element 10 are as follows: =t P , O, O t S , = r P , O, O r S (1). Regarding the perpendicular magnetic recording medium 11, if the medium amplitude reflectance at perpendicular incidence is R, and the Kerr rotational amplitude reflectance due to the magneto-optic Kerr effect is K, then the medium
Jones matrix 〓 is expressed as 〓=-R, K, K R (2). Regarding the analyzer 12, when the analyzer transmission axis A is tilted in the S polarization direction by an angle θ with respect to the P polarization direction as shown in FIG. cosθ, sinθ, −sinθ −cosθ1, 0 0, ηcosθ, −sinθ, sinθ cosθ=cos 2 θ+√sin 2 θ, 1/2(1−√) sin2θ, 1/2(1−√) sin2θ sin 2 θ+ √cos 2 θ (3). Therefore, in FIG. 2, if the Jones vector representing the polarization state of the detection light f transmitted through the analyzer 12 is 〓, and the Jones vector of the luminous flux b is 〓, it can be expressed as 〓=〓〓〓〓〓〓 (4). Assuming that the luminous flux b is linearly polarized light in the P polarization direction as described above and its amplitude is V 0 , the intensity of the detection light f transmitted through the analyzer 12 is (1), (2),
Using equations (3) and (4), |V 0 | 2 |t P | 2 [|R| 2 |r P | 2 (cos 2 θ+ηsin 2
θ)−|R||K||r P ||r S |(1−η)cosδsin2
θ](5) Here, R=|R| ei 〓, K=|K| ei 〓, r P = |r P
| irp , r S = | r S | e irs , δ = α − β + r P − r S | K
| The term 2 has been omitted as a second-order minute amount.

上記(5)式の右辺の第1項は、検出光の直流
(DC)成分、即ち、入射光束の偏光方向成分光強
度IRであり、第2項は垂直磁気記録媒体11によ
る変調(AD)成分、つまりカー回転変調成分光
強度IKを意味する。
The first term on the right side of equation (5) above is the direct current (DC) component of the detection light, that is, the polarization direction component light intensity I R of the incident light flux, and the second term is the modulation (AD) by the perpendicular magnetic recording medium 11. ) component, which means the Kerr rotation modulation component light intensity I K.

(5)式から検光子12の透過軸方位角θを考慮す
ることにより、IKを変化されることができ、該検
光子の消光不完全性を補償できる。ここで検光透
過軸方位角θを45°とすることによつてIKは最大
となる。また、磁気パターンを可視可して肉眼等
で観測する場合には、 可視度υ〔≡(Inax−Inio)/(Inax+Inio)〕を高
める必要がある。この場合には、IK≠0つまり
sin2θ≠0として、 υ∞〔|R||rP|/2|K|sonδ(1/tanθ+ηta
nθ)+(1−η)|rS|〕-1(6) となる。この時のυを最大にする検光子12の方
位θ0は θ0=tan-1(1/√) (7) と求められる。通常用いられる偏光子の消光率η
は10-4〜10-2であり、θ0は第4図からわかるよう
に84°<θ0<89.5°の範囲で、用いられる検光子の
特性に対して最大の可視度を得る検光子透過軸方
位角を設定することができる。
By considering the transmission axis azimuth angle θ of the analyzer 12 from equation (5), I K can be changed and the incomplete extinction of the analyzer can be compensated for. Here, I K is maximized by setting the analysis transmission axis azimuth θ to 45°. Furthermore, when making the magnetic pattern visible and observing it with the naked eye, it is necessary to increase the visibility υ [≡(I nax − I nio )/(I nax + I nio )]. In this case, I K ≠ 0, that is,
As sin2θ≠0, υ∞[|R||r P |/2|K|sonδ(1/tanθ+ηta
nθ) + (1−η) | r S | ] -1 (6). The orientation θ 0 of the analyzer 12 that maximizes υ at this time is determined as θ 0 =tan −1 (1/√) (7). Extinction rate η of commonly used polarizers
is 10 -4 to 10 -2 , and θ 0 is in the range of 84° < θ 0 < 89.5°, as shown in Figure 4. The transmission axis azimuth can be set.

また(5)式から光学素子10透過率及び反射率に
偏光特性を持たせることで、IR及びIKの相対値を
変化されることが可能である。その結果、検光子
12の消光不完全性によるIKの低下を補償するよ
うに、IKを見かけ上増大することができる。光学
素子10の吸収が無視できるとすると、|tp2
1−|rP2として(5)式から、 IR∞(1−|rP2)|rP2 (8) IK∞(1−|rP2)|rP||rs| (9) となる。ここからIRについては|rP2には無関係
に、|rP2=0.5で最大となり、IKについては|rP
2=0.33で最大となるこがわかる。また|rP2
=1.0でIKが最大となる。
Furthermore, from equation (5), it is possible to change the relative values of I R and I K by giving polarization characteristics to the transmittance and reflectance of the optical element 10. As a result, I K can be increased in appearance to compensate for the decrease in I K due to incomplete extinction of the analyzer 12. Assuming that the absorption of the optical element 10 can be ignored, |t p | 2 =
From equation (5) as 1−|r P | 2 , I R ∞ (1−|r P | 2 ) | r P | 2 (8) I K ∞ (1− | r P | 2 ) | r P | |r s | (9) From this, for I R , the maximum is at |r P | 2 = 0.5, regardless of |r P | 2 , and for I K , |r P |
It can be seen that the maximum value is | 2 = 0.33. Also |r P | 2
I K is maximum when = 1.0.

第5図に上記(8)、(9)式によりIR及びIKの光学素
子10の偏光特性依存性を示す。実線は偏光方向
成分光強度IRを示し、破線はカー回転変調成分光
強度IKで、aが|rs2=0.9、bが、|rs2=0.7、
cが|rs2=0.5の場合である。
FIG. 5 shows the dependence of I R and I K on the polarization characteristics of the optical element 10 using equations (8) and (9) above. The solid line indicates the polarization direction component light intensity I R , and the broken line indicates the Kerr rotation modulation component light intensity I K , where a is |r s | 2 = 0.9, b is |r s | 2 = 0.7,
This is the case when c is |r s | 2 =0.5.

第5図から磁気光学カー効果を用いた第2図の
如き記録パターン読取光学系において同一の|rP
2の値に対して、従来の|rP2及び|rs2が伴
に50%の半透明鏡を用いた場合に比べ、|rs2
90%の光学素子を用いると、約1.4倍のIXが得ら
れ、明るい磁気パターンが検出できる。前述のよ
うに、|rs2=1.0でIKが最大であるので、|rs2
は90%以上とすれば良い。更に|rP2が約33%
の光学素子を用いると、従来の場合に比べ、1.5
倍以上大きなIKの最大値が得られる。ここで、
0.18<|rP2<0.52ならばIKは上記最大値の90%
以上の値が得られるので、|rP2は上記範囲内に
設定すれば十分な効果を得ることができる。また
前述の可視度υを高める、場合には|rs2をな
るべく大きく|rP2をなるべく小さく設定する
事が望ましい。このような偏光特性を有する光学
素子は、一般の偏光ビームスプリツタと同様に作
製される。
From FIG. 5, it is clear that the same |r P
For the value of | 2 , |r P | 2 and |r s | 2 are both 50% when using a semi-transparent mirror .
When using 90% optical elements, approximately 1.4 times more IX can be obtained and bright magnetic patterns can be detected. As mentioned above, I K is maximum at |r s | 2 = 1.0, so |r s | 2
should be 90% or more. Furthermore, |r P2 is about 33%
When using an optical element of 1.5 compared to the conventional case,
A maximum value of I K that is more than twice as large can be obtained. here,
If 0.18<|r P2 <0.52, I K is 90% of the above maximum value
Since the above values can be obtained, a sufficient effect can be obtained by setting |r P | 2 within the above range. Furthermore, in order to increase the aforementioned visibility υ, it is desirable to set |r s | 2 as large as possible and |r P | 2 as small as possible. An optical element having such polarization characteristics is manufactured in the same manner as a general polarization beam splitter.

以上の実施例の観測或いは検出法は第6図Aに
示す系についてであつた。次に、光学素子10を
用いた他の観測或は検出法の実施例について、そ
れぞれの光学素子10の特性を最適な条件を求め
る。
The observation or detection method in the above embodiments was for the system shown in FIG. 6A. Next, for other examples of observation or detection methods using the optical element 10, optimal conditions for the characteristics of each optical element 10 are determined.

第6図Bに示すように、光学素子10に対し、
光束がS偏光状態として入射する場合について考
察する。検光子12を抜ける光量は第6図Aの場
合と全く同じ導出胃過程を経て、 IR∝(1−|rS2)|rP2 (10) IK∝(1−|rP2)|rP||rS| (11) と得られる。(8)及び(9)式において、rPをrSに、rP
をrSに置き換えれば、両式は全く一致する。この
結果から|rP2、|rS2に対するIR及びIKの依存
性が描け、|rP2が大きい程IKを大きくすること
ができ、さらに|rS2が約33%のときIKを最大の
値とすることができる。また可視度υを大きくす
るには、|rS2は小さくする方が好ましい。
As shown in FIG. 6B, for the optical element 10,
Consider the case where the light beam enters in the S polarization state. The amount of light passing through the analyzer 12 goes through the same derivation process as in the case of FIG. P | 2 ) | r P | | r S | (11) is obtained. In equations (8) and (9), r P is replaced by r S , r P
If we replace rS with rS , the two equations match exactly. From this result, we can draw the dependence of I R and I K on |r P | 2 and |r S | 2 , and the larger | r P | I K can reach its maximum value when it is about 33%. Furthermore, in order to increase the visibility υ, it is preferable to decrease |r S | 2 .

以上、第6図A,Bの場合は、光束が光学素子
を透過し、記録体11から再び光学素子10に入
り反射されて、検光子12により検出光となる場
合である。
In the cases shown in FIGS. 6A and 6B, the light beam passes through the optical element, enters the optical element 10 again from the recording medium 11, is reflected, and becomes detected light by the analyzer 12.

次に、上記の逆、即ち光束が光学素子10によ
り反射され、更に記録体11により反射された
後、光学素子10を透過する場合については、前
述の例では(4)式で表わされたJoneSベクトル〓は 〓=〓〓〓〓〓 〓 となる。
Next, regarding the reverse of the above, that is, the case where the light beam is reflected by the optical element 10, further reflected by the recording medium 11, and then transmitted through the optical element 10, in the above example, it is expressed by equation (4). The JoneS vector 〓 becomes 〓=〓〓〓〓〓 〓.

従つて、第6図Cに示す如く、光学素子10に
対し、光束の偏光状態がP偏光で入射する場合、
同様の考察によつて(8)及び(9)式において、rPをtP
に、rSをtSとすることで IR∝(1−|tP2)|tP2 (13) IK∝(1−|tP2)|tP||tS| (14) が得られ、|tS2を大きくして|tP2を約33%と
することでIKが最大となり明るい磁気パターンが
検出できる。可視度υについても前述と同様にし
て|tP2がなるべき小さい方が良い。
Therefore, as shown in FIG. 6C, when the light beam is incident on the optical element 10 in a P-polarized state,
Based on similar considerations, in equations (8) and (9), r P is t P
Then, by setting r S to t S , I R ∝ (1−|t P | 2 ) | t P | 2 (13) I K ∝ (1− | t P | 2 ) | t P | | t S | (14) is obtained, and by increasing |t S | 2 and setting |t P | 2 to about 33%, I K becomes maximum and a bright magnetic pattern can be detected. Similarly to the above, the visibility υ should be as small as |t P | 2 , the better.

第6図Dに示す如く、光学素子10に対し、光
束の偏光状態がS偏光で入射する場合、全く同様
に検光子12を通過する光強度は IR∝(1−|tS2)|tS2 (15) IK∝(1−|tS2)|tS||tP| (16) で導出できる。(8)及び(9)式のrPをtSに、rSをtP
置き換えれば各々(15)及び(16)式に一致し、|tP2
大きくし、|tP2を約33%とすれば明るい磁気パ
ターンが検出できる。また可視度υを大きくする
には、|tS2を小さくすればよい。
As shown in FIG. 6D, when the polarization state of the light beam enters the optical element 10 as S-polarized light, the light intensity passing through the analyzer 12 is I R ∝(1−|t S | 2 ) in exactly the same way. |t S | 2 (15) I K ∝(1−|t S | 2 ) |t S | |t P | (16) If we replace r P with t S and r S with t P in equations (8) and (9), they match equations (15) and (16), respectively, and by increasing |t P | 2 , |t P | If 2 is about 33%, a bright magnetic pattern can be detected. Furthermore, in order to increase the visibility υ, |t S | 2 can be decreased.

第7図A,Bのように光学素子10からの検出
光を、更に光学素子10′で分割する場合にも、
前述の論議は適用できる。第7図Aの場合にはP
偏光入射のとき 〓a=〓a〓′〓〓〓〓 〓 〓b=〓b〓′〓〓〓〓 〓 として得られる光強度は、検出子12aからの検
出光については(8)及び(9)式において、rPをrPrP
に、rSをrSrS′に、θをθaに置き換え、検光子12
bからの検出光についてはrPをrPtP′に、rSをrS
tS′に、θをθbと置き換えればよい。
Even when the detection light from the optical element 10 is further divided by the optical element 10' as shown in FIGS. 7A and 7B,
The foregoing discussion is applicable. In the case of Figure 7 A, P
When polarized light is incident, the light intensity obtained as 〓a=〓a〓′〓〓〓〓 〓 〓b=〓b〓′〓〓〓〓 〓 For the detected light from the detector 12a, the light intensity is obtained as (8) and (9) ), let r P be r P r P
, replace r S with r S r S ′ and θ with θ a , analyzer 12
For the detected light from b, let r P be r P t P ′ and r S be r S
In t S ′, θ can be replaced with θ b .

この時分割した検出光に対しては光学素子10
及び検光子12a,12bの透過軸方向θa,θb
適当に選ぶことにより各々の偏光方向成分光強度
とカー回転変調成分光強度の相対値を変化させる
ことができる。一般には第7図Aのような配置
は、光学素気10′で分割された光束をそれぞれ
光検出器で受け、電気的差動検出を行なうのが通
常である。この場合にはθa−θbとし、さらに分割
された光束が共に、偏光方向成分光強度とカー回
転変調成分光強度の相対値が等しいことが望まし
い。従つてこのような電気的差動検出の場合は|
rS′|=|tS′|、|rP′|=|tP′|の特性を持つ、
偏光特性を有さない半透明鏡を光学素子10′に
用いるのが好ましい。ただし、検出処理系による
差動不完全性等を考慮して、あらかじめ偏光特性
を有する半透明鏡を用いても良いことは言うまで
もない。S偏光入射の場合もr′Pをr′S、r′Sをr′P
t′Pをt′S、t′Sをt′Pと置き換え全く同様の議論がで
きる。
For this time-divided detection light, an optical element 10
By appropriately selecting the transmission axis directions θ a and θ b of the analyzers 12a and 12b, the relative values of the respective polarization direction component light intensities and Kerr rotation modulation component light intensities can be changed. Generally, in the arrangement as shown in FIG. 7A, each light beam divided by the optical element 10' is received by a photodetector, and electrical differential detection is performed. In this case, it is desirable that θ a −θ b be set, and that the relative values of the polarization direction component light intensity and the Kerr rotation modulation component light intensity of the divided light beams are equal. Therefore, in the case of such electrical differential detection, |
r S ′|=|t S ′|, |r P ′|=|t P ′|,
Preferably, a semi-transparent mirror without polarizing properties is used for optical element 10'. However, it goes without saying that a semi-transparent mirror having polarization characteristics in advance may be used in consideration of differential imperfections caused by the detection processing system. In the case of S-polarized light incident, r′ P is r′ S , r′ S is r′ P ,
Exactly the same argument can be made by replacing t′ P with t′ S and t′ S with t′ P.

第7図Bには第6図C,Dと同様の光学系にお
いて検出光を光学素子10′で分割する場合を示
している。この時にはP偏光入射に対し(8)及び(9)
式において検光子12aを通過する光については
tPをtPtP′、tSをtStS′、θをθaと置き換え、検光子
12bを通過する光については、tPをtPrP′、tS
tSrS′、θをθbとして第7図Aと全く同様な議論が
できる。S偏光入射の場合もtP′をtS′、tS′をtP′、
rP′をrS′、rS′をrP′と置き換えれば良い。
FIG. 7B shows a case where the detection light is divided by the optical element 10' in an optical system similar to that shown in FIGS. 6C and 6D. In this case, (8) and (9) for P-polarized light incidence.
Regarding the light passing through the analyzer 12a in the formula,
Replace t P with t P t P ′, t S with t S t S ′, and θ a with θ a , and for the light passing through the analyzer 12b, replace t P with t P r P ′ and t S with
The same argument as in Figure 7A can be made with t S r S ' and θ being θ b . Also in the case of S-polarized light incident, t P ′ is t S ′, t S ′ is t P ′,
Just replace r P ′ with r S ′ and r S ′ with r P ′.

このように本発明の実施例においては、読取光
学系中に配する光学素子の透過率或いは反射率を
各偏光成分毎都に異ならせて、光束を透過量或い
は反射量を制御することにより、入射光束の偏光
方向成分に比べて、磁気光学カー効果によるカー
回転変調成分を相対的に増加させ、明るい磁気パ
ターンを得るものである。
In this way, in the embodiments of the present invention, the transmittance or reflectance of the optical elements disposed in the reading optical system is made different for each polarized light component to control the amount of light transmitted or reflected. A bright magnetic pattern is obtained by relatively increasing the Kerr rotation modulation component due to the magneto-optic Kerr effect compared to the polarization direction component of the incident light beam.

次に本発明の光学素子を光磁気記録方式のデイ
スクメモリー、ビデオ、デイスク等に適用する実
施例を第8図により説明する。
Next, an embodiment in which the optical element of the present invention is applied to a magneto-optical recording type disk memory, video, disk, etc. will be described with reference to FIG.

図中13は半導体レーザーHe−Neレーザー等
の光源である。14は光源からの光束を平行光束
にするためのコリメート光学系である。15は偏
光板で先の実施例で説明した光学素子19に対
し、入射偏光面がP偏光となるようにその軸を配
置する。16は位相回折格子で、トラツキング検
出用のサブ・スポツトを対物レンズ20にて垂直
磁気記録体21上に結ばせる為の光束角度分離を
行なう。レンズ17は、この回折格子16を対物
レンズ20の瞳面近傍に結像する作用を持ち、こ
れにより、角度分離された光束の対物レンズ20
までの系での遮れを防ぐ事が出来る。18はミラ
ーで光軸を90°曲げ対物レンズ20へ光束を向け
る。従来使用されていた半透明鏡の位置に本発明
の光学素子19を配置する。光束は対物レンズ2
0により、回転する垂直磁気記録媒体21上にス
ポツトを結像する。スポツトは、回折格子16の
角度分離作用により、トラツキング信号検出用の
2コのスポツトとRF信号検出用のスポツト計3
コのスポツトである。
In the figure, 13 is a light source such as a semiconductor laser He--Ne laser. 14 is a collimating optical system for converting the light beam from the light source into a parallel light beam. Reference numeral 15 denotes a polarizing plate, and its axis is arranged with respect to the optical element 19 described in the previous embodiment so that the incident polarization plane becomes P-polarized light. Reference numeral 16 denotes a phase diffraction grating, which performs angular separation of a light beam so that a sub-spot for tracking detection is focused on a perpendicular magnetic recording medium 21 by an objective lens 20. The lens 17 has the function of forming an image of this diffraction grating 16 near the pupil plane of the objective lens 20, so that the angularly separated light beams are focused on the objective lens 20.
It is possible to prevent blockage in the system up to. A mirror 18 bends the optical axis by 90 degrees and directs the light beam toward the objective lens 20. The optical element 19 of the present invention is placed in the position of a conventionally used semi-transparent mirror. The light flux is from objective lens 2
0, a spot is imaged on the rotating perpendicular magnetic recording medium 21. Due to the angular separation effect of the diffraction grating 16, the spots are divided into two spots for tracking signal detection and three spots for RF signal detection.
This is the spot.

垂直磁気記録体によりカー回転を受け反射され
た光束は、光学素子19により入射光束と分離
し、検光子22で偏光成分の分離を行なう。23
は非点収差を持つ光学系で、主として4分割受光
素子26にて対物レンズのフオーカシング状態を
制御するための自動焦点合せ信号を検出する為に
必要なものである。
The light beam subjected to Kerr rotation and reflected by the perpendicular magnetic recording body is separated from the incident light beam by an optical element 19, and the polarized light components are separated by an analyzer 22. 23
is an optical system having astigmatism, and is mainly necessary for detecting an automatic focusing signal for controlling the focusing state of the objective lens in the four-part light receiving element 26.

4分割受光素子で受光して得られる電気信号は
周波数分離器30より適当な周波数帯で自動焦点
合せ信号とRF信号とに分離する。RF信号は増幅
器27により増幅した後、信号復調系へ送り出さ
れる自動焦点合せ信号はドライバー28に送ら
れ、信号に従い対物レンズのフオーカス状態を制
御する。
The electrical signal received by the four-division light receiving element is separated by a frequency separator 30 into an automatic focusing signal and an RF signal in an appropriate frequency band. After the RF signal is amplified by an amplifier 27, an automatic focusing signal sent to the signal demodulation system is sent to a driver 28, which controls the focus state of the objective lens according to the signal.

一方、光学系23で分離された光束を光検出器
24,25で検出し、それらの信号を差分器29
で差分した後ドライバーを経て対物レンズの水平
方向を制御してトラツキング行なう。
On the other hand, the light beam separated by the optical system 23 is detected by photodetectors 24 and 25, and the signals are sent to a subtractor 29.
After the difference is made, tracking is performed by controlling the horizontal direction of the objective lens via a driver.

以上の構成により、垂直磁気記録体を用いたフ
アイル・メモリー、ビデオ・デスク等の再生が行
なえる。
With the above configuration, playback of file memories, video disks, etc. using perpendicular magnetic recording bodies can be performed.

以上説明してきたように、本発明は従来の偏光
特性を持たない半透明鏡を用いた磁気パターン検
出系に於いて、 (1) カー回転変調成分光量を増幅させ、明るい磁
気パターンを検出する事を可能とする。
As explained above, the present invention is capable of detecting a bright magnetic pattern by (1) amplifying the amount of Kerr rotation modulation component light in a conventional magnetic pattern detection system using a semi-transparent mirror without polarization characteristics. is possible.

(2) 可視度を高め、コントラストの強い磁気パタ
ーンを観測する事を可能とする。
(2) Increase visibility and make it possible to observe magnetic patterns with strong contrast.

(3) 信号光光量の損失を減少させ検光子の不完全
性を補償することによつて、安価な検光子の使
用を可能にする。
(3) By reducing the loss in the amount of signal light and compensating for imperfections in the analyzer, it is possible to use an inexpensive analyzer.

等の効果を有するものである。It has the following effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,Bは夫々従来の垂直磁気記録パター
ンの検出例を示す図、第2図は本発明の第1実施
例の光学系を示す図、第3図は検光子透過軸の方
位を示す図、第4図は検光子消光率に対する最大
可視度を得るための検光子透過軸の最適方位各を
示す図、第5図は第1実施例中に用いた光学素子
の偏光特性に対する偏光方向成分光強度及びカー
回転変調成分強度の依存性を示す図、第6図A,
B,C,D、第7図A,Bは夫々本発明の他の実
施例の光学系を示す図、第8図はデイスクメモリ
ーの再生系に適用した実施例を示す図である。 9……偏光子、10……光学素子、11……垂
直磁気記録体、12……検光子。
Figures 1A and B are diagrams showing conventional detection examples of perpendicular magnetic recording patterns, Figure 2 is a diagram showing the optical system of the first embodiment of the present invention, and Figure 3 is a diagram showing the direction of the analyzer transmission axis. Figure 4 is a diagram showing the optimum orientation of the analyzer transmission axis to obtain maximum visibility with respect to the analyzer extinction rate, and Figure 5 is a diagram showing the polarization characteristics with respect to the polarization characteristics of the optical element used in the first example. A diagram showing the dependence of directional component light intensity and Kerr rotation modulation component intensity, FIG. 6A,
B, C, D and FIGS. 7A and 7A and 7B are diagrams showing optical systems of other embodiments of the present invention, respectively, and FIG. 8 is a diagram showing an embodiment applied to a reproduction system of a disk memory. 9...Polarizer, 10...Optical element, 11...Perpendicular magnetic recording body, 12...Analyzer.

Claims (1)

【特許請求の範囲】 1 所定方向に偏光した光束を磁気的にパターン
が記録された記録体に入射せしめる手段と、前記
パターンに応じて偏光状態に変調を受けた記録体
からの反射光を前記入射光束と分離するビームス
プリツタと、該ビームスプリツタで分離された反
射光の偏光状態を光強度変化に変換して検出する
手段とから成り、前記ビームスプリツタが、前記
反射光の所定方向の偏光成分に比べて、それと垂
直な方向の偏光成分を相対的に増加させる特性を
有する記録パターン読取光学系において、 前記ビームスプリツタが、前記反射光の所定方
向の偏光成分の内、18〜52%を前記検出手段に導
き、反射光の所定方向と垂直な方向の偏光成分の
90%以上を検出手段に導くように構成されたこと
を特徴とする記録パターン読取光学系。
[Scope of Claims] 1. A means for causing a light beam polarized in a predetermined direction to enter a recording medium on which a pattern is magnetically recorded; It consists of a beam splitter that separates the incident light beam, and means that converts the polarization state of the reflected light separated by the beam splitter into a change in light intensity and detects the polarization state, and the beam splitter converts the reflected light in a predetermined direction. In a recording pattern reading optical system having a characteristic of relatively increasing a polarization component in a direction perpendicular to the polarization component in a direction perpendicular to the polarization component in a predetermined direction of the reflected light, 52% of the reflected light is guided to the detection means, and the polarized light component in the direction perpendicular to the predetermined direction of the reflected light is detected.
A recording pattern reading optical system characterized by being configured to guide 90% or more of the recorded pattern to a detection means.
JP7236382A 1981-06-02 1982-04-28 Optical reading system of recording pattern Granted JPS58189612A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7236382A JPS58189612A (en) 1982-04-28 1982-04-28 Optical reading system of recording pattern
US06/382,202 US4561032A (en) 1981-06-02 1982-05-26 Magnetooptic reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7236382A JPS58189612A (en) 1982-04-28 1982-04-28 Optical reading system of recording pattern

Publications (2)

Publication Number Publication Date
JPS58189612A JPS58189612A (en) 1983-11-05
JPH0526173B2 true JPH0526173B2 (en) 1993-04-15

Family

ID=13487150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7236382A Granted JPS58189612A (en) 1981-06-02 1982-04-28 Optical reading system of recording pattern

Country Status (1)

Country Link
JP (1) JPS58189612A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5744241A (en) * 1980-08-27 1982-03-12 Matsushita Electric Ind Co Ltd Magnetooptic reproducer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5744241A (en) * 1980-08-27 1982-03-12 Matsushita Electric Ind Co Ltd Magnetooptic reproducer

Also Published As

Publication number Publication date
JPS58189612A (en) 1983-11-05

Similar Documents

Publication Publication Date Title
US4561032A (en) Magnetooptic reproducing device
US4558440A (en) System for recording patterns of magnetically recorded information by utilizing the magneto-optic effect
US4823220A (en) Detector for magnetooptic recorders
JP3541893B2 (en) Magneto-optical recording medium reproducing device
JP3276132B2 (en) Light head
JPH07105084B2 (en) Magneto-optical disk device
JPH0526173B2 (en)
JPH0237611B2 (en)
JPH07169129A (en) Optical head
JP2790701B2 (en) Optical information reproduction method
JP2625738B2 (en) Optical head
JP2760848B2 (en) Focus position detection device and focus control device
JPH0237613B2 (en) KIROKUPATAAN YOMITORIKEI
JPH0327978B2 (en)
JPH0237612B2 (en) KIROKUPATAAN YOMITORIKEI
JPS61198457A (en) Optical pickup
JPH0620323A (en) Optical system for reading recording pattern
JPH0836781A (en) Optical head
JPS63157341A (en) Magneto-optical recording/reproducing head
JPH0789415B2 (en) Optical head
JPH0528575A (en) Optical head
JPS641858B2 (en)
JPS63173253A (en) Magneto-optcial recording and reproducing head
JPH0677348B2 (en) Magneto-optical pickup device
JPH0279241A (en) Optical head