JPH0237612B2 - KIROKUPATAAN YOMITORIKEI - Google Patents
KIROKUPATAAN YOMITORIKEIInfo
- Publication number
- JPH0237612B2 JPH0237612B2 JP14383682A JP14383682A JPH0237612B2 JP H0237612 B2 JPH0237612 B2 JP H0237612B2 JP 14383682 A JP14383682 A JP 14383682A JP 14383682 A JP14383682 A JP 14383682A JP H0237612 B2 JPH0237612 B2 JP H0237612B2
- Authority
- JP
- Japan
- Prior art keywords
- photodetector
- light beam
- light
- optical element
- intensity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003287 optical effect Effects 0.000 claims description 56
- 230000010287 polarization Effects 0.000 claims description 35
- 238000001514 detection method Methods 0.000 claims description 26
- 230000000694 effects Effects 0.000 claims description 8
- 230000004907 flux Effects 0.000 claims description 7
- 238000002834 transmittance Methods 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000005374 Kerr effect Effects 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000005415 magnetization Effects 0.000 description 4
- 230000008033 biological extinction Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910016629 MnBi Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/10502—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing characterised by the transducing operation to be executed
- G11B11/10515—Reproducing
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/10532—Heads
- G11B11/10541—Heads for reproducing
- G11B11/10543—Heads for reproducing using optical beam of radiation
Description
【発明の詳細な説明】
本発明は磁気光学効果を利用した磁気的記録情
報の読取系に関する。
従来、磁気光学カー(kerr)効果を用いて、磁
気的記録情報を光学的に読み出す方法は公知であ
り、特に垂直磁気記録体からの極(polar)カー
効果を用いた記録パターンの読取方法が広く用い
られている。このような記録パターンの光学的観
測、および電気的検出には、第1図Aに示す光学
系が使用されている。
第1図Aにおいて、2は偏光板、3は半透明
鏡、4は対物レンズ、5は垂直磁気記録体、6は
検光子、7はアイ・ピースレンズ、8は光電検出
器、あるいは磁気パターン観測面である。
光束1は、偏光板2により直線偏光化された光
束となり、垂直磁気記録体5に入射する。ここ
で、従来の方式に用いる半透明鏡は偏光方向に関
係なくほぼ50%の透過及び反射率のものが用いら
れている。垂直磁気記録体5の磁化方向(上向
き、あるいは下向き)に対応し、光束の偏光面が
カー効果により互いに反対方向の回転を受けて反
射される。例えば、下向き方向磁化部により反射
される光束の偏光面がθKの回転を受けたとする
と、上向き磁化部により反射される光束の偏光面
は−θKの回転を受ける。
第1図Bに示す如く入射光束をP偏光とした場
合、検光子6の偏光透過方向を上記偏光方向−θK
と垂直方向(Q方向)に配置すると、上向きの磁
化方向部からの反射光は、検光子6より遮断さ
れ、下向き磁化方向部からの反射光の検光子6の
透過成分Δが検光子6を通過する。この現象によ
り、垂直磁化パターンが検出、あるいは観測出来
る。
しかし、従来の偏光方向に依存しない半透明鏡
を用いた光学系では、光束が2回も半透明鏡を通
る事で振幅が1/4に落ちる。更に、カー効果に
よる偏光回転角θKが一般には大略1゜以下であり、
検光子6を通過して得られるカー回転変調成分が
非常に微少な量であることを考えると、半透明鏡
の部分よる光量損失が検出信号の検出感度を低下
させることとなる。従つて、従来方式には以下の
欠点が存在する。
1 偏光特性を持たない半透明鏡を通過すること
により、変調成分の光量が半分以上損なわれる
為、検出信号光の利用効率が悪く、検出信号の
SN比が低下する。
2 SN比が低い為、信号の検出に複雑な検出処
理系が必要で、コスト及び信頼性から好ましく
ない。
本発明は、上述した従来の読取系の欠点を解決
し、検出信号光の利用効果を高め、雑音の影響を
減少させて、SN比の高い読取りが可能な記録パ
ターン読取系を提供することを目的とする。
本発明の上記目的は、所定方向に偏光した光束
を磁気記録体に照射する光源と、前記記録体の記
録パターンに応じて偏光状態に変調を受けた光束
を強度変調された光束に変換する検光子と、前記
検光子で変換された光束を光電検出する増倍作用
のある光検出器と、前記光検出器で検出された信
号を増幅する負荷抵抗を含む増幅器とから成る記
録パターン読取系において、前記光検出器で受光
される光束の前記所定方向の偏光成分強度をIR、
同じくそれと垂直な方向の偏光成分強度をIK、前
記光検出器の増倍率をG、光検出器の増倍雑音指
数をx、電荷量をe、プランク定数をh、ボルツ
マン定数をk、光検出器の量子効率をε、負荷抵
抗の抵抗値をRL、等価雑音温度をTe、検出信号
のバンド幅をΔB、光束の振動数をνとしたとき
に、前記増幅器の出力信号のS/N比Sが、以下
の式
S=10 log10{e2ε2/2h2ν2G2IK 2/
(2e2ε/hνG2+xIR+4kTe/RL)ΔB}
で表わされ、前記変調光束の光路中に、前記Sの
値を最大とするようにIKとIRとの比を調整する光
学素子を設けることによつて達成される。
以下、本発明の実施例を図に従い説明する。
第2図に本発明の実施例の光学系を示す。ここ
で、入射光束aの偏光方向は、偏光子9によつて
紙面に平行なP偏光状態にした場合を考える。本
実施例に用いる光学素子10は、偏光特性を持た
ない従来の半透明鏡とは異なり、透過率tと反射
率rが偏光方向により異なる性質を有する。即
ち、光学素子10のP偏光成分の振幅透過率tp、
振幅反射率rp,S偏光成分(第2図において、紙
面に垂直な偏光成分)の振幅透過率ts、振幅反射
率rsとして、該光学素子は一般に|tp|≠=|ts
|,|rp|≠|rs|なる特性を有する半透明鏡で
ある。
第2図における光学素子10、垂直磁気記録媒
体11及び検光子12の偏光特性をよく知られた
Jonesマトリツクスで表現すると次のようにな
る。まず光学素子10の透過Jonesマトリツクス
〓及び反射Jonesマトリツクス〓は、
〓=tp,o
o,ts,〓=rp,o
o,rs (1)
となる。垂直磁気記録媒体11については、垂直
入射時の媒体振幅反射率をR、磁気光学カー効果
によるカー回転振幅反射率をKとすると媒体
Jonesマトリツクス〓は、
〓=−R,K
K,R (2)
と表わされる。検光子12については、P偏光方
向に対し、第3図のように検光子透過軸Aを角度
θだけS偏光方向に傾けた時、消光率をηとする
と、透過Jonesマトリツクス〓は、
となる。従つて第2図において、検光子12を透
過した検出光fの偏光状態を表わすJonesベクト
ルをDとすると、光束bのJonesベクトルをEと
して、
〓=〓〓〓〓〓 (4)
と表せる。光束bを前述のようにP偏光方向の直
線偏光として、その振幅をV0とおくと、検光子
12を透過した検出光fの強度Iは、(1),(2),
(3),(4)式を用いて、
I|V0|2|tp|2〔|R|2|rp|2(cos2θ+ηsin2
θ)−|R||K||rp||rs|(1−η)cosδsin2
θ〕
(5)
ここで、R=|R|ei〓,K=|K|ei〓,rp=|rp
|ei〓p,rs=|rs|ei〓s,δ=α−β+γp−γsで|
K|2の項は、2次の微少量として省略した。
上記(5)式の右辺の第1項は、検出光の直流
(DC)成分であり、入射光束の非変調成分光、即
ち、入射光束の偏光方向の成分強度IRを示す。ま
た第2項は垂直磁気記録媒体11による変調
(AC)成分であり、カー回転変調成分光即ち入射
光束の偏光方向と垂直な成分強度IKを意味する。
(5)式から検光子12の方位角θを45゜とした時、
IK最大値となる。また検光子12の消光率ηは一
般にη10-2であり、θ45゜では検光子12の
消光不完全性の影響は、IR,IKに対し共に1%以
下となる。
今、θ=45゜として光学素子10の吸収が無視
できるとすると、|tp|2=1−|rp|2として(5)式
から、
IR1/2|V0|2|R|2|rp|2(1−|rp|2) (6)
IK|V0|2|R||K||rp||rs|(1−
|rp|2)cosδ(7)
となる。
第2図の検光子を通過した光は第4図の検出光
13のように、Si−アバランシフオトダイオード
(APD)の如き増倍作用のある光検出器14によ
つて光電検出され光電流に変換された後、負荷抵
抗15を含む増幅器16により電圧増幅された電
気信号として変調成分が読み出される。ここで信
号読み出しにおける雑音源が主に受光素子による
シヨツト雑音及び増幅器における熱雑音によるも
のであると考えると、SN比Sはデシベル表示で
次のように表わされる。
S=10 log10{e2ε2/2h2ν2G2IK 2/(2e2ε
/hνG2+xIR+4kTe/RL)ΔB}(8)
ただし、ここでIRは非変調成分光強度、IKはカ
ー変調成分光強度、Gは光検出器14の増倍率、
eは電荷量、hはブランク定数、kはボルツマン
定数、εは光検出器14の量子効率、RLは負荷
抵抗15の抵抗値、Teは等価雑音温度、ΔBは検
出信号のバンド幅、νは光束の振動数である。ま
た、xは光検出器の増倍に伴う、固有のシヨツト
雑音を表わす増倍雑音パラメータで、例えばSi−
APDではx=0.3〜0.4である。
本実施例の光学素子10は、前述の(6),(7)式か
ら(8)式のSで示される値を最大とするような振幅
透過率tp,ts及び振幅反射率rp,rsを有するもの
である。従つて本実施例は記録パターンに応じて
変調された光束の光路中に、該変調光束の偏光方
向に依存した強度透過率及び強度反射率を有する
光学素子を設ける事によつて、記録パターンの読
取においてSN比を最大とするものである。
更に、前述のような場合、x≠oであるために
最適な増倍率Goptが存在する。その値は、(8)式
をGについて偏微分した結果、C1=e2ε2/2h2ν2、
C2=2e2ε/hν、C3=4kTe/RLとして、
Gopt={4c3/xc2|V0|2(1−|rp|2)|rp|2|
R|2}1/(x+2)(9)
のようになる。このGoptと(6)式、(7)式を(8)式に
代入して最適増倍率GoptにおけるSN比S′は、
となる。更に(10)式のS′を最大にする光学素子10
のP偏光向強度反射率|rp|2は(10)式を|rp|2で
偏微分することにより
|rp|2=x/(2+3x) (11)
で与えられる。この結果は垂直磁気記録媒体11
のR,K、即ち磁性膜パラメータに依存しないた
めに読取系に対して一意に決定できる。前述した
ようにSi−APDではx=0.3〜0.4,Ge−APDで
はxであることから、用いる受光素子13の種
類により、|rp|20.1〜0.2範囲で光学素子10
に偏光特性を持たせることにより(10)式で与えられ
るSN比を最大とすることが可能となる。具体例
として光源を半導体レーザ(波長λ=850nm)と
し、検出器が最適増倍率Goptを有する時、上記
(10)式を用いて算出したSN比の|rp|2,|rs|2依
存性を第5図に示す。ここでε=0.9,Te=1200
〓,ΔB=3×104Hz,RL=104Ω,|V0|2=10-4
とし、|R|2及びθKは記録媒体にMnBiを用いて、
公知の文献(K.Egashira et al.,J.Appl.Phys.
45,3643(1974))に例示された2組の値を(10)式に
代入して、|R|2=0.57,θK=0.7゜の場合を第5
図曲線b及びdで、|R|2=0.10,θK=3.6゜の場
合を曲線a及びcで示した。また破線で示した曲
線a及びbは第2図の光学素子10のS偏光成分
に対する強度反射率|rs|2=0.9の場合を示し、
実線で描いた曲線c及びdは|rs|2=0.5の場合
を示す。またここで第5図の縦軸は、検出信号の
中心周波数に対するSN比を示し、C/N比とし
て表わし、直交成分間の位相差γp−γsはπの整数
倍とした。
第5図からわかるように、(11)式でx=0.4と
した時のP偏光反射率|rp|2=0.125でC/N比
は最大となつており、このような最適反射率は、
磁性膜パラメータ|R|2,θKに依存しない。又、
|rs|2が大きいほうが高いC/N比を達成出来
ることがわかる。このように|rp|2=|rs|2=
0.5であるような従来の偏光特性のない半透明鏡
を用いた場合に比べ、本実施例に基づき、例えば
第2図において光学素子10のS偏光度反射率|
rs|2=0.9とし、P偏光強度反射率|rp|2は(11)式
に光検出器固有の増倍雑音指数xを代入して得ら
れる最適値とした場合の方が、約5dBC/Nが増
大される。
また上記実施例に用いる光学素子は、例えば入
射光束の偏光方向対して強度反射率が10〜20%
で、それに直交する偏光方向に対して100%近い
高強度反射率を有する偏光ビームスプリツタの如
く、公知の方法で作製が可能である。また本発明
は前述のようにSi−APD,Ge−APD等増倍作用
のある光検出器を用いたものには全て適用でき
る。
以上の実施例は第6図Aに示す系についてであ
つた。次に、光学素子10を用いた他の記録パタ
ーン読取系の実施例について、それぞれの光学素
子10の特性の最適な条件を求める。
第6図Bに示すように、光学素子10に対し、
光束がS偏光状態として入射する場合について考
察する。検光子12を抜ける光量は第6図Aの場
合と全く同じ導出過程を経て、
IR1/2|V0|2|R|2|rs|2(1−|rs|2)(12)
IK|V0|2|R||K|rs||rp|(1−|rp
|2)cosδ(13)
と得られる。(6)及び(7)式において、rpをrsに、rs
をrpに置き換えれば両式は全く一致する。前述し
た(8)式のSの値を最大とするようなIR,IKとなる
強度反射率|rs|2,|rp|2を(12),(13)式から求
め、このような強度反射率を有する光学素子10
を用いることで、前述の実施例と同様に、SN比
の高い記録パターン読取系を実現できるものであ
る。本実施例では光検出器が最適増倍率を有する
場合には|rp|2がなるべく大きく、|rs|2を
|rs|2=x/(2+3x) (14)
に実施例の光検出器個有のxを代入して求められ
る、10〜20%の最適値とすることで最大のSN比
を得ることができる。
以上、第6図A,Bの場合は、光束が光学素子
を透過し、記録媒体11から再び光学素子10に
入り反射されて、検光子12により検出光となる
場合である。
次に上記の逆、即ち光束が光学素子10により
反射され、更に記録媒体11により反射された
後、光学素子10を透過する場合については、前
述の例では(4)式で表わされたJonesベクトル〓は
〓=〓〓〓〓〓 (15)
となる。
従つて、第6図Cに示す如く、光学素子10に
対し、光束の偏光状態がP偏光で入射する場合、
同様の考案によつて(6)及び(7)式において、rpをtp
に、rsをtsとすることで、
IR1/2|V0|2|R|2|tp|2(1−|tp|2)
(16)
IK|V0|2|R||K||tp||ts|(1−
|tp|2)cosδ(17)
が得られ、(15),(16)式から(8)式のSを最大と
する偏光強度透過率|ts 2,|ts|2を有する光学素
子10を用いることで最大のSN比を得ることが
できる。またこの時、本実施例の光検出器が最適
増倍率である場合は、該光検出器の増倍雑音指数
xを用いて、
|tp|2=x/(2+3x) (18)
から求められる10〜20%の最適透過率の光学素子
10を用いることでSN比を最大にできる。
第6図Dに示す如く、光学素子10に対し、光
束の偏光状態がS偏光で入射する場合、全く同様
に検光子12を通過する光強度は、
IR1/2|V0|2|R|2|ts|2(1−|ts|2)
(19)
IK|V0|2|R||K||tp||ts|(1−
|ts|2)cosδ(20)
で導出できる。(8)及び(7)式のrpをtsに、rsをtpに
置き換えれば各々(19)及び(20)式に一致し、
(8)式を最大とするような強度透過率|tp|2及び
|ts|2を有する光学素子10を用いて、SN比を
最大にすることができる。またここで光検出器が
最適増倍率を有する場合には、上記強度透過率は
|tp|2を大きく、|ts|2を光検出器の増倍雑音指
数xから、
|ts|2=x/(2+3x)
に従つて求められる0〜20%の最適値とすること
で、上記の如くSN比を最大とすることができる
ものである。
第7図A,Bのように、光学素子10からの検
出光を、更に光学素子10′で分割する場合にも、
前述の論議は適用できる。第7図Aの場合には、
P偏光入射のとき、
〓a=〓a〓′〓〓〓〓 (21)
〓b=〓b〓′〓〓〓〓 (22)
として得られる光強度は、検光子12aからの検
出光については(6)及び(7)式において、rpをrprp′
に、rsをrsrs′に、θをθaに置き換え、検光子12
bからの検出光についてはrpをrptp′に、rsをrs
ts′に、θをθbと置き換え、前述の実施例と同様
に(8)式或いは最大のSN比が得られる反射、透過
特性を有する光学素子10及び10′によつて記
録パターン読取系を構成することができる。
この時分割した検出光に対しては光学素子10
及び検光子12a,12bの透過軸方向θa,θb
を適当に選ぶことにより各々の非変調成分強度と
カー回転変調成分光強度の相対値を変化させるこ
とができる。一般には第7図Aのような配置は、
光学素子10′で分割された光束をそれぞれ光検
出器で受け、電気的差動検出を行なうのが通常で
ある。この場合にはθa=−θbとし、さらに分割
された光束が双方共非変調成分光強度とカー回転
変調成分強度の相対値が等しいことが望ましい。
従つてこのような電気的差動検出の場合は|rs′
|=|ts′|,|rp′|=|tp′|の特性を持つ、偏
光特性を有さない半透明鏡を光学素子10′に用
いるのが好ましい。ただし、検出処理系による差
動不完全性等を考慮して、あらかじめ偏光特性を
有する半透明鏡を用いても良いことは言うまでも
ない。S偏光入射の場合もrp′をrs′,rs′をrp′,
tp′をts′,ts′をtp′と置き換え、全く同様の議論が
できる。
第7図Bには第6図C,Dと同様の光学系にお
いて検出光を光学素子10′で分割る場合を示し
ている。この時にはP偏光入射に対し(6)及び(7)式
において検光子12aを通過する光についてはtp
をtptp′,tsをtsts′,θをθaと置き換え、検光子1
2bを通過する光については、tpをtprp′,tsをts
rs′,θをθbとして第7図Aと全く同様な議論が
できる。S偏光入射の場合もtp′をts′,ts′をtp′,
rp′をrs′,rs′をrp′と置き換えればよい。
前記第7図A及びBのような場合でも、(8)式の
Sを最大とするように、光学素子10及び10′
の偏光方向に依存した強度反射率および強度通過
率を設定することで、高いSN比の記録パターン
読取ができるものである。
次に本発明の記録パターン読取系を光磁気記録
方式のデイスクメモリーに適用する実施例を第8
図により説明する。
図中17は半導体レーザーHe−Neレーザー等
の光源である。18は光源からの光束を平行光束
にするためのコリメート光学系である。19は偏
光板で先の実施例で説明した光学素子23に対
し、入射偏光面がP偏光となるようにその軸を配
置する。20は位相回折格子で、トラツキング検
出用のサブ・スポツトを対物レンズ24にて垂直
磁気記録体25上に結ばせる為の光束角度分離を
行なう。レンズ21は、この回折格子20を対物
レンズ24の瞳面近傍に結像する作用を持ち、こ
れにより、角度分離された光束の対物レンズ24
までの系での遮れを防ぐ事が出来る。22はミラ
ーで光軸を90゜曲げ対物レンズ24へ光束を向け
る。従来使用されていた半透明鏡の位置に本発明
の光学素子23を配置する。光束は対物レンズ2
4により、回転する垂直磁気記録体25上にスポ
ツトを結像する。スポツトは、回折格子20の角
度分離作用により、トラツキング信号検出用の2
コのスポツトとRF信号検出用のスポツト計3コ
のスポツトである。
垂直磁気記録体によりカー回転を受け反射され
た光束は、光学素子23により入射光束と分離
し、検光子26で偏光成分の分離を行なう。27
は非点収差を持つ光学系で、主として4分割受光
素子30にて対物レンズのフオーカシング状態を
制御するための自動焦点合せ信号を検出する為に
必要なものである。
4分割受光素子で受光して得られる電気信号は
周波数分離器34により適当な周波数帯で自動焦
点合せ信号とRF信号とに分離する。RF信号は増
幅器31により増幅した後、信号復調系へ送り出
される自動焦点合せ信号はドライバー32に送ら
れ、信号に従い対物レンズのフオーカス状態を制
御する。
一方、光学系27で分離された光束を光検出器
28,29で検出し、それらの信号を差分器33
で差分した後ドライバーを経て対物レンズの水平
方向を制御しトラツキングを行なう。
以上の構成により、垂直磁気記録体を用いたフ
アイル・メモリーの再生が行なえる。
尚、以上の実施例では、カー効果を用いて反射
光を検出する例を示したが、本発明は記録媒体を
透過した変調光を検出する読取系にも用いること
ができる。
以上説明したように、本発明は従来の偏光特性
を持たない半透明鏡を用いた、増倍作用のある光
検出器よる記録パターン読取系において、信号検
出におけるSN比を向上させる効果がある。更に
は高いSN比を実現する事によつて検出処理系の
構成を簡単にし、コストを低減し、信頼性を高め
る効果を有するものである。 DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a system for reading magnetically recorded information using magneto-optic effects. Conventionally, a method of optically reading out magnetically recorded information using the magneto-optical Kerr effect has been known, and in particular, a method of reading recorded patterns using the polar Kerr effect from a perpendicular magnetic recording medium is known. Widely used. The optical system shown in FIG. 1A is used for optical observation and electrical detection of such recorded patterns. In FIG. 1A, 2 is a polarizing plate, 3 is a semi-transparent mirror, 4 is an objective lens, 5 is a perpendicular magnetic recording medium, 6 is an analyzer, 7 is an eyepiece lens, 8 is a photoelectric detector or a magnetic pattern It is an observation surface. The light beam 1 is linearly polarized by the polarizing plate 2 and enters the perpendicular magnetic recording medium 5 . Here, the semi-transparent mirror used in the conventional method has a transmittance and reflectance of approximately 50% regardless of the polarization direction. Corresponding to the magnetization direction (upward or downward) of the perpendicular magnetic recording body 5, the polarization planes of the light beam are rotated in opposite directions due to the Kerr effect and reflected. For example, if the plane of polarization of the light beam reflected by the downwardly magnetized portion is rotated by θ K , the plane of polarization of the beam reflected by the upwardly magnetized portion is rotated by −θ K . When the incident light flux is P-polarized light as shown in FIG .
When placed in the perpendicular direction (Q direction), the reflected light from the upward magnetization direction part is blocked by the analyzer 6, and the transmitted component Δ of the reflected light from the downward magnetization direction part passes through the analyzer 6. pass. This phenomenon allows perpendicular magnetization patterns to be detected or observed. However, in a conventional optical system using a semi-transparent mirror that does not depend on the polarization direction, the light beam passes through the semi-transparent mirror twice, causing the amplitude to drop to 1/4. Furthermore, the polarization rotation angle θ K due to the Kerr effect is generally approximately 1° or less,
Considering that the Kerr rotation modulation component obtained by passing through the analyzer 6 is extremely small, the loss of light amount due to the semi-transparent mirror portion reduces the detection sensitivity of the detection signal. Therefore, the conventional method has the following drawbacks. 1 Passing through a semi-transparent mirror that does not have polarization characteristics causes more than half of the light intensity of the modulation component to be lost, resulting in poor utilization efficiency of the detection signal light.
The signal-to-noise ratio decreases. 2. Because the signal-to-noise ratio is low, a complex detection processing system is required to detect the signal, which is undesirable in terms of cost and reliability. The present invention aims to solve the above-mentioned drawbacks of the conventional reading system, improve the effectiveness of the use of detection signal light, reduce the influence of noise, and provide a recorded pattern reading system that can read with a high signal-to-noise ratio. purpose. The above object of the present invention is to provide a light source that irradiates a magnetic recording medium with a light beam polarized in a predetermined direction, and a detector that converts a light beam whose polarization state is modulated according to a recording pattern of the recording medium into an intensity-modulated light beam. In a recording pattern reading system comprising a photodetector having a multiplication effect for photoelectrically detecting photons and a luminous flux converted by the analyzer, and an amplifier including a load resistor for amplifying the signal detected by the photodetector. , the polarization component intensity in the predetermined direction of the light beam received by the photodetector is I R ,
Similarly, the intensity of the polarized light component in the direction perpendicular to it is IK , the multiplication factor of the photodetector is G, the multiplication noise figure of the photodetector is x, the amount of charge is e, Planck's constant is h, Boltzmann's constant is k, and the light When the quantum efficiency of the detector is ε, the resistance value of the load resistor is R L , the equivalent noise temperature is T e , the bandwidth of the detection signal is ΔB, and the frequency of the light beam is ν, the output signal S of the amplifier is /N ratio S is calculated using the following formula: S=10 log 10 {e 2 ε 2 /2h 2 ν 2 G 2 I K 2 / (2e 2 ε/hνG 2+x I R +4kT e /R L )ΔB} This is achieved by providing in the optical path of the modulated light beam an optical element that adjusts the ratio of I K and I R so as to maximize the value of S. Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows an optical system according to an embodiment of the present invention. Here, a case will be considered in which the polarization direction of the incident light beam a is set to a P polarization state parallel to the paper surface by the polarizer 9. The optical element 10 used in this example has a property that the transmittance t and the reflectance r differ depending on the polarization direction, unlike a conventional semi-transparent mirror that does not have polarization characteristics. That is, the amplitude transmittance t p of the P polarized light component of the optical element 10,
The optical element generally has an amplitude reflectance r p , an amplitude transmittance t s of the S-polarized component (polarized component perpendicular to the plane of the paper in FIG. 2), and an amplitude reflectance r s as |t p |≠=|t s
It is a semi-transparent mirror with the characteristics |, |r p |≠|r s |. The polarization characteristics of the optical element 10, perpendicular magnetic recording medium 11 and analyzer 12 in FIG.
Expressed using Jones matrix, it is as follows. First, the transmission Jones matrix and the reflection Jones matrix of the optical element 10 are as follows: = t p , o o, t s , = r p , o o, r s (1). Regarding the perpendicular magnetic recording medium 11, if the medium amplitude reflectance at perpendicular incidence is R, and the Kerr rotational amplitude reflectance due to the magneto-optic Kerr effect is K, then the medium
Jones matrix 〓 is expressed as 〓=-R, K K, R (2). Regarding the analyzer 12, when the analyzer transmission axis A is tilted in the S polarization direction by an angle θ with respect to the P polarization direction as shown in FIG. 3, and the extinction rate is η, the transmission Jones matrix is becomes. Therefore, in FIG. 2, if the Jones vector representing the polarization state of the detection light f transmitted through the analyzer 12 is D, and the Jones vector of the light beam b is E, it can be expressed as 〓=〓〓〓〓〓 (4). Assuming that the luminous flux b is linearly polarized light in the P polarization direction as described above and its amplitude is V 0 , the intensity I of the detection light f transmitted through the analyzer 12 is (1), (2),
Using equations (3) and (4), I|V 0 | 2 |t p | 2 [|R| 2 |r p | 2 (cos 2 θ+ηsin 2
θ)−|R||K||r p ||r s |(1−η)cosδsin2
θ〕 (5) Here, R=|R|e i 〓, K=|K|e i 〓, r p =|r p
|e i 〓 p , r s = | r s | e i 〓 s , δ=α−β+γ p −γ s |
The term K| 2 was omitted as a second-order minute amount. The first term on the right side of the above equation (5) is the direct current (DC) component of the detection light, and indicates the non-modulated component light of the incident light beam, that is, the component intensity IR in the polarization direction of the incident light beam. The second term is a modulation (AC) component by the perpendicular magnetic recording medium 11, and means the intensity I K of the Kerr rotation modulation component light, that is, the component perpendicular to the polarization direction of the incident light beam. From equation (5), when the azimuth angle θ of the analyzer 12 is set to 45°,
IK becomes maximum value. Further, the extinction rate η of the analyzer 12 is generally η10 -2 , and at θ45°, the influence of incomplete extinction of the analyzer 12 on both I R and I K is 1% or less. Now, assuming that θ=45° and the absorption of the optical element 10 can be ignored, |t p | 2 = 1− | r p | 2 and from equation (5), I R 1/2 | V 0 | 2 | R | 2 | r p | 2 (1- | r p | 2 ) (6) I K | V 0 | 2 | R | | K | | | r p | | r s | (1-
|r p | 2 ) cosδ(7). The light that has passed through the analyzer in Figure 2 is photoelectrically detected by a photodetector 14 with a multiplier effect, such as a Si-avalanche photodiode (APD), as shown in the detection light 13 in Figure 4, and a photocurrent is generated. After being converted into , the modulated component is read out as a voltage amplified electrical signal by an amplifier 16 including a load resistor 15 . If we consider that the noise sources in signal readout are mainly shot noise from the light receiving element and thermal noise from the amplifier, the SN ratio S is expressed in decibels as follows. S=10 log 10 {e 2 ε 2 /2h 2 ν 2 G 2 I K 2 /(2e 2 ε
/hνG 2+x I R +4kT e /R L )ΔB}(8) Here, I R is the non-modulated component light intensity, I K is the Kerr modulated component light intensity, G is the multiplication factor of the photodetector 14,
e is the amount of charge, h is a blank constant, k is Boltzmann's constant, ε is the quantum efficiency of the photodetector 14, R L is the resistance value of the load resistor 15, T e is the equivalent noise temperature, ΔB is the bandwidth of the detection signal, ν is the frequency of the luminous flux. In addition, x is a multiplication noise parameter representing the inherent shot noise accompanying multiplication of the photodetector, for example, Si-
For APD, x=0.3-0.4. The optical element 10 of this embodiment has amplitude transmittances t p and t s and amplitude reflectance r p that maximize the values shown by S in equations (6) and (7) to (8). , r s . Therefore, in this embodiment, an optical element having an intensity transmittance and an intensity reflectance depending on the polarization direction of the modulated light beam is provided in the optical path of the light beam modulated according to the recording pattern. This maximizes the SN ratio in reading. Furthermore, in the case described above, since x≠o, an optimal multiplication factor Gopt exists. The value is obtained by partially differentiating equation (8) with respect to G: C 1 =e 2 ε 2 /2h 2 ν 2 ,
As C 2 = 2e 2 ε/hν, C 3 = 4kT e /R L , Gopt={4c 3 /xc 2 |V 0 | 2 (1−|r p | 2 ) | r p | 2 |
R| 2 } 1/(x+2) (9) Substituting this Gopt, equations (6), and equations (7) into equation (8), the SN ratio S' at the optimal multiplication factor Gopt is: becomes. Furthermore, optical element 10 that maximizes S′ in equation (10)
The P-polarized light intensity reflectance |r p | 2 is given by partial differentiation of equation (10) with |r p | 2 as follows: |r p | 2 =x/(2+3x) (11). This result shows that the perpendicular magnetic recording medium 11
Since it does not depend on the R and K of the magnetic film parameters, it can be determined uniquely for the reading system. As mentioned above, x = 0.3 to 0.4 for Si-APD and x for Ge-APD, so depending on the type of light receiving element 13 used, the optical element 10 is in the range of |r p | 2 0.1 to 0.2.
By giving polarization characteristics to , it is possible to maximize the SN ratio given by equation (10). As a specific example, when the light source is a semiconductor laser (wavelength λ = 850 nm) and the detector has the optimal multiplication factor Gopt, the above
Figure 5 shows the dependence of the SN ratio on |r p | 2 and |r s | 2 calculated using equation (10). Here ε=0.9, T e =1200
〓, ΔB = 3 × 10 4 Hz, R L = 10 4 Ω, |V 0 | 2 = 10 -4
and |R| 2 and θ K using MnBi as the recording medium,
Known literature (K. Egashira et al., J. Appl. Phys.
45, 3643 (1974)) into equation (10), the case of |R| 2 = 0.57, θ K = 0.7° is expressed as the fifth
Curves b and d in the figure show the case of |R| 2 =0.10 and θ K =3.6° as curves a and c. Furthermore, curves a and b shown by broken lines indicate the case where the intensity reflectance of the optical element 10 in FIG. 2 for the S-polarized light component |r s | 2 =0.9,
Curves c and d drawn as solid lines indicate the case where |r s | 2 =0.5. The vertical axis in FIG. 5 indicates the SN ratio with respect to the center frequency of the detection signal, expressed as a C/N ratio, and the phase difference γ p -γ s between orthogonal components is an integral multiple of π. As can be seen from Figure 5, when x = 0.4 in equation (11), the C/N ratio is maximum at the P-polarized light reflectance | r p | 2 = 0.125, and such an optimal reflectance is ,
It does not depend on the magnetic film parameters |R| 2 and θ K. or,
It can be seen that the larger |r s | 2 , the higher the C/N ratio can be achieved. In this way, |r p | 2 = |r s | 2 =
Based on this embodiment, for example, in FIG. 2, the S-polarization degree reflectance of the optical element 10 |
When r s | 2 = 0.9 and the P-polarized light intensity reflectance | r p | 2 is the optimal value obtained by substituting the multiplication noise factor x specific to the photodetector into equation (11), it is approximately 5dBC/N is increased. Furthermore, the optical element used in the above example has an intensity reflectance of 10 to 20% with respect to the polarization direction of the incident light beam, for example.
A polarizing beam splitter having a high intensity reflectance of nearly 100% in the polarization direction perpendicular to the polarization direction can be manufactured by a known method. Further, as mentioned above, the present invention can be applied to any device using a photodetector having a multiplication effect, such as Si-APD or Ge-APD. The above embodiments concerned the system shown in FIG. 6A. Next, for other embodiments of recorded pattern reading systems using optical elements 10, optimal conditions for the characteristics of each optical element 10 will be determined. As shown in FIG. 6B, for the optical element 10,
Consider the case where the light beam enters in the S polarization state. The amount of light passing through the analyzer 12 goes through the same derivation process as in the case of Fig. 6A, and is calculated as I R 1/2 | V 0 | 2 | R | 2 | r s | 12) I K | V 0 | 2 | R | | K | r s | | r p | (1− | r p
| 2 ) cosδ(13) is obtained. In equations (6) and (7), r p is replaced by r s and r s
If we replace r with p , both equations match exactly. The intensity reflectance |r s | 2 , |r p | 2 that gives I R , I K that maximizes the value of S in equation (8) above is determined from equations (12) and (13), and this An optical element 10 having an intensity reflectance such as
By using this, it is possible to realize a recorded pattern reading system with a high signal-to-noise ratio, similar to the embodiments described above. In this example, if the photodetector has an optimal multiplication factor, |r p | 2 is as large as possible, and |r s | 2 is set to |r s | 2 =x/(2+3x) (14) The maximum SN ratio can be obtained by setting the optimal value of 10 to 20%, which is obtained by substituting x unique to the detector. In the cases shown in FIGS. 6A and 6B, the light beam passes through the optical element, enters the optical element 10 again from the recording medium 11, is reflected, and becomes detected light by the analyzer 12. Next, in the case of the reverse of the above, that is, the case where the light beam is reflected by the optical element 10, further reflected by the recording medium 11, and then transmitted through the optical element 10, in the above example, Jones expressed by equation (4) The vector 〓 becomes 〓=〓〓〓〓〓 (15). Therefore, as shown in FIG. 6C, when the light beam is incident on the optical element 10 in a P-polarized state,
By a similar idea, in equations (6) and (7), r p is replaced by t p
Then, by setting r s to t s , I R 1/2 | V 0 | 2 | R | 2 | t p | 2 (1− | t p | 2 ) (16) I K | V 0 | 2 |R||K||t p ||t s |(1−
|t p | 2 )cos δ(17) is obtained, and the polarized light intensity transmittance that maximizes S in equation (8) from equations (15) and (16) |t s 2 , |t s | 2 is an optical system. By using the element 10, the maximum SN ratio can be obtained. At this time, if the photodetector of this example has the optimum multiplication factor, the multiplication noise figure x of the photodetector can be used to calculate from |t p | 2 = x/(2+3x) (18) By using the optical element 10 having an optimum transmittance of 10 to 20%, the SN ratio can be maximized. As shown in FIG. 6D, when a light beam enters the optical element 10 in the S polarization state, the light intensity passing through the analyzer 12 is IR 1/2 | V 0 | 2 | R | 2 | t s | 2 (1- | t s | 2 ) (19) I K | V 0 | 2 | R | | K | | t p | | t s | (1-
|t s | 2 ) can be derived as cosδ(20). If r p and r s in equations (8) and (7) are replaced by t s and t p , respectively, they match equations (19) and (20),
The signal-to-noise ratio can be maximized by using an optical element 10 having intensity transmittances |t p | 2 and |t s | 2 that maximize equation (8). In addition, if the photodetector has an optimal multiplication factor, the above intensity transmittance is determined by increasing |t p | 2 , |t s | 2 from the multiplication noise index x of the photodetector, and |t s | The SN ratio can be maximized as described above by setting the optimal value of 0 to 20% determined according to 2 = x/(2 + 3x). Even when the detection light from the optical element 10 is further divided by the optical element 10' as shown in FIGS. 7A and 7B,
The foregoing discussion is applicable. In the case of Figure 7A,
When P-polarized light is incident, the light intensity obtained as 〓a=〓a〓′〓〓〓〓〓〓〓〓b=〓b〓′〓〓〓〓〓〓〓〓〓〓〓〓b=〓b〓′〓〓〓〓〓〓〓〓〓〓〓〓b=〓b〓′〓〓〓〓〓〓〓 In equations (6) and (7), r p is defined as r p r p ′
, replace r s with r s r s ′ and θ with θa, analyzer 12
For the detected light from b, r p is r p t p ′ and r s is r s
In ts ', θ is replaced with θb, and as in the previous embodiment, the recorded pattern reading system is formed using the formula (8) or optical elements 10 and 10' having reflection and transmission characteristics that provide the maximum SN ratio. Can be configured. For this time-divided detection light, an optical element 10
and the transmission axis directions θa, θb of the analyzers 12a, 12b
By appropriately selecting , it is possible to change the relative values of each non-modulated component intensity and Kerr rotation modulated component light intensity. Generally, the arrangement as shown in Figure 7A is
Normally, each of the light beams divided by the optical element 10' is received by a photodetector, and electrical differential detection is performed. In this case, it is desirable that θa=-θb, and that the relative values of the non-modulated component light intensity and the Kerr rotation modulated component intensity of the divided light beams are equal to each other.
Therefore, in the case of such electrical differential detection, |r s ′
It is preferable to use a non-polarizing semi-transparent mirror as the optical element 10', which has the properties |=|t s ′|, |r p ′ | =|t p ′|. However, it goes without saying that a semi-transparent mirror having polarization characteristics in advance may be used in consideration of differential imperfections caused by the detection processing system. Also in the case of S-polarized light incidence, r p ′ is r s ′, r s ′ is r p ′,
Exactly the same argument can be made by replacing t p ′ with t s ′ and t s ′ with t p ′. FIG. 7B shows a case where the detection light is divided by the optical element 10' in the same optical system as in FIGS. 6C and 6D. At this time, in equations (6) and (7) for incident P-polarized light, t p for the light passing through the analyzer 12a.
Replace t p t p ′, t s with t s t s ′, θ with θa, analyzer 1
For the light passing through 2b, t p is t p r p ′, t s is t s
An argument similar to that in Figure 7A can be made by setting r s ', θ to θb. Also in the case of S-polarized light incidence, t p ′ is t s ′, t s ′ is t p ′,
Just replace r p ′ with r s ′ and r s ′ with r p ′. Even in the cases shown in FIGS. 7A and 7B, the optical elements 10 and 10' are adjusted so that S in equation (8) is maximized.
By setting the intensity reflectance and intensity transmission rate depending on the polarization direction, it is possible to read a recorded pattern with a high signal-to-noise ratio. Next, an eighth embodiment will be described in which the recording pattern reading system of the present invention is applied to a magneto-optical recording type disk memory.
This will be explained using figures. In the figure, 17 is a light source such as a semiconductor laser He--Ne laser. Reference numeral 18 denotes a collimating optical system for converting the light beam from the light source into a parallel light beam. Reference numeral 19 denotes a polarizing plate whose axis is arranged with respect to the optical element 23 described in the previous embodiment so that the incident polarization plane becomes P-polarized light. Reference numeral 20 denotes a phase diffraction grating, which performs angular separation of a light beam so that a sub-spot for tracking detection is focused on a perpendicular magnetic recording medium 25 by an objective lens 24. The lens 21 has the function of forming an image of this diffraction grating 20 near the pupil plane of the objective lens 24, so that the angularly separated light beams are focused on the objective lens 24.
It is possible to prevent blockage in the system up to. A mirror 22 bends the optical axis by 90 degrees and directs the light beam toward the objective lens 24. The optical element 23 of the present invention is placed in the position of a conventionally used semi-transparent mirror. The light flux is from objective lens 2
4, a spot is imaged on the rotating perpendicular magnetic recording medium 25. Due to the angular separation effect of the diffraction grating 20, the spot is divided into two spots for tracking signal detection.
There are a total of three spots: one for this spot and one for detecting RF signals. The light beam that has been subjected to Kerr rotation and reflected by the perpendicular magnetic recording body is separated from the incident light beam by an optical element 23, and the polarized light components are separated by an analyzer 26. 27
is an optical system having astigmatism, and is mainly necessary for detecting an automatic focusing signal for controlling the focusing state of the objective lens in the four-segment light receiving element 30. The electrical signal received by the four-division light-receiving element is separated by a frequency separator 34 into an automatic focusing signal and an RF signal in an appropriate frequency band. After the RF signal is amplified by an amplifier 31, an automatic focusing signal sent to a signal demodulation system is sent to a driver 32, which controls the focus state of the objective lens according to the signal. On the other hand, the light beam separated by the optical system 27 is detected by photodetectors 28 and 29, and these signals are sent to a subtractor 33.
After making a difference, the horizontal direction of the objective lens is controlled via a driver to perform tracking. With the above configuration, file memory can be reproduced using a perpendicular magnetic recording medium. In the above embodiment, an example was shown in which reflected light is detected using the Kerr effect, but the present invention can also be used in a reading system that detects modulated light transmitted through a recording medium. As explained above, the present invention has the effect of improving the signal-to-noise ratio in signal detection in a recorded pattern reading system using a conventional semi-transparent mirror without polarization characteristics and a photodetector with a multiplication effect. Furthermore, by achieving a high signal-to-noise ratio, the configuration of the detection processing system is simplified, costs are reduced, and reliability is increased.
第1図A,Bは夫々従来の垂直磁気記録パター
ンの検出例を示す図、第2図は本発明の第1実施
例の光学系を示す図、第3図は検光子透過軸の方
位を示す図、第4図は第1実施例の光電検出系の
構成を示す概略図、第5図は本発明の記録パター
ン読取におけるC/N比の、第1実施例に用いた
光学素子の偏光特性に対する依存性を示す図、第
6図A,B,C,D、第7図A,Bは夫々本発明
の他の実施例の光学系を示す図、第8図は本発明
を光磁気記録方式のデイスクメモリーに適用した
例を示す概略図である。
9……偏光子、10……光学素子、11……垂
直磁気記録媒体、12……検光子。
Figures 1A and B are diagrams showing conventional detection examples of perpendicular magnetic recording patterns, Figure 2 is a diagram showing the optical system of the first embodiment of the present invention, and Figure 3 is a diagram showing the direction of the analyzer transmission axis. 4 is a schematic diagram showing the configuration of the photoelectric detection system of the first embodiment, and FIG. 5 shows the C/N ratio in reading the recorded pattern of the present invention, and the polarization of the optical element used in the first embodiment. Figures 6A, B, C, D and 7A and B are diagrams showing optical systems of other embodiments of the present invention, respectively, and Figure 8 is a diagram showing the dependence on characteristics. FIG. 2 is a schematic diagram showing an example in which the recording method is applied to a disk memory. 9...Polarizer, 10...Optical element, 11...Perpendicular magnetic recording medium, 12...Analyzer.
Claims (1)
する光源と、前記記録体の記録パターンに応じて
偏光状態に変調を受けた光束を強度変調された光
束に変換する検光子と、前記検光子で変換された
光束を光電検出する増倍作用のある光検出器と、
前記光検出器で検出された信号を増幅する負荷抵
抗を含む増幅器とから成る記録パターン読取系に
おいて、 前記光検出器で受光される光束の前記所定方向
の偏光成分強度をIR、同じくそれと垂直な方向の
偏光成分強度をIK、前記光検出器の増倍率をG、
光検出器の増倍雑音指数をx、電荷量をe、プラ
ンク定数をh、ボルツマン定数をk、光検出器の
量子効率をε、負荷抵抗の抵抗値をRL、等価雑
音温度をTe、検出信号のバンド幅をΔB、光束の
振動数をνとしたときに、前記増幅器の出力信号
のS/N比Sが、以下の式 S=10 log10{e2ε2/2h2ν2G2IK 2/ (2e2ε/hνG2+xIR+4kTe/RL)ΔB} で表わされ、前記変調光束の光路中に、前記Sの
値を最大とするようにIKとIRとの比を調整する光
学素子を設けたことを特徴とする記録パターン読
取光学系。[Scope of Claims] 1. A light source that irradiates a magnetic recording medium with a light beam polarized in a predetermined direction, and a detector that converts the light beam whose polarization state is modulated according to the recording pattern of the recording medium into an intensity-modulated light beam. a photodetector with a multiplication effect that photoelectrically detects photons and the luminous flux converted by the analyzer;
In a recording pattern reading system comprising an amplifier including a load resistor for amplifying the signal detected by the photodetector, the polarization component intensity in the predetermined direction of the light beam received by the photodetector is I R , which is also perpendicular to it. The polarization component intensity in the direction is I K , the multiplication factor of the photodetector is G,
The multiplication noise figure of the photodetector is x, the electric charge is e, Planck's constant is h, Boltzmann's constant is k, the quantum efficiency of the photodetector is ε, the resistance value of the load resistor is R L , and the equivalent noise temperature is T e , where the bandwidth of the detection signal is ΔB and the frequency of the light beam is ν, the S/N ratio S of the output signal of the amplifier is expressed by the following formula: S=10 log 10 {e 2 ε 2 /2h 2 ν 2 G 2 I K 2 / (2e 2 ε/hνG 2+x I R +4kT e /R L )ΔB}, and in the optical path of the modulated light flux, I is set so as to maximize the value of S A recording pattern reading optical system characterized by being provided with an optical element for adjusting the ratio of K and IR .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14383682A JPH0237612B2 (en) | 1982-08-19 | 1982-08-19 | KIROKUPATAAN YOMITORIKEI |
US06/522,719 US4558440A (en) | 1982-08-19 | 1983-08-12 | System for recording patterns of magnetically recorded information by utilizing the magneto-optic effect |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14383682A JPH0237612B2 (en) | 1982-08-19 | 1982-08-19 | KIROKUPATAAN YOMITORIKEI |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5933648A JPS5933648A (en) | 1984-02-23 |
JPH0237612B2 true JPH0237612B2 (en) | 1990-08-27 |
Family
ID=15348071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14383682A Expired - Lifetime JPH0237612B2 (en) | 1982-08-19 | 1982-08-19 | KIROKUPATAAN YOMITORIKEI |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0237612B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04364253A (en) * | 1990-12-20 | 1992-12-16 | Omron Corp | Optical pickup device |
-
1982
- 1982-08-19 JP JP14383682A patent/JPH0237612B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS5933648A (en) | 1984-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4558440A (en) | System for recording patterns of magnetically recorded information by utilizing the magneto-optic effect | |
US4561032A (en) | Magnetooptic reproducing device | |
JPH0778916B2 (en) | Magneto-optical information reproducing device | |
US4813032A (en) | Magneto-optical information reproducing apparatus in which the azimuth angle of the transmission axis of an analyzer is optimized so that the C/N ratio of a reproducing signal is maximum | |
JP3541893B2 (en) | Magneto-optical recording medium reproducing device | |
JPS59203259A (en) | Optical magnetic disc device | |
JPH03116567A (en) | Magneto-optical information reproducing device | |
JP3057903B2 (en) | Magneto-optical disk drive | |
JPH0237612B2 (en) | KIROKUPATAAN YOMITORIKEI | |
JPH0237613B2 (en) | KIROKUPATAAN YOMITORIKEI | |
JPH07105084B2 (en) | Magneto-optical disk device | |
US6741528B1 (en) | Magneto-optical head device | |
JPH0327977B2 (en) | ||
JPH0526173B2 (en) | ||
JPS61198457A (en) | Optical pickup | |
JPS60143453A (en) | Pickup device for recording and reproducing optical information | |
JPS63100647A (en) | Magneto-optical information reproducing device | |
JP2805790B2 (en) | Signal detection device for magneto-optical recording medium | |
JP2795271B2 (en) | Optical disk drive | |
JPH0528575A (en) | Optical head | |
JPS60223044A (en) | Photomagnetic reproducer | |
JP3114301B2 (en) | Optical pickup device | |
JPH03104041A (en) | Magneto-optical disk device | |
JPS6095737A (en) | Noise eliminating method | |
JPS62124641A (en) | Optical magnetic information recording and reproducing device |