JPH05259679A - Built-in type freezer cooler for electronic apparatus - Google Patents

Built-in type freezer cooler for electronic apparatus

Info

Publication number
JPH05259679A
JPH05259679A JP5792992A JP5792992A JPH05259679A JP H05259679 A JPH05259679 A JP H05259679A JP 5792992 A JP5792992 A JP 5792992A JP 5792992 A JP5792992 A JP 5792992A JP H05259679 A JPH05259679 A JP H05259679A
Authority
JP
Japan
Prior art keywords
refrigerant
built
mollier diagram
temperature
rom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5792992A
Other languages
Japanese (ja)
Inventor
Tadashi Ohashi
正 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5792992A priority Critical patent/JPH05259679A/en
Publication of JPH05259679A publication Critical patent/JPH05259679A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve an efficiency of a freezing cooler and to improve reliability in a freezer cooler for cooling a heat generator such as a printed board, etc., mounted in an electronic apparatus. CONSTITUTION:The built-in type freezer cooler for an electronic apparatus comprises a Mollier diagram built-in ROM 5 having a Mollier diagram in which a variation in a state in the case of a temperature change of refrigerant 10 is formed. Control of a rotating speed of a compressor 30 for regulating an internal pressure of a freezer cooler system and control of switching of an expansion valve 35 for discharging the refrigerant 10 to a condenser 40 side are conducted by inputting temperature information from a temperature sensor 3 attached to a heat generator 1 to the ROM 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子機器に実装されたプ
リント板等の発熱体を冷却する冷凍冷却装置に係り、特
に冷媒の温度変化に伴う状態の変化を図化したモリエル
線図を利用してコンプレッサの回転数制御と膨脹弁の開
閉制御を行うようにして冷凍冷却装置の効率と信頼性を
向上させた電子機器の内蔵型冷凍冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating / cooling device for cooling a heating element such as a printed board mounted on an electronic device, and in particular, it utilizes a Mollier diagram which illustrates the change of state with the temperature change of the refrigerant. The present invention relates to a built-in type refrigerating / cooling device for electronic equipment in which the efficiency and reliability of the refrigerating / cooling device are improved by controlling the rotation speed of the compressor and controlling the opening / closing of the expansion valve.

【0002】[0002]

【従来の技術】図4は従来の冷却装置の基本構成を示す
回路図である。図4に示すように、従来の冷却装置は、
冷媒10を収容した冷媒タンク80と、冷媒10を熱交換器70
に送り込むポンプ75と、熱交換器70から発熱体1に密接
する形で配置された冷媒循環部2に供給される冷媒10の
流量を検出する流量検出センサ90と、この流量検出セン
サ90からの情報に基づいて前記ポンプ75の回転数を制御
する流量制御装置95とによって構成されている。
2. Description of the Related Art FIG. 4 is a circuit diagram showing a basic structure of a conventional cooling device. As shown in FIG. 4, the conventional cooling device is
The refrigerant tank 80 containing the refrigerant 10 and the heat exchanger 70 for the refrigerant 10
Pump 75, a flow rate detection sensor 90 for detecting the flow rate of the refrigerant 10 supplied from the heat exchanger 70 to the refrigerant circulation unit 2 arranged in close contact with the heating element 1, and the flow rate detection sensor 90 The flow rate control device 95 controls the rotation speed of the pump 75 based on the information.

【0003】この冷却装置は冷媒循環部2に供給される
冷媒10の量を制御することによって発熱体1の冷却度を
制御する方式の冷却装置である。なお冷媒タンク80を出
発点としてポンプ75→熱交換器70→流量検出センサ90→
冷媒循環部2→冷媒タンク80という循環経路を経て循環
する冷媒10は、これら各装置間を接続する冷媒流通パイ
プ(図示せず)を介して流通する。
This cooling device is a cooling device of the type in which the cooling degree of the heating element 1 is controlled by controlling the amount of the refrigerant 10 supplied to the refrigerant circulating portion 2. In addition, starting from the refrigerant tank 80, the pump 75 → heat exchanger 70 → flow rate detection sensor 90 →
The refrigerant 10 that circulates through the circulation path of the refrigerant circulation unit 2 → the refrigerant tank 80 flows through a refrigerant distribution pipe (not shown) that connects these devices.

【0004】[0004]

【発明が解決しようとする課題】従来の冷却装置は、前
記図4に示すように、発熱体1に密接する形で配置され
た冷媒循環部2に供給される冷媒10の流量を制御するこ
とで発熱体1の冷却度の制御を行なうようになってい
る。しかしながら、冷媒10の流量制御のみで発熱体1の
冷却度を制御するこの方式は、発熱体1側の発熱量が変
化した場合(発熱体1に実装される電子部品,例えばL
SIの品種が変更になった場合等)はその発熱量に応じ
て冷媒10の流量を設定し直す必要があるが、これは予想
以上に面倒な作業となる。また、この冷却方式は、冷媒
10の種類によっても冷却効率が変化することから容易に
冷媒10を変更することができないといった不便さがあ
る。
In the conventional cooling device, as shown in FIG. 4, the flow rate of the refrigerant 10 supplied to the refrigerant circulating portion 2 arranged in close contact with the heating element 1 is controlled. Controls the degree of cooling of the heating element 1. However, this method, in which the cooling degree of the heating element 1 is controlled only by controlling the flow rate of the refrigerant 10, is used when the amount of heat generated on the heating element 1 side changes (electronic components mounted on the heating element 1, such as L
When the SI type is changed, etc.), the flow rate of the refrigerant 10 needs to be reset according to the amount of heat generated, which is more troublesome than expected. In addition, this cooling system
There is an inconvenience that the refrigerant 10 cannot be easily changed because the cooling efficiency also changes depending on the type.

【0005】さらに従来の冷却装置は発熱体1が収容さ
れている本体装置とはかなり離れていたために架間ホー
ス,信号ケーブル等が必要となり、従ってシステムの信
頼性が充分でない。
Further, since the conventional cooling device is far away from the main body device in which the heating element 1 is housed, a hose, a signal cable, etc. are required between the frames, and therefore the reliability of the system is not sufficient.

【0006】本発明は、本体装置内に冷凍冷却装置を内
蔵させ、その制御は冷媒の温度変化に伴う状態の変化を
図化したモリエル線図を利用して行う方式を採用するこ
とにより、冷凍冷却系の信頼性を格段に向上させた電子
機器の内蔵型冷凍冷却装置を実現しようとするものであ
る。
According to the present invention, a refrigerating / cooling device is built in the main body device, and its control is performed by using a system in which a Mollier diagram is used to illustrate the change of the state accompanying the temperature change of the refrigerant. It is intended to realize a built-in type refrigerating / cooling device for electronic equipment in which the reliability of the cooling system is remarkably improved.

【0007】[0007]

【課題を解決するための手段】本発明による電子機器の
内蔵型冷凍冷却装置は、図1に示すように、冷媒10の温
度変化に伴う状態の変化を図化したモリエル線図を内蔵
してなるモリエル線図内蔵ROM5を装備し、前記発熱
体1に付設した温度センサ3からの温度情報を当該モリ
エル線図内蔵ROM5に入力することによって冷凍冷却
系の内部圧力を調整するコンプレッサ30の回転数制御と
冷媒10を凝縮器40側へ放出する膨張弁35の開閉制御を行
う構成になっている。
As shown in FIG. 1, a built-in type refrigerating / cooling device for an electronic apparatus according to the present invention has a built-in Mollier diagram which illustrates a change in state with a change in temperature of a refrigerant 10. The rotation speed of the compressor 30 equipped with the Mollier diagram built-in ROM 5 and adjusting the internal pressure of the refrigerating and cooling system by inputting the temperature information from the temperature sensor 3 attached to the heating element 1 into the Mollier diagram built-in ROM 5 The control and open / close control of the expansion valve 35 that discharges the refrigerant 10 to the condenser 40 side are performed.

【0008】[0008]

【作用】この内蔵型冷凍冷却装置は、発熱体1に装着し
た温度センサ3からの温度情報をモリエル線図内蔵RO
M5に入力することによって冷凍冷却系の制御(冷凍冷
却系の内部圧力を調整するコンプレッサ30の回転数制御
と冷媒10を凝縮器40側へ放出する膨脹弁35の開閉制御)
を行う構造であることから装置効率と信頼性が極めて高
い。
In this built-in type refrigerating / cooling device, the temperature information from the temperature sensor 3 mounted on the heating element 1 is used for RO with a Mollier diagram.
Control of the refrigeration / cooling system by inputting into M5 (rotation speed control of the compressor 30 that adjusts the internal pressure of the refrigeration / cooling system and opening / closing control of the expansion valve 35 that discharges the refrigerant 10 to the condenser 40 side)
Because of the structure for performing the above, the device efficiency and reliability are extremely high.

【0009】[0009]

【実施例】以下実施例図に基づいて本発明を詳細に説明
する。図1は本発明の一実施例を示す回路図、図2はモ
リエル線図に基づく冷却系の制御プロセスを説明するた
めの図、図3は本発明の一応用例を示す主要部分の回路
図であるが、前記図4と同一部分にはそれぞれ同一符号
を付している。
The present invention will be described in detail below with reference to the drawings of the embodiments. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is a diagram for explaining a control process of a cooling system based on a Mollier diagram, and FIG. 3 is a circuit diagram of a main part showing an application example of the present invention. However, the same parts as those in FIG. 4 are designated by the same reference numerals.

【0010】図1に示すように、本発明による電子機器
の内蔵型冷凍冷却装置は、冷媒10の温度変化に伴う状態
の変化を図化したモリエル線図を内蔵してなるモリエル
線図内蔵ROM5(以下M図内蔵ROM5と称する)を
制御装置50内に装備し、前記発熱体1上に配置した温度
センサ3からの温度情報を当該モリエル線図内蔵ROM
5に入力することによって冷凍冷却系の内部圧力を調整
するコンプレッサ30の回転数制御と冷媒10を凝縮器40側
へ放出する膨張弁35の開閉制御を行う新方式の冷凍冷却
装置である。
As shown in FIG. 1, the built-in type refrigerating / cooling device for an electronic apparatus according to the present invention has a Mollier diagram built-in ROM 5 having a built-in Mollier diagram which illustrates the change of state with the temperature change of the refrigerant 10. (Hereinafter referred to as ROM 5 with built-in M diagram) is installed in the control device 50, and temperature information from the temperature sensor 3 arranged on the heating element 1 is stored in the ROM with built-in Mollier diagram.
This is a new type refrigerating / cooling device that controls the rotation speed of the compressor 30 for adjusting the internal pressure of the refrigerating / cooling system by inputting it to 5 and the opening / closing control of the expansion valve 35 for discharging the refrigerant 10 to the condenser 40 side.

【0011】前記モリエル線図Mは冷媒10の温度変化に
伴う状態の変化を図化したものであるから、このモリエ
ル線図Mを利用して冷媒10の温度管理を行うようにすれ
ば冷凍冷却系の内部圧力を制御するだけで当該冷媒10の
最高温度と最低温度を極めて正確に設定することができ
る。
Since the Mollier diagram M is a diagram showing changes in the state of the refrigerant 10 due to the temperature change, if the Mollier diagram M is used to control the temperature of the refrigerant 10, freezing and cooling are performed. Only by controlling the internal pressure of the system, the maximum temperature and the minimum temperature of the refrigerant 10 can be set extremely accurately.

【0012】以下図2を用いてモリエル線図に基づく冷
凍冷却系の制御プロセスについて説明する。図2におい
て、Mは飽和液線部分α(立ち上がり部分)と飽和蒸気
線部分β(立ち下がり部分)とより成るモリエル線図、
aは冷媒10の動作原点(図2ではこの時の冷凍冷却系の
内部圧力を5Kg/Cm2 ,冷媒温度は−10℃に設定してい
る)、bは冷媒10に対して増圧を開始する増圧開始点
(この時の冷凍冷却系の内部圧力は5Kg/Cm2 ,冷媒温
度は+30℃)、cは冷媒10を凝縮器40側へ放出する膨脹
弁35を開放状態にする膨脹弁開放点(この時の内部圧力
は8Kg/Cm2 ,冷媒温度は+50℃)、dは気化状態の冷
媒10が液化状態に変化する冷媒液化点(この時の冷凍冷
却系の内部圧力は8Kg/Cm2 ,冷媒の温度は約+25
℃)、eは冷媒10に対して減圧を開始する減圧開始点
(この時の内部圧力は8Kg/Cm2 ,冷媒温度は約−15
℃)、a→b→c→d→eを順次経由して元のaに戻る
矢印を付した太い実線は冷媒の変態曲線γをそれぞれ示
す。なお、このグラフの横軸(X軸)はエンタルピ〔Kc
al/Kg〕即ち冷媒の温度〔℃〕を示し、縦軸(Y軸)は
冷却系の内部絶対圧力〔Kg/Cm2 〕を示す。
The control process of the refrigerating and cooling system based on the Mollier diagram will be described below with reference to FIG. In FIG. 2, M is a Mollier diagram consisting of a saturated liquid line part α (rising part) and a saturated vapor line part β (falling part),
a is the operation origin of the refrigerant 10 (in FIG. 2, the internal pressure of the refrigerating / cooling system at this time is set to 5 kg / Cm 2 , and the refrigerant temperature is set to −10 ° C.), and b starts increasing the pressure of the refrigerant 10. Start point of increasing pressure (the internal pressure of the refrigerating / cooling system at this time is 5 kg / Cm 2 , the refrigerant temperature is + 30 ° C.), and c is the expansion valve that opens the expansion valve 35 that discharges the refrigerant 10 to the condenser 40 side. Open point (internal pressure at this time is 8 kg / Cm 2 , refrigerant temperature is + 50 ° C), d is refrigerant liquefaction point at which vaporized refrigerant 10 changes to liquefied state (internal pressure of the refrigerating / cooling system at this time is 8 kg / Cm 2 , refrigerant temperature is about +25
℃), e is the decompression start point at which decompression starts with respect to the refrigerant 10 (the internal pressure at this time is 8 kg / Cm 2 , and the refrigerant temperature is approximately −15).
C.), a->b->c->d-> e in order to return to the original a, thick solid lines with arrows indicate the transformation curves γ of the refrigerant. The horizontal axis (X axis) of this graph is the enthalpy [Kc
al / Kg], that is, the temperature of the refrigerant [° C.], and the vertical axis (Y axis) represents the internal absolute pressure of the cooling system [Kg / Cm 2 ].

【0013】.温度センサ3によって検出された発熱
体1の温度検出値が制御装置50内に収納されているM図
内蔵ROM5(図1参照)に入力されるとこの温度情報
は冷媒温度に換算され、当該M図内蔵ROM5内にファ
ームウェアとして内蔵されているモリエル線図Mの横軸
(X軸)上にプロットされる。なお、この時の温度検出
値の換算値が増圧開始点bの温度(+30℃)以下であれ
ば冷凍冷却系は作動しない。これは冷媒温度が+30℃以
下の時に冷凍冷却系を作動させると発熱体1が過度に冷
却される危険性があるためである。なお、この時の冷凍
冷却系の内部圧力は5Kg/Cm2 に保たれている。
.. When the detected temperature value of the heating element 1 detected by the temperature sensor 3 is input to the ROM 5 with built-in M (see FIG. 1) housed in the control device 50, this temperature information is converted into the refrigerant temperature, It is plotted on the horizontal axis (X axis) of the Mollier diagram M, which is stored as firmware in the figure built-in ROM 5. If the converted value of the detected temperature value at this time is equal to or lower than the temperature (+ 30 ° C.) at the pressure increase starting point b, the refrigerating / cooling system does not operate. This is because the heating element 1 may be excessively cooled if the refrigerating and cooling system is operated when the refrigerant temperature is + 30 ° C. or lower. The internal pressure of the refrigerating and cooling system at this time was maintained at 5 kg / Cm 2 .

【0014】.発熱体1の温度が上昇して冷媒10の温
度がモリエル線図Mの飽和蒸気線βと交わる増圧開始点
b(この時の冷媒10の温度は30℃)に到達するとコンプ
レッサ30の回転数を上げて冷凍冷却系の内部圧力を上昇
させる。
.. When the temperature of the heating element 1 rises and the temperature of the refrigerant 10 reaches the pressure increasing start point b (the temperature of the refrigerant 10 at this time is 30 ° C.) where it crosses the saturated vapor line β of the Mollier diagram M, the rotation speed of the compressor 30 To raise the internal pressure of the refrigeration system.

【0015】.冷凍冷却系の内部圧力が上昇すると冷
媒10の温度もこれにつれて除々に上昇する。 .冷媒10の温度が上昇して冷媒10の許容最高温度であ
る50℃(この温度は冷媒10の種類によって異なる)に達
するとコンプレッサ30の回転数を一定にする。なお、こ
の時の冷凍冷却系の内部圧力は8Kg/Cm2 になってい
る。
.. When the internal pressure of the freezing / cooling system rises, the temperature of the refrigerant 10 also gradually rises accordingly. . When the temperature of the refrigerant 10 rises and reaches the maximum allowable temperature of the refrigerant 10 of 50 ° C. (this temperature varies depending on the type of the refrigerant 10), the rotation speed of the compressor 30 is made constant. The internal pressure of the refrigerating / cooling system at this time is 8 kg / Cm 2 .

【0016】.ここで膨張弁35が開放されて気化状態
になっている冷媒10を凝縮器40側へ放出する。凝縮器40
に送り込まれた冷媒10は除々にその温度が低下し、前記
飽和蒸気線βと交わる時点で液化する。
.. Here, the expansion valve 35 is opened and the refrigerant 10 in the vaporized state is discharged to the condenser 40 side. Condenser 40
The temperature of the refrigerant 10 fed into the tank gradually decreases, and the refrigerant 10 is liquefied when it crosses the saturated vapor line β.

【0017】.冷媒10はその温度をさらに下げながら
今度はモリエル線図Mの飽和液線αと交わる減圧開始点
eに到達する。 .冷媒10の温度が減圧開始点eの温度まで低下すると
コンプレッサ30の回転数を下げて冷凍冷却系の内部圧力
を降下させる。冷凍冷却系の内部圧力が下がって元の圧
力(5Kg/Cm2 )に戻った時点では冷媒10の温度も元の
動作原点aの温度(−10℃)に戻っている。
.. The refrigerant 10 further reaches the depressurization start point e which intersects the saturated liquid line α of the Mollier diagram M while further lowering its temperature. . When the temperature of the refrigerant 10 drops to the temperature of the decompression starting point e, the rotation speed of the compressor 30 is lowered to lower the internal pressure of the refrigerating / cooling system. At the time when the internal pressure of the refrigerating / cooling system is lowered and returned to the original pressure (5 kg / Cm 2 ), the temperature of the refrigerant 10 is also returned to the original temperature of the operation origin a (−10 ° C.).

【0018】以上の説明から明らかなように、このモリ
エル線図Mを利用すると冷媒10の温度サイクル(冷媒の
変態曲線γ)を特に正確に制御し得ることから、本方式
を採用した冷凍冷却装置は極めて効率的でかつ信頼性が
高い。なお、冷媒の変態曲線γ対応にコンプレッサ30と
膨張弁35の動作を制御するのは制御装置50である。
As is clear from the above description, the use of this Mollier diagram M makes it possible to control the temperature cycle (refrigerant transformation curve γ) of the refrigerant 10 particularly accurately. Is extremely efficient and reliable. The controller 50 controls the operations of the compressor 30 and the expansion valve 35 according to the transformation curve γ of the refrigerant.

【0019】次は本発明の一応用例を図3に基づいて説
明する。この応用例は、複数種類の冷媒10に対応するモ
リエル線図をそれぞれ内蔵した複数のモリエル線図内蔵
ROM5 -1,5 -2 ----5 -n を装備するとともに、これ
ら各モリエル線図内蔵ROM5 -1,5 -2 ----5 -n と前
記温度センサ5とを選択的に接続するROM選択スイッ
チ7 -1,7 -2 ----7 -n をROM切換部8に装備したこ
とを特徴とする。
Next, one application example of the present invention will be described with reference to FIG. This application example is equipped with multiple Mollier diagram built-in ROMs 5 -1 , 5 -2 ---- 5 -n , each of which contains Mollier diagram corresponding to multiple types of refrigerants 10, and each of these Mollier diagrams. ROM selection switches 7 -1 , 7 -2 ---- 7 -n for selectively connecting the built-in ROMs 5 -1 , 5 -2 ---- 5 -n and the temperature sensor 5 to the ROM switching section 8 Characterized by being equipped.

【0020】この発明は、或る特定の冷媒10のみを対象
とするモリエル線図Mのみでは冷媒10の種類が変わった
時にこれに対応できない点を解消するためになされたも
のである。この冷凍冷却装置は、複数種類の冷媒10に対
応するモリエル線図をそれぞれ内蔵した複数のモリエル
線図内蔵ROM5 -1,5 -2 ----5 -n を制御装置50A内
に装備していることから冷媒10の種類が変わってもRO
M選択スイッチ7 -1,7 -2 ----7 -n を操作するだけで
当該冷媒10に対応するモリエル線図内蔵ROM5 -1,5
-2 ----5 -n を容易に選択することができるので冷凍冷
却装置の汎用性が著しく向上する。
The present invention has been made to solve the problem that the Mollier diagram M for only a specific refrigerant 10 cannot cope with the change of the kind of the refrigerant 10. This refrigerating / cooling device is provided with a plurality of Mollier diagram built-in ROMs 5 -1 , 5 -2 --- -5 -n each having a built-in Mollier diagram corresponding to a plurality of types of refrigerants 10 in the controller 50A. Therefore, even if the type of the refrigerant 10 changes, RO
ROM 5 -1 , 5 with built-in Mollier diagram corresponding to the relevant refrigerant 10 just by operating M selection switch 7 -1 , 7 -2 ---- 7 -n
-2 ---- 5 -n can be easily selected, which greatly improves the versatility of the refrigeration system.

【0021】この内蔵型冷凍冷却装置は、冷媒10の温度
変化に伴う冷媒10の状態の変化を図化したモリエル線図
Mに基づいて冷凍冷却系のコンプレッサ30の回転数制御
と膨張弁35の開閉制御を行う方式を採用していることか
ら冷凍冷却系の動作が極めて合理的で効率が高い。
This built-in type refrigerating / cooling apparatus controls the rotation speed of the compressor 30 and the expansion valve 35 of the refrigerating / cooling system based on the Mollier diagram M which illustrates the change of the state of the refrigerant 10 with the temperature change of the refrigerant 10. The operation of the refrigeration / cooling system is extremely rational and highly efficient because it employs a system that controls opening and closing.

【0022】[0022]

【発明の効果】以上の説明から明らかなように、本発明
による冷凍冷却装置は、本体装置内に内蔵された冷却装
置であるために架内ホースや信号ケーブル等が不要なの
で制御方法が簡単である上、冷媒10の温度変化に伴う冷
媒10の状態の変化を図化したモリエル線図Mに基づいて
冷凍冷却系の動作を制御する方式であることから装置の
信頼性が極めて高い。
As is apparent from the above description, since the refrigerating / cooling device according to the present invention is a cooling device built in the main body device, an in-frame hose, a signal cable, etc. are not required, and the control method is simple. In addition, the operation of the refrigerating and cooling system is controlled on the basis of the Mollier diagram M in which the change of the state of the refrigerant 10 due to the temperature change of the refrigerant 10 is controlled, so that the reliability of the apparatus is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例を示す回路図である。FIG. 1 is a circuit diagram showing an embodiment of the present invention.

【図2】 モリエル線図に基づく冷却系の制御プロセス
を説明するための図である。
FIG. 2 is a diagram for explaining a control process of a cooling system based on a Mollier diagram.

【図3】 本発明の一応用例を示す主要部分の回路図で
ある。
FIG. 3 is a circuit diagram of a main part showing an application example of the present invention.

【図4】 従来の冷却装置の基本構成を示す回路図であ
る。
FIG. 4 is a circuit diagram showing a basic configuration of a conventional cooling device.

【符号の説明】[Explanation of symbols]

1 発熱体 2 冷媒循環部 3 温度センサ 5,5-1,5-2,5-n M図内蔵ROM 7-1,7-2,7-n ROM選択スイッチ 8 ROM切換部 10 冷媒 30 コンプレッサ 35 膨脹弁 40 凝縮器 50,50A 制御装置 70 熱交換器 75 ポンプ 80 冷媒タンク 90 流量検出センサ 95 流量制御装置 M モリエル線図 α 飽和液線部分 β 飽和蒸気線部分 γ 冷媒の変態曲線 a 動作原点 b 増圧開始点 c 膨脹弁開放点 d 冷媒液化点 e 減圧開始点1 Heating element 2 Refrigerant circulation part 3 Temperature sensor 5, 5 -1 , 5 -2 , 5 -n M figure built-in ROM 7 -1 , 7 -2 , 7 -n ROM selection switch 8 ROM switching part 10 Refrigerant 30 Compressor 35 Expansion valve 40 Condenser 50, 50A Control device 70 Heat exchanger 75 Pump 80 Refrigerant tank 90 Flow rate detection sensor 95 Flow rate control device M Mollier diagram α Saturated liquid line part β Saturated vapor line part γ Refrigerant transformation curve a Operating origin b Pressure increase starting point c Expansion valve opening point d Refrigerant liquefaction point e Decompression starting point

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電子機器に実装されたプリント板等の発
熱体(1) を冷却する冷凍冷却装置であって、 冷媒(10)の温度変化に伴う状態の変化を図化したモリエ
ル線図を内蔵してなるモリエル線図内蔵ROM(5) を装
備し、 前記発熱体(1) に付設した温度センサ(3) からの温度情
報を当該モリエル線図内蔵ROM(5) に入力することに
よって冷凍冷却系の内部圧力を調整するコンプレッサ(3
0)の回転数制御と冷媒(10)を凝縮器(40)側へ放出する膨
張弁(35)の開閉制御を行うことを特徴とする電子機器の
内蔵型冷凍冷却装置。
1. A refrigerating / cooling device for cooling a heating element (1) such as a printed board mounted on an electronic device, wherein a Mollier diagram illustrating a change in state with a change in temperature of a refrigerant (10) is shown. The built-in ROM (5) with built-in Mollier diagram is provided, and the temperature information from the temperature sensor (3) attached to the heating element (1) is input to the ROM (5) with built-in Mollier diagram. A compressor that adjusts the internal pressure of the cooling system (3
(1) A built-in type refrigerating / cooling device for electronic equipment, which controls the rotation speed of (0) and the opening / closing control of an expansion valve (35) that discharges the refrigerant (10) to the condenser (40) side.
【請求項2】 複数種類の冷媒(10)に対応するモリエル
線図をそれぞれ内蔵した複数のモリエル線図内蔵ROM
(5-1) ,(5-2) ----(5-n) を装備するとともに、これら
各モリエル線図内蔵ROM(5-1) ,(5-2) ----(5-n) と
前記温度センサ(3) とを選択的に接続するROM選択ス
イッチ(7-1) ,(7-2) ----(7-n) を装備してなることを
特徴とする請求項1記載の電子機器の内蔵型冷凍冷却装
置。
2. A plurality of Mollier diagram built-in ROMs each containing a Mollier diagram corresponding to a plurality of types of refrigerants (10).
(5 -1), (5 -2 ) ---- (5 -n) as well as equipped with, respective Mollier diagram Internal ROM (5 -1), (5 -2) ---- (5 - n ) and the temperature sensor (3) are selectively connected, and ROM selection switches (7 -1 ), (7 -2 ) ---- (7 -n ) are provided. Item 1. A built-in type refrigeration / cooling device for electronic equipment according to Item 1.
JP5792992A 1992-03-16 1992-03-16 Built-in type freezer cooler for electronic apparatus Withdrawn JPH05259679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5792992A JPH05259679A (en) 1992-03-16 1992-03-16 Built-in type freezer cooler for electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5792992A JPH05259679A (en) 1992-03-16 1992-03-16 Built-in type freezer cooler for electronic apparatus

Publications (1)

Publication Number Publication Date
JPH05259679A true JPH05259679A (en) 1993-10-08

Family

ID=13069704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5792992A Withdrawn JPH05259679A (en) 1992-03-16 1992-03-16 Built-in type freezer cooler for electronic apparatus

Country Status (1)

Country Link
JP (1) JPH05259679A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096221A (en) * 2005-09-30 2007-04-12 Sanyo Electric Co Ltd Electronic apparatus and cooling device therefor
JP2013088031A (en) * 2011-10-18 2013-05-13 Hitachi Plant Technologies Ltd Cooling system, and method for controlling the same
JP2017174881A (en) * 2016-03-22 2017-09-28 日本電気株式会社 Electronic component cooler, electronic component including cooler and electronic component cooling method
CN112303965A (en) * 2019-07-26 2021-02-02 株式会社鹭宫制作所 Cooling device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096221A (en) * 2005-09-30 2007-04-12 Sanyo Electric Co Ltd Electronic apparatus and cooling device therefor
JP4738121B2 (en) * 2005-09-30 2011-08-03 三洋電機株式会社 Electronic device cooling device and electronic device
JP2013088031A (en) * 2011-10-18 2013-05-13 Hitachi Plant Technologies Ltd Cooling system, and method for controlling the same
JP2017174881A (en) * 2016-03-22 2017-09-28 日本電気株式会社 Electronic component cooler, electronic component including cooler and electronic component cooling method
CN112303965A (en) * 2019-07-26 2021-02-02 株式会社鹭宫制作所 Cooling device
JP2021021528A (en) * 2019-07-26 2021-02-18 株式会社鷺宮製作所 Cooler

Similar Documents

Publication Publication Date Title
KR900003052B1 (en) Refrigerant flow control system for use with refrigerator
US4535598A (en) Method and control system for verifying sensor operation in a refrigeration system
US5168715A (en) Cooling apparatus and control method thereof
EP0926455B1 (en) Discharge presure control system for transport refrigeration unit using suction modulation
US6829903B2 (en) Air conditioner and method for operating air conditioner in cooling mode
EP1714095B1 (en) Heater cycling for improved oil return
CA1264364A (en) Automatic anti-surge control for dual centrifugal compressor system
US20080196420A1 (en) Flashgas Removal From a Receiver in a Refrigeration Circuit
GB2379971A (en) Apparatus to provide temperature control and circulation of liquid
EP1782001A1 (en) Flashgas removal from a receiver in a refrigeration circuit
US20070151269A1 (en) System and method for level control in a flash tank
JPS60245963A (en) Method of operating refrigeration system and control system of refrigeration system
JP2007093100A (en) Control method of heat pump water heater, and heat pump water heater
KR950003791B1 (en) Automatic chiller plant balancing
JPH03217761A (en) Water cooler
JPH05259679A (en) Built-in type freezer cooler for electronic apparatus
JP4140625B2 (en) Heat pump water heater and control method of heat pump water heater
JP3835434B2 (en) Heat pump type water heater
JPS58130969A (en) Method and device for controlling flow rate
WO1984003933A1 (en) Method of controlling temperature in refrigerator
JP2005121256A (en) Temperature test device
KR100851053B1 (en) A valve control method of refrigerator
JPH05296618A (en) Water cooler
JP3175042B2 (en) Temperature control method of cold / hot water generator
JP2504815B2 (en) Cooling system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518