JPH0525944B2 - - Google Patents

Info

Publication number
JPH0525944B2
JPH0525944B2 JP60053213A JP5321385A JPH0525944B2 JP H0525944 B2 JPH0525944 B2 JP H0525944B2 JP 60053213 A JP60053213 A JP 60053213A JP 5321385 A JP5321385 A JP 5321385A JP H0525944 B2 JPH0525944 B2 JP H0525944B2
Authority
JP
Japan
Prior art keywords
alloys
alloy
corrosion
copper
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60053213A
Other languages
Japanese (ja)
Other versions
JPS60211053A (en
Inventor
Haabee Basufuoodo Tomasu
Roi Kuramu Jeemuzu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huntington Alloys Corp
Original Assignee
Inco Alloys International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24362074&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0525944(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Inco Alloys International Inc filed Critical Inco Alloys International Inc
Publication of JPS60211053A publication Critical patent/JPS60211053A/en
Publication of JPH0525944B2 publication Critical patent/JPH0525944B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/087Heat exchange elements made from metals or metal alloys from nickel or nickel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0059Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for petrochemical plants

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 本発明はニツケル−鉄−クロム合金一般に関す
るものであり、特に、可変時効硬化特性を伴なう
低加工硬化率を有する高強度、耐食性合金に関す
るものである。この合金は流体流中における銅ピ
ツク・アツプを減少させる。 〔従来技術〕 発電プラントの操作員およびボイラーメーカ
は、水蒸気発生器(化石燃料式および核燃料式)
の効率を改良するためには、再生式吸水加熱を採
用することが有効であることを以前から認識して
いた。本質的に、ボイラー/反応炉の給水をボイ
レアーのエコノマイザーの中にまたは直接に水蒸
気発生器/反応炉の中に導入するまえにこの給水
を予熱するため、蒸気タービンから水蒸気が抽出
される。もちろん、給水の加熱は吸水加熱器の中
で生じる。水蒸気の潜熱の一部を給水に与えるた
め、水蒸気を用いて給水加熱器配管の内部で給水
を加熱する。100〜650°F(37.7〜343.3℃)の水温
と5200psi(358.53MPa)までの水圧も異常ではな
い。 さらに、最近の設計は7200psi(496.42MPa)に
達する水圧と700〓(371.1℃)の水温を考慮して
いる。 現在、給水加熱器においては鋼(炭素鋼および
ステンレス鋼)およびときにはニツケル−銅合金
モネル*ニツケル−銅合金)が使用されている
(*インコ社の商標)。給水からケミカルズおびそ
の他の不純物を除去するために給水を処理する
が、それでも配管の腐食が生じる可能性がある。 遊離酸素は鋼を腐食する。超合金はしばしば、
その高い加工硬化率の故に管状に形成することが
困難である。高銅分材料は、一般に銅と腐食生成
物はボイラの配管上に堆積すると考えられ、また
水蒸気中に転送されるが故に望ましくない。これ
らの望ましくない同伴生成物がタービンの中に入
つて低効率を生じる。実際に、操作員は水蒸気中
の銅ピツクアツプをできるだけ除去することを望
む。なぜかならば、水蒸気から銅がタービンの羽
根上にメツキされてこれ汚染し、その効率を低下
させるからである。また、銅の堆積物は鉄合金と
共に局所的電池を形成し、腐食を促進させる可能
性があるものと考えられる。ニツケル−銅合金は
他の点では他の合金よりもすぐれた化学特性と物
理特性を有するのであるが、操作員はこの種の合
金を避けようとする。しかしながら、現在入手さ
れるニツケル−銅合金の代わりに低炭素鋼または
ステンレス鋼を使用することは、これらの材料が
所要の耐食性、応力腐食クラツキング抵抗または
強度を有しないが故に、必ずしも満足でない。そ
の結果、保守コストが高くなる。さらに、炭素鋼
の場合、3年〜8年という望ましくない程度に短
い寿命が報告されている。このような状態は、20
年以上の所望の稼働時間とは対照的である。従つ
て、発電プラントの操作員は、鋼の腐食、高価な
合金、および多量の銅分を含有するニツケル−銅
合金に直面して当惑している。 給水加熱器、化学プラントおよび石油化学プラ
ントおよびその他類似の用途に適した耐食性と、
強度と、加工性とを備えた適当なコストの合金を
必要とすることは明らかである。 〔発明の要約〕 従つて、本発明は工業用容器、限定されるもの
ではないが特に高温高圧用熱交換器チユービング
に適した低い加工硬化率を有する耐食性オーステ
ナイト鋼を提供することを目的とするものであ
る。 かくて、本発明は27%乃至29%のニツケルと、
15%乃至17%のクロムと、2%乃至3.5%のモリ
ブデンと、3%乃至5.5%の銅と、0.8%乃至2.5%
のチタンと、0.9%乃至1.1%のマンガンと、0.01
%乃至0.1%のアルミニウムと、0.01%乃至0.1%
のセリウムと、残部と主として鉄と、痕跡量の不
純物とから本質的に成るオーステナイト、高強
度、耐食性ニツケル−鉄−クロム合金を提供する
ものである。 ここに用いられる不純物という用語は処理助剤
として加えられる残余量のカルシウムと下記の表
1について示されたごとき元素を包含する。 〔発明の具体的説明〕 本発明の合金は、これより高価な合金よりも低
コストのシステムにおいて、改良された耐食性と
所要の高強度とを結びつけるものである。この合
金はすぐれた応力腐食クラツキング抵抗とすぐれ
た高温腐食抵抗とを示す。 本発明の鋼は、その低い加工硬化率(一部には
そのニツケル−クロム結合による)の故に、管形
成およびその他の冷間加工処理を受けやすい。
0.8%以上のチタンは時効硬化性を増大する。た
とえば約1.8%チタンをこの目的のために加える
ことができる。 0.8〜2.5%の量のチタンの添加は、冷間加工/
焼鈍条件において少なくとも60Ksi(413.7MPa)
降伏強さと120Ksi(827.4MPa)の引張り強さの
時効硬化レスポンスを与える。チタンは合金の加
工硬化率を上昇させる。3〜5.5%の銅、15〜17
%のクロムおよび2〜3.5%のモリブデンを加え
ることによつて合金の耐食性を改良することがで
きる。又ニツケルは27〜29%同じ目的で加えられ
る。 この外本発明の合金では0.9%〜1.1%のマンガ
ンと0.01%〜0.1%のアルミニウムが加えられる。 0.9〜1.1%の量のマンガンは可鍛性を与えるた
めに添加される。通常、総べてのニツケル/クロ
ム合金にはこの元素が或る量含まれる。即ち、少
量0.9〜1.1%が有用である。また、0.01〜0.1%の
アルミニウムは合金の脱酸を助け溶融工程中でチ
タンをコントロールする。同様に0.01%〜0.1%
のセリウムも合金の脱酸を助ける。 下記の表1に本発明の組成範囲内のヒートを示
す。これらのヒートはいずれもスクラツプ材料と
市販のクリーンな材料を用いてつくられたもので
あり、これらの材料にはいずれも不純物が各種含
まれている。この表に示されているのは各ヒート
の全体の分析の結果であり、従つて本発明の合金
にとつて不純物の成分も挙げられている。ここに
あげられた成分元素の中で炭素、硫黄、ケイ素、
コバルト、ニオブ、タンタルと窒素はいずれも本
発明の合金にとつては不純物とみなされる。窒素
は非時効硬化性の場合には有効かもしれないが本
発明の時効硬化性合金の場合にはそうではない。
マグネシウムはアルミニウムの如き他の脱酸剤が
欠けているときは少量加えることができるが本発
明の場合には必要ではない。
TECHNICAL FIELD This invention relates generally to nickel-iron-chromium alloys, and more particularly to high strength, corrosion resistant alloys having low work hardening rates with variable age hardening properties. This alloy reduces copper pick-up in fluid streams. [Prior Art] Power plant operators and boiler manufacturers use steam generators (fossil-fueled and nuclear-fueled)
It has long been recognized that it is effective to employ regenerative water absorption heating in order to improve the efficiency of water heating. Essentially, steam is extracted from the steam turbine in order to preheat the boiler/reactor feedwater before it is introduced into the Boiler economizer or directly into the steam generator/reactor. Of course, the heating of the feed water takes place in the water heater. Steam is used to heat the feed water inside the feed water heater piping in order to impart some of the latent heat of the water vapor to the feed water. Water temperatures of 100-650°F (37.7-343.3°C) and water pressures of up to 5200 psi (358.53 MPa) are also not unusual. Additionally, recent designs allow for water pressures reaching 7200 psi (496.42 MPa) and water temperatures of 700 〓 (371.1°C). Currently, steel (carbon steel and stainless steel) and sometimes nickel-copper alloy Monel * nickel-copper alloy) are used in feed water heaters (*Trademark of Inco Corporation). Although water supplies are treated to remove chemicals and other impurities from the water supply, corrosion of pipes can still occur. Free oxygen corrodes steel. Superalloys are often
Due to its high work hardening rate, it is difficult to form into tubular shapes. High copper content materials are generally undesirable because copper and corrosion products are believed to be deposited on boiler piping and transferred into the steam. These undesirable entrained products enter the turbine resulting in low efficiency. In fact, operators desire to remove as much copper pick-up from the water vapor as possible. This is because the steam deposits copper on the turbine blades, contaminating them and reducing their efficiency. It is also believed that copper deposits may form local batteries with iron alloys and accelerate corrosion. Although nickel-copper alloys have chemical and physical properties that are otherwise superior to other alloys, operators tend to avoid these types of alloys. However, the use of low carbon steel or stainless steel in place of currently available nickel-copper alloys is not always satisfactory because these materials do not have the required corrosion resistance, stress corrosion cracking resistance, or strength. As a result, maintenance costs increase. Additionally, undesirably short lifetimes of 3 to 8 years have been reported for carbon steel. This condition is 20
This is in contrast to the desired uptime of more than a year. Therefore, power plant operators are perplexed when faced with steel corrosion, expensive alloys, and nickel-copper alloys containing large amounts of copper. Corrosion resistance and suitable for feed water heaters, chemical and petrochemical plants and other similar applications.
There is clearly a need for an alloy with strength, workability, and reasonable cost. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a corrosion-resistant austenitic steel having a low work hardening rate suitable for industrial vessels, especially but not limited to heat exchanger tubing for high temperature and high pressure applications. It is something. Thus, the present invention comprises 27% to 29% nickel,
15% to 17% chromium, 2% to 3.5% molybdenum, 3% to 5.5% copper, and 0.8% to 2.5%
of titanium, 0.9% to 1.1% manganese, and 0.01
% to 0.1% aluminum and 0.01% to 0.1%
The present invention provides an austenitic, high-strength, corrosion-resistant nickel-iron-chromium alloy consisting essentially of cerium, the balance primarily iron, and trace amounts of impurities. The term impurity as used herein includes residual amounts of calcium and elements such as those set forth in Table 1 below that are added as processing aids. DETAILED DESCRIPTION OF THE INVENTION The alloys of the present invention combine improved corrosion resistance with requisite high strength in lower cost systems than more expensive alloys. This alloy exhibits excellent stress corrosion cracking resistance and excellent high temperature corrosion resistance. The steel of the present invention is susceptible to tube forming and other cold working treatments because of its low work hardening rate (due in part to its nickel-chromium bond).
Titanium above 0.8% increases age hardenability. For example, about 1.8% titanium can be added for this purpose. The addition of titanium in an amount of 0.8-2.5% is suitable for cold working/
At least 60Ksi (413.7MPa) under annealing conditions
Gives an age hardening response of yield strength and tensile strength of 120 Ksi (827.4 MPa). Titanium increases the work hardening rate of the alloy. 3-5.5% copper, 15-17
The corrosion resistance of the alloy can be improved by adding % chromium and 2-3.5% molybdenum. Also, 27-29% nickel is added for the same purpose. Additionally, in the alloy of the present invention, 0.9% to 1.1% manganese and 0.01% to 0.1% aluminum are added. Manganese in an amount of 0.9-1.1% is added to provide malleability. All nickel/chromium alloys typically contain some amount of this element. Thus, small amounts of 0.9-1.1% are useful. Additionally, 0.01-0.1% aluminum helps deoxidize the alloy and controls titanium during the melting process. Similarly 0.01%~0.1%
Cerium also helps deoxidize the alloy. Table 1 below shows heats within the composition range of the present invention. All of these heats were made using scrap materials and commercially available clean materials, and all of these materials contain various impurities. Shown in this table are the results of the overall analysis of each heat and therefore the impurity components for the alloy of the present invention are also listed. Among the component elements listed here, carbon, sulfur, silicon,
Cobalt, niobium, tantalum and nitrogen are all considered impurities for the alloys of this invention. While nitrogen may be effective in non-age hardening cases, this is not the case with the age hardenable alloys of this invention.
Magnesium can be added in small amounts when other deoxidizers such as aluminum are lacking, but is not necessary in the present invention.

【表】【table】

〔実施例〕〔Example〕

例 1 ヒート1〜3(14Kg融成物)を真空融解し、4
インチ(10.16cm)径のインゴツトに鋳造した。
鍛造された9/16インチ(1.43cm)スクエアと、鍛
造された3/4×2×12インチ(1.91×5.08×30.48
cm)のフラツトとを2150〓(1177℃)でひん繁に
熱しながら作つた。フラツトを均一厚さに加工し
たのち、これを2150〓で1/4インチ(0.64cm)ま
で熱延した。熱延された1/4インチのストリツプ
を1950〓(1066℃)/1時間水冷で焼鈍し、冷延
に先立つて酸洗いした。加工硬化レスポンスをと
るため、各冷間加工レベルにおいて硬度テストを
引張りテストを実施した。比較的小径の薄壁配管
の製造に関しては、低い加工硬化率がきわめて望
ましい。 60〜80%などの高いレベル冷間絞りに際して降
伏強さが特に重要である。多くの鋼管工場は、大
口径の熱間加工鋼管シエルを製造し、これを多段
階の冷間圧延と焼鈍中にそのサイズを縮小しなけ
ればならない。実験の示すように、高い冷間絞り
ののちに低い降伏強さを有する合金はひび割れを
示すことなく、より強く冷間加工され、より少な
い焼鈍段階とより低い製造コストを必要とする。 すべてのヒートはすぐれた可鍛性を有する。チ
タン含有量を増大した冷間圧延ストリツプに関す
る引張り強さデータを表2,3に示す。
Example 1 Heats 1 to 3 (14Kg melt) were melted in vacuum,
It was cast into an inch (10.16 cm) diameter ingot.
Forged 9/16" (1.43cm) square and forged 3/4 x 2 x 12" (1.91 x 5.08 x 30.48
cm) was made by heating it frequently at 2150㎓ (1177℃). After processing the flat to a uniform thickness, it was hot rolled at 2150 mm to 1/4 inch (0.64 cm). Hot rolled 1/4 inch strips were annealed at 1950°C/1 hour in water and pickled prior to cold rolling. In order to measure the work hardening response, hardness tests and tensile tests were conducted at each cold working level. For the manufacture of relatively small diameter, thin-walled piping, low work hardening rates are highly desirable. Yield strength is particularly important during high level cold drawing, such as 60-80%. Many steel tube mills produce large diameter hot-worked steel tube shells that must be reduced in size during multiple stages of cold rolling and annealing. Experiments have shown that alloys with low yield strength after high cold drawing can be cold-worked more strongly without exhibiting cracks, requiring fewer annealing steps and lower manufacturing costs. All heats have excellent malleability. Tensile strength data for cold rolled strips with increased titanium content are shown in Tables 2 and 3.

【表】【table】

【表】【table】

【表】 チタン含有量が2.0%まで増大されたとき、加
工硬化率は増大したが、チタンが2.3%まで増大
されたときには変化は生じなかつた。表3に示す
時効引張りテスト結果は、約1.75%のチタン含有
量と低レベルの冷間加工によつて、60Ksi
(413.5MPa)の降伏強さと120Ksi(827MPa)の
引張り強さの得られることを示している。実際
に、少し低いチタン含有量と約20%の冷間圧延と
の組合わせが給水加熱器にとつて最適であろう。 下記の表4は焼鈍/時効状態における強さ特性
と延性特性とを示す。
Table: When the titanium content was increased to 2.0%, the work hardening rate increased, but no change occurred when the titanium was increased to 2.3%. The aged tensile test results shown in Table 3 indicate that with a titanium content of approximately 1.75% and a low level of cold working, the
(413.5MPa) and tensile strength of 120Ksi (827MPa). In fact, a combination of a slightly lower titanium content and about 20% cold rolling would be optimal for feed water heaters. Table 4 below shows the strength and ductility properties in the annealed/aged condition.

【表】 例 2 ヒート4〜6について腐食テストをした。給水
施設その他の可能な用途に関する腐食テスト環境
を検査した。 表5は塩化ナトリウム溶液および水酸化ナトリ
ウム溶液中のSCCテスト結果を示す。カツコ内に
cmで表わした値を示す。
[Table] Example 2 Corrosion tests were conducted for heats 4 to 6. Corrosion test environments for water supply facilities and other possible applications were examined. Table 5 shows the SCC test results in sodium chloride and sodium hydroxide solutions. inside the cutlet
Values are shown in cm.

【表】【table】

【表】 本発明の合金は304ステンレスよりもSCC(塩化
物と水酸化ナトリウムによつて生じる腐食)に対
して抵抗性であることを示している。本発明の合
金の比較的高いニツケル含有量が塩化物および苛
性クラツキング抵抗を生じる。 またこれらのテストデータは、ポリチオン酸ク
ラツキングに対するこの合金の非常にすぐれた抵
抗を示す。このクラツキングは、石油化学工業に
おけるステンレス鋼と高ニツケル合金の折損の共
通の原因である。炭化物堆積物に対する高チタン
含有量の影響が、すぐれたポリチオン酸SCC抵抗
の原因であると思われる。 表6は全体的腐食テストの結果を示す。各欄に
おいて左側にミル/年、右側にmm/年で表わした
値を示す。
Table: The alloy of the present invention has been shown to be more resistant to SCC (corrosion caused by chloride and sodium hydroxide) than 304 stainless steel. The relatively high nickel content of the alloys of this invention provides chloride and caustic cracking resistance. These test data also demonstrate the excellent resistance of this alloy to polythionic acid cracking. This cracking is a common cause of breakage of stainless steel and high nickel alloys in the petrochemical industry. The effect of high titanium content on carbide deposits appears to be responsible for the excellent polythionate SCC resistance. Table 6 shows the results of the global corrosion test. In each column, the value in mils/year is shown on the left, and the value in mm/year is shown on the right.

【表】【table】

【表】 * 近似値
また表5と6は、本発明の合金が給水加熱器以
外の環境に対する抵抗力を有することを示してい
る。2〜3%のモリブデン添加は塩化水素酸に対
する抵抗力を大幅に改良する。4%またはこれ以
上の銅分添加は硫酸抵抗を改良した。銅とモリブ
デンの組合わせは、リン酸に対する抵抗力を改良
するようである。本発明の合金そのものは、化学
的用途および石油化学的用途にも適している。 管工用に設計された合金の強さは、装置を構成
する合金の引張り強さに基づくのが通常である。
冷間圧延されまた応力除去された状態において、
本発明の合金系は、通常設計技師によつて特定さ
れる120Ksi(827MPa)の最少引張り強さに見合
うものである。この値は、インコネル合金625お
よびインコロイ合金801などの合金と優に匹敵す
るものである。 表7は、種々の温度条件と圧力条件について、
モネル合金400、304ステンレスと本発明の合金の
最小管壁肉厚を比較したものである。表7は、列
挙された合金管の最小肉厚の比較を示す。1フイ
ート(メーター)当り重量を計算するため、次に
重い標準壁厚を使用した。 目的物、特にシームレス管または溶接管を作る
ために、当業者には公知の方法で作られた目的物
または管に対して、適当な時間、約1100°〜1400
〓(599.3〜760℃)の応力除去熱処理を実施する
ことができる。もちろんこの時間は、選ばれた温
度と断面サイズの関数である。 さらに詳しくは、非時効硬化性管を最終サイズ
まで引抜き、適当時間、約1700°〜2000〓(767〜
933℃)で焼鈍し、直線化し、適当形状(所望形
状)に曲げ、約1100〜1400〓で約3時間、応力除
去することができる。時効硬化性管は、最終サイ
ズまで引抜き、適当時間約1700〜2000〓で焼鈍
し、直線化し、約1時間、1100〜1400〓で時効処
理し、適当形状に曲げ、約1100〜1400〓で適当時
間、応力除去することができる(これは同時に管
を時効硬化する)。
Table *Approximate Values Tables 5 and 6 also show that the alloys of the present invention have resistance to environments other than feed water heaters. Addition of 2-3% molybdenum significantly improves resistance to hydrochloric acid. Copper additions of 4% or more improved sulfuric acid resistance. The combination of copper and molybdenum appears to improve resistance to phosphoric acid. The alloy of the invention itself is also suitable for chemical and petrochemical applications. The strength of alloys designed for pipework is typically based on the tensile strength of the alloys that make up the equipment.
In the cold rolled and stress relieved state,
The alloy system of the present invention meets a minimum tensile strength of 120 Ksi (827 MPa) typically specified by design engineers. This value is very comparable to alloys such as Inconel Alloy 625 and Incolloy Alloy 801. Table 7 shows, for various temperature and pressure conditions,
This figure compares the minimum wall thickness of Monel alloys 400 and 304 stainless steel and the alloy of the present invention. Table 7 shows a comparison of the minimum wall thicknesses of the listed alloy tubes. The next heavier standard wall thickness was used to calculate the weight per foot (meter). To make an object, in particular a seamless or welded tube, the object or tube made by methods known to those skilled in the art is heated at an angle of about 1100° to 1400° for a suitable period of time.
〓(599.3~760℃) stress relief heat treatment can be performed. This time is of course a function of the temperature and cross-sectional size chosen. In more detail, a non-age hardening tube is pulled to its final size and held at approximately 1700°~2000〓(767~
It can be annealed at 933°C), straightened, bent into an appropriate shape (desired shape), and stress relieved at about 1100-1400°C for about 3 hours. Age-hardening tubes are drawn to the final size, annealed at an appropriate time of about 1700-2000〓, straightened, aged at 1100-1400〓 for about 1 hour, bent into an appropriate shape, and then annealed at an appropriate time of about 1100-1400〓 time, the stress can be relieved (this simultaneously age hardens the tube).

【表】 比較的低いクロム含有量の故に本発明の合金の
孔食抵抗はステンレス304とほぼ同等であり、高
い局所腐食抵抗が必要とされる応用面にはすすめ
られない。また低クロム含有量は、粒界腐食抵抗
を低下させ、硝酸などの高酸化性環境における用
途を制限する。 給水加熱器の全体強度、腐食抵抗および経済性
にとつて好ましい組成はヒート5(28Ni−16Cr−
4Cu−1.8Ti−2Mo−1Mn−0.02Al−0.026Ce−残
部Fe)である。この組成は、高圧材料にとつて
必要な機械特性と腐食特性とを有すると思われ
る。またこの組成は塩酸、硫酸およびリン酸中に
おいてすぐれた全体的腐食抵抗を有する。またこ
の組成のポリチオン酸腐食に対するすぐれた抵抗
性は、石油化学面の使用の可能性を示している。 本発明は前記の説明のみに限定されるものでな
くその主旨の範囲内において任意に変更実施でき
る。
Table: Due to the relatively low chromium content, the pitting corrosion resistance of the alloy of the present invention is approximately equal to that of stainless steel 304 and is not recommended for applications where high local corrosion resistance is required. Low chromium content also reduces intergranular corrosion resistance and limits applications in highly oxidizing environments such as nitric acid. The preferred composition for overall strength, corrosion resistance and economy of the feed water heater is Heat 5 (28Ni-16Cr-
4Cu−1.8Ti−2Mo−1Mn−0.02Al−0.026Ce−balance Fe). This composition appears to have the necessary mechanical and corrosion properties for a high pressure material. The composition also has excellent overall corrosion resistance in hydrochloric, sulfuric and phosphoric acids. The excellent resistance of this composition to polythionic acid corrosion also indicates its potential for use in petrochemical applications. The present invention is not limited to the above description, but can be modified and implemented as desired within the scope of the spirit thereof.

Claims (1)

【特許請求の範囲】[Claims] 1 27%乃至29%のニツケルと、15%乃至17%の
クロムと、2%乃至3.5%もモリブデンと、3%
乃至5,5%の銅と、0.8%乃至2.5%のチタン
と、0.9%乃至1.1%のマンガンと、0.01%乃至0.1
%のアルミニウムと、0.01%乃至0.1%のセリウ
ムと、残部の主として鉄と、痕跡量の不純物とか
ら本質的に成るオーステナイト、高強度、耐食性
ニツケル−鉄−クロム合金。
1 27% to 29% nickel, 15% to 17% chromium, 2% to 3.5% molybdenum, 3%
5.5% to 5.5% copper, 0.8% to 2.5% titanium, 0.9% to 1.1% manganese, 0.01% to 0.1%
Austenitic, high-strength, corrosion-resistant nickel-iron-chromium alloy consisting essentially of % aluminum, 0.01% to 0.1% cerium, and the balance primarily iron with trace amounts of impurities.
JP60053213A 1984-03-16 1985-03-16 High strength alloy for industrial container Granted JPS60211053A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US59039384A 1984-03-16 1984-03-16
US590393 1984-03-16

Publications (2)

Publication Number Publication Date
JPS60211053A JPS60211053A (en) 1985-10-23
JPH0525944B2 true JPH0525944B2 (en) 1993-04-14

Family

ID=24362074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60053213A Granted JPS60211053A (en) 1984-03-16 1985-03-16 High strength alloy for industrial container

Country Status (9)

Country Link
EP (1) EP0155011B2 (en)
JP (1) JPS60211053A (en)
KR (1) KR900001561B1 (en)
AU (1) AU580758B2 (en)
BR (1) BR8501127A (en)
CA (1) CA1246902A (en)
DE (1) DE3578673D1 (en)
ES (1) ES8608055A1 (en)
FI (1) FI75869C (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3716665A1 (en) * 1987-05-19 1988-12-08 Vdm Nickel Tech CORROSION RESISTANT ALLOY
JP2002241900A (en) * 1997-08-13 2002-08-28 Sumitomo Metal Ind Ltd Austenitic stainless steel having excellent sulfuric acid corrosion resistance and workability
US5945067A (en) * 1998-10-23 1999-08-31 Inco Alloys International, Inc. High strength corrosion resistant alloy
US7815848B2 (en) 2006-05-08 2010-10-19 Huntington Alloys Corporation Corrosion resistant alloy and components made therefrom
US9296958B2 (en) * 2011-09-30 2016-03-29 Uop Llc Process and apparatus for treating hydrocarbon streams
KR20150060942A (en) * 2012-10-30 2015-06-03 가부시키가이샤 고베 세이코쇼 Austenitic stainless steel
KR20190034286A (en) * 2016-08-03 2019-04-01 신닛테츠스미킨 카부시키카이샤 Austenitic stainless steel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU420305B (en) * 1905-09-21 1905-12-19 Oliver Charles Improvements in or relating to electric are lamps
GB708820A (en) * 1951-03-29 1954-05-12 Carpenter Steel Co Improvements in alloys
GB812582A (en) * 1956-07-18 1959-04-29 Universal Cyclops Steel Corp Ferrous base alloys
ZA726262B (en) * 1971-09-20 1973-06-27 Int Nickel Ltd Steels
BE795564A (en) * 1972-02-16 1973-08-16 Int Nickel Ltd CORROSION RESISTANT NICKEL-IRON ALLOY
US4040876A (en) * 1974-07-02 1977-08-09 Westinghouse Electric Corporation High temperature alloys and members thereof
DE2528610A1 (en) * 1974-07-02 1976-01-22 Westinghouse Electric Corp Iron-nickel-chromium alloy for fast breeder reactors - has high corrosion resistance to liq. sodium and low radiation-swelling

Also Published As

Publication number Publication date
ES541303A0 (en) 1986-06-01
AU580758B2 (en) 1989-02-02
FI75869B (en) 1988-04-29
AU3969885A (en) 1985-09-19
EP0155011A3 (en) 1987-04-08
BR8501127A (en) 1985-11-05
FI851036A0 (en) 1985-03-15
CA1246902A (en) 1988-12-20
DE3578673D1 (en) 1990-08-23
JPS60211053A (en) 1985-10-23
ES8608055A1 (en) 1986-06-01
EP0155011B2 (en) 1994-07-06
KR900001561B1 (en) 1990-03-15
FI851036L (en) 1985-09-17
KR850007098A (en) 1985-10-30
EP0155011B1 (en) 1990-07-18
EP0155011A2 (en) 1985-09-18
FI75869C (en) 1988-08-08

Similar Documents

Publication Publication Date Title
US5879818A (en) Nickel-based alloy excellent in corrosion resistance and workability
EP0066361B1 (en) Corrosion resistant high strength nickel-based alloy
JPS6389637A (en) Corrosion resistant high strength nickel base alloy
JP6492747B2 (en) Austenitic heat-resistant alloy tube manufacturing method and austenitic heat-resistant alloy tube manufactured by the manufacturing method
JPH0471991B2 (en)
CA2863508C (en) Austenitic alloy
JPH0525944B2 (en)
US4816217A (en) High-strength alloy for industrial vessels
JP3864437B2 (en) High Mo nickel base alloy and alloy tube
JP3102604B2 (en) Composite pipe and its manufacturing method
JPH0569885B2 (en)
CN108779518B (en) Heat-resistant corrosion-resistant Ni-base alloy having excellent hot forgeability and high Cr content
US3573034A (en) Stress-corrosion resistant stainless steel
JPS6363610B2 (en)
US3023098A (en) Low carbon ferritic stainless steel
US2222621A (en) Alloy steel article
US4058416A (en) Matrix-stiffened heat and corrosion resistant wrought products
JP7332258B2 (en) High-Ni corrosion-resistant alloy with excellent intergranular corrosion resistance and pitting corrosion resistance, as well as excellent hot workability and cold workability
JPH05195127A (en) Highly corrosion resistant alloy for heat exchanger tube of boiler
JPS5811737A (en) Production of high strength oil well pipe of superior stress corrosion cracking resistance
JPS6144127B2 (en)
JPH0457735B2 (en)
JPS62180028A (en) Mo-containing high cr-ni alloy having excellent corrosion resistance and pitting resistance
JPS6363605B2 (en)
JPS63140057A (en) Ni-base alloy excellent in stress corrosion cracking resistance and its production