JPH05259332A - Cooling structure of integrated circuit - Google Patents

Cooling structure of integrated circuit

Info

Publication number
JPH05259332A
JPH05259332A JP8660192A JP8660192A JPH05259332A JP H05259332 A JPH05259332 A JP H05259332A JP 8660192 A JP8660192 A JP 8660192A JP 8660192 A JP8660192 A JP 8660192A JP H05259332 A JPH05259332 A JP H05259332A
Authority
JP
Japan
Prior art keywords
integrated circuit
counterbore
refrigerant
cold plate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8660192A
Other languages
Japanese (ja)
Inventor
Toshiaki Komatsu
敏明 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8660192A priority Critical patent/JPH05259332A/en
Publication of JPH05259332A publication Critical patent/JPH05259332A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To simplify the shape of a cold plate, and to cool each integrated circuit efficiently regardless of the calorific values of each integrated circuit. CONSTITUTION:Structure, in which the bores of blow-off nozzles are gradually made small to the degree corresponding to integrated circuits by cooling structure, in which a cold plate 6 with the integrated circuits 2 mounted to a substrate 1 a substrate frame 3 holding the substrate and spot facing holes 5 corresponding to the size of a plurality of the integrated circuits, a plurality of the blow-off nozzles 12 straightly directed toward the floor faces of the spot facing holes and exhaust nozzles 13 selecting and discharging a refrigerant from said spot facing holes to a discharging introducing chamber 11 are set up and the refrigerant is forwarded from an intake 8 to an extraction port 9, is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は集積回路の冷却構造、特
に半導体チップから発生する熱を機器外部へ効率的に排
除することの出来るLSIパッケージの冷却構造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling structure for an integrated circuit, and more particularly to a cooling structure for an LSI package which can efficiently remove heat generated from a semiconductor chip to the outside of the device.

【0002】[0002]

【従来の技術】従来、集積回路の冷却構造は集積回路に
コールドプレートを対向させ、コールドプレートの底面
の集積回路と対応する位置にざぐり穴を設け、そこへ冷
媒の噴出ノズルと排出ノズルを各1本直向させていた。
この(特開平2−5451号公報)に示された従来の冷
却構造について説明する。
2. Description of the Related Art Conventionally, in a cooling structure for an integrated circuit, a cold plate is opposed to the integrated circuit, and a counterbore hole is provided at a position corresponding to the integrated circuit on the bottom surface of the cold plate. I was directing one.
The conventional cooling structure shown in this (JP-A-2-5451) will be described.

【0003】図3は従来の集積回路の冷却構造の断面図
であり、冷媒24が冷却容器28の取入口26から流入
すると吸入室30に充満し、左端の第1ノズル25より
コールドプレート23のざぐり穴22の底面に衝突す
る。衝突した冷媒24は第2ノズル29を通り、右隣り
の第1ノズル25へと順次流れ、最後に冷却容器28の
右端のざぐり穴から取出口27へ経て外部へ排出され
る。
FIG. 3 is a cross-sectional view of a conventional integrated circuit cooling structure. When the refrigerant 24 flows from the inlet 26 of the cooling container 28, the suction chamber 30 is filled with the refrigerant 24 and the first nozzle 25 at the left end of the cold plate 23. It collides with the bottom surface of the counterbore hole 22. The colliding refrigerant 24 flows through the second nozzle 29, sequentially flows to the first nozzle 25 on the right side, and finally is discharged to the outside from the counterbore hole at the right end of the cooling container 28 to the outlet 27.

【0004】ノズル25、29の直結部分が吸入室30
内に位置しているため、常時冷媒24で浸されている。
従って、集積回路の熱であたためられてからノズル29
に流入する冷媒24も次のざぐり穴22内での噴流まで
にはノズル内で吸入室30内の冷媒24で冷却され、常
時、ほぼ一定温度の冷媒24を循環させることによって
コールドプレート23を介して基板20上の集積回路2
1を均等に冷却していた。
The directly connected portion of the nozzles 25 and 29 is the suction chamber 30.
Since it is located inside, it is constantly immersed in the refrigerant 24.
Therefore, the nozzle 29 is heated after being heated by the integrated circuit.
The refrigerant 24 flowing into the nozzle is cooled by the refrigerant 24 in the suction chamber 30 in the nozzle by the jet flow in the next counterbore 22, and the refrigerant 24 at a substantially constant temperature is constantly circulated to pass through the cold plate 23. Integrated circuit 2 on substrate 20
1 was cooled evenly.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の冷却構
造は集積回路と対向しているコールドプレートの底面の
ざぐり穴とこれと直向している噴出ノズルは1:1で対
応している為、ざぐり穴は集積回路の数量分だけ必要と
なり、コールドプレートの形状が複雑になるという欠点
があった。又各々の集積回路の発熱量がほぼ均一でない
と対応出来ないという欠点があった。
In the above-mentioned conventional cooling structure, the counterbore hole of the bottom surface of the cold plate facing the integrated circuit and the jet nozzle directly facing this have a 1: 1 correspondence. However, there is a disadvantage that the counterbore is required for the number of integrated circuits and the shape of the cold plate becomes complicated. Further, there is a drawback that it cannot be handled unless the heat generation amount of each integrated circuit is substantially uniform.

【0006】本発明は上述の問題点に鑑みて、コールド
プレートの形状を簡略化して各集積回路の発熱量に関係
なく対応できる集積回路の冷却構造を提供することを目
的とするものである。
In view of the above problems, it is an object of the present invention to provide a cooling structure for an integrated circuit which simplifies the shape of the cold plate and can cope with the heat generation amount of each integrated circuit.

【0007】[0007]

【課題を解決するための手段】本発明の集積回路の冷却
構造は、基板に実装された集積回路と、基板を保持する
基板枠と、集積回路の上面と微小間隔を保って対向し、
集積回路の反対側に複数個の集積回路の大きさ分のざぐ
り穴を有するコールドプレートと、このざぐり穴に対応
する位置に設けた冷媒の取入口から冷媒が流入する吸入
室と、冷媒の取出口に接続する排出室を備えコールドプ
レートに密着してざぐり穴を密閉する冷却容器と、吸入
室の底部にざぐり穴の底面に直向して、口径を集積回路
と対応するごとに除々に細くする形状の複数個の噴出ノ
ズルと、ざぐり穴から冷媒を排出室に排出する排出ノズ
ルを具備している。
A cooling structure for an integrated circuit according to the present invention comprises: an integrated circuit mounted on a substrate; a substrate frame for holding the substrate;
A cold plate having countersunk holes on the opposite side of the integrated circuit for the size of a plurality of integrated circuits, a suction chamber into which the refrigerant flows from a refrigerant inlet provided at a position corresponding to the countersunk holes, and a refrigerant collector. A cooling container that has a discharge chamber connected to the outlet and that closely adheres to the cold plate to seal the countersink hole, and a bottom of the suction chamber that faces the bottom surface of the countersink hole, and the diameter gradually decreases as it corresponds to the integrated circuit. It is equipped with a plurality of ejection nozzles having the shape described above and a discharge nozzle for discharging the refrigerant into the discharge chamber through the counterbore.

【0008】また、噴出口先端とざぐり穴底面との距離
を除々に近くする形状の噴出ノズルを有している。
Further, the jet nozzle has a shape in which the distance between the tip of the jet outlet and the bottom face of the counterbore gradually becomes shorter.

【0009】[0009]

【作用】上記の構成によれば、取入口から流入する冷媒
は吸入室から、コールドプレートに設けた1個で複数の
集積回路をカバーする大きさのざぐり穴の底面に向かっ
て複数の噴出ノズルによって吹き付けられ、集積回路を
冷却したのち排出ノズルから排出される。
According to the above structure, the refrigerant flowing from the intake port is discharged from the suction chamber toward the bottom surface of the counterbore hole which is provided in the cold plate and covers the plurality of integrated circuits. And the integrated circuit is cooled and then discharged from the discharge nozzle.

【0010】この噴出ノズルは、集積回路に対応する毎
に口径がざぐり穴毎に細くなるように、あるいは、同口
径でノズル先端とざぐり穴底面間の距離がざぐり穴毎に
近くなるように設置されるので、コールドプレートのざ
ぐり穴数が減り構造が簡略化できるとともに、異なる発
熱量の各種集積回路の冷却に効率良く対応することがで
きる。
This jet nozzle is installed so that the bore diameter becomes narrower for each counterbore corresponding to the integrated circuit, or that the distance between the tip of the nozzle and the bottom surface of the counterbore becomes closer for each counterbore with the same bore diameter. Therefore, the number of counterbore holes of the cold plate can be reduced, the structure can be simplified, and it is possible to efficiently cope with the cooling of various integrated circuits having different heat generation amounts.

【0011】[0011]

【実施例】次に本発明について図面を参照して説明す
る。
The present invention will be described below with reference to the drawings.

【0012】図1は本発明の一実施例の縦断面図であ
る。
FIG. 1 is a vertical sectional view of an embodiment of the present invention.

【0013】図1を参照すると、1は基板、2は基板1
に搭載された集積回路である。基板1の外周縁部は基板
枠3に強固に固着されている。又コールドプレート6も
基板枠3に外周縁部を取り付けられ、このコールドプレ
ート6は集積回路2の上面と微小間隔を保って対向し、
かつ集積回路2の反対側には、底面が複数個の集積回路
に対応する位置を囲い込む広さの複数のざぐり穴5を有
する。集積回路2とコールドプレート6間には熱伝導性
の優れたコンパウンド4が塗布されている。
Referring to FIG. 1, 1 is a substrate and 2 is a substrate 1.
Is an integrated circuit mounted on. The outer peripheral edge of the substrate 1 is firmly fixed to the substrate frame 3. Also, the cold plate 6 has an outer peripheral edge portion attached to the substrate frame 3, and the cold plate 6 is opposed to the upper surface of the integrated circuit 2 with a minute gap,
In addition, on the opposite side of the integrated circuit 2, there are provided a plurality of counterbored holes 5 each having a size such that the bottom surface encloses the positions corresponding to the plurality of integrated circuits. A compound 4 having excellent thermal conductivity is applied between the integrated circuit 2 and the cold plate 6.

【0014】コールドプレート6の上には冷媒7の取入
口8と取出口9を具備し、又ざぐり穴5の対応する位置
に冷媒の吸入室10を設け、冷媒の取出口9の近傍に排
出室11を設けた冷却容器14が取付けられている。吸
入室10の底部にはざぐり穴5の底面へ直向するように
冷媒の流路となる噴出ノズル12と排出ノズル13を有
している。
The cold plate 6 is provided with an inlet 8 and an outlet 9 for the refrigerant 7, a refrigerant suction chamber 10 is provided at a position corresponding to the counterbore 5, and the refrigerant is discharged in the vicinity of the refrigerant outlet 9. A cooling container 14 provided with a chamber 11 is attached. At the bottom of the suction chamber 10, there are a jet nozzle 12 and a discharge nozzle 13 which serve as a flow path for the refrigerant so as to face the bottom surface of the counterbore 5.

【0015】噴出ノズル12は冷媒の流れに対して並列
に位置している。
The jet nozzle 12 is located in parallel with the flow of the refrigerant.

【0016】つぎに動作について説明する。いま、冷媒
7が、冷却容器14の取入口8より流入されると、各々
の集積回路2に対応した吸入室10へ充満し、吸入室底
部の噴出ノズル12よりコールドプレート6のざぐり穴
5内へ噴出され、ざぐり穴5の底面へ衝突する。衝突し
た冷媒7は排出ノズル13を通り、排出室11へ集めら
れ、取出口9より外部へ排出される。図中の矢印は、冷
媒の流れを示す。噴出ノズル12は、口径がd1 、d
2 、d3 、d4 と順次細くなっている為、噴出ノズルか
ら噴出される冷媒7の流量が変わり、集積回路2の発熱
量が各々異なっていても各集積回路に対する冷却効果は
変わらない。左側の集積回路の発熱量が大きく、右側が
小さいラインの場合等に好適である。
Next, the operation will be described. Now, when the refrigerant 7 is introduced from the inlet 8 of the cooling container 14, the refrigerant is filled in the suction chamber 10 corresponding to each integrated circuit 2, and the jet nozzle 12 at the bottom of the suction chamber causes the inside of the counterbore hole 5 of the cold plate 6. And is collided with the bottom surface of the counterbore 5. The colliding refrigerant 7 passes through the discharge nozzle 13, is collected in the discharge chamber 11, and is discharged to the outside through the outlet 9. The arrow in the figure indicates the flow of the refrigerant. The jet nozzle 12 has diameters d 1 and d
Since the flow rate of the refrigerant 7 ejected from the ejection nozzles changes because the diameters become gradually smaller as 2 , 2 , d 3 , and d 4 , the cooling effect for each integrated circuit does not change even if the heat generation amount of the integrated circuit 2 is different. This is suitable for a line in which the integrated circuit on the left has a large amount of heat generation and the integrated circuit on the right has a small amount of heat.

【0017】図2は本発明の第2の実施例を示す縦断面
図である。図2において同一径の噴出ノズル12の噴出
口先端とざぐり穴5の底面との距離をh1 、h2 、h
3 、h4 と順次狭くした以外は、図1に示す第1の実施
例と同様の構成動作となっている。左側の集積回路の発
熱量が小さく、右側が大きいラインの場合などに好適で
ある。
FIG. 2 is a vertical sectional view showing a second embodiment of the present invention. In FIG. 2, the distances between the tip of the jet nozzle of the jet nozzle 12 having the same diameter and the bottom surface of the counterbore 5 are h 1 , h 2 , and h.
The operation is the same as that of the first embodiment shown in FIG. 1 except that the width is gradually reduced to 3 and h 4 . This is suitable for the case where the integrated circuit on the left side has a small amount of heat generation and the right side has a large amount of heat.

【0018】尚、本発明の実施例では2個の集積回路2
に対して1個の割合でざぐり穴5をコールドプレート6
内に設けているが、集積回路3個以上に対して1個の割
合でざぐり穴を設けてもよい。
In the embodiment of the present invention, two integrated circuits 2 are provided.
1 for each of the counterbore 5 and cold plate 6
Although provided inside, a counterbore may be provided at a ratio of one to three or more integrated circuits.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、コ
ールドプレートに複数個の集積回路に対応するざぐり穴
を設けることによりコールドプレートの形状を簡単にす
ることが出来る。又ノズル径を順次変えることや、ノズ
ルとざぐり穴との距離を変えることにより集積回路の発
熱量に左右されず、集積回路と冷媒間の熱抵抗を低く抑
え効率的に機器外部へ排出できる効果がある。
As described above, according to the present invention, the shape of the cold plate can be simplified by providing the cold plate with counterbore holes corresponding to a plurality of integrated circuits. In addition, by changing the nozzle diameter in sequence and changing the distance between the nozzle and the counterbore, it is not affected by the heat generation of the integrated circuit, and the thermal resistance between the integrated circuit and the refrigerant can be kept low and discharged efficiently outside the equipment. There is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による集積回路の冷却構造の
縦断面図である。
FIG. 1 is a vertical cross-sectional view of a cooling structure for an integrated circuit according to an exemplary embodiment of the present invention.

【図2】本発明の第2の実施例の縦断面図である。FIG. 2 is a vertical sectional view of a second embodiment of the present invention.

【図3】従来の冷却構造の断面図である。FIG. 3 is a cross-sectional view of a conventional cooling structure.

【符号の説明】[Explanation of symbols]

1 基板 2 集積回路 3 基板枠 4 コンパウンド 5 ざぐり穴 6 コールドプレート 7 冷媒 8 取入口 9 取出口 10 吸入室 11 排出室 12 噴出ノズル 13 排出ノズル 14 冷却容器 d1234 噴出ノズル径 h1234 噴出ノズルとざぐり穴間の距離1 substrate 2 integrated circuit 3 substrate frame 4 compound 5 counterbore 6 cold plate 7 refrigerant 8 inlet 9 outlet 10 inlet chamber 11 exhaust chamber 12 jet nozzle 13 exhaust nozzle 14 cooling container d 1 d 2 d 3 d 4 jet nozzle diameter h 1 h 2 h 3 h 4 Distance between jet nozzle and counterbore

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板に実装された集積回路と、基板を保
持する基板枠と、前記集積回路の上面と微小間隔を保っ
て対向し、前記集積回路の反対側に複数個の集積回路の
大きさ分のざぐり穴を有するコールドプレートと、前記
ざぐり穴に対応する位置に設けた冷媒の取入口から冷媒
が流入する吸入室と、冷媒の取出口に接続する排出室を
備え前記コールドプレートに密着して前記ざぐり穴を密
閉する冷却容器と、前記吸入室の底部に前記ざぐり穴の
底面に直向して、口径を集積回路と対応するごとに除々
に細くする形状の複数個の噴出ノズルと、前記ざぐり穴
から冷媒を前記排出室に排出する排出ノズルを具備した
こと特徴とする集積回路の冷却構造。
1. An integrated circuit mounted on a substrate, a substrate frame that holds the substrate, and a top surface of the integrated circuit that face each other with a minute gap therebetween, and a plurality of integrated circuits on the opposite side of the integrated circuit. A cold plate having a countersunk hole, a suction chamber into which a refrigerant flows from a refrigerant inlet provided at a position corresponding to the countersink hole, and a discharge chamber connected to a refrigerant outlet are provided in close contact with the cold plate. A cooling container for hermetically closing the counterbore, and a plurality of ejection nozzles at the bottom of the suction chamber that are directed toward the bottom surface of the counterbore and have a diameter that gradually decreases in correspondence with the integrated circuit. A cooling structure for an integrated circuit, comprising: a discharge nozzle that discharges a coolant from the counterbore to the discharge chamber.
【請求項2】 噴出口先端とざぐり穴底面との距離を徐
々に近くする形状の噴出ノズルを具備したことを特徴と
する請求項1記載の集積回路の冷却構造。
2. The cooling structure for an integrated circuit according to claim 1, further comprising an ejection nozzle having a shape in which the distance between the tip of the ejection port and the bottom surface of the counterbore is gradually reduced.
JP8660192A 1992-03-11 1992-03-11 Cooling structure of integrated circuit Pending JPH05259332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8660192A JPH05259332A (en) 1992-03-11 1992-03-11 Cooling structure of integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8660192A JPH05259332A (en) 1992-03-11 1992-03-11 Cooling structure of integrated circuit

Publications (1)

Publication Number Publication Date
JPH05259332A true JPH05259332A (en) 1993-10-08

Family

ID=13891537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8660192A Pending JPH05259332A (en) 1992-03-11 1992-03-11 Cooling structure of integrated circuit

Country Status (1)

Country Link
JP (1) JPH05259332A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0918059A (en) * 1995-06-28 1997-01-17 Technova:Kk Thermoelectric conversion device
EP1283550A3 (en) * 2001-08-06 2004-12-22 Kabushiki Kaisha Toshiba Cooling device for heat-generating elements
CN102543916A (en) * 2010-12-20 2012-07-04 鸿富锦精密工业(深圳)有限公司 Liquid-cooled radiating device
CN108012508A (en) * 2017-12-25 2018-05-08 奇鋐科技股份有限公司 Multiple port interlayer liquid-cooling heat radiation structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0918059A (en) * 1995-06-28 1997-01-17 Technova:Kk Thermoelectric conversion device
EP1283550A3 (en) * 2001-08-06 2004-12-22 Kabushiki Kaisha Toshiba Cooling device for heat-generating elements
CN102543916A (en) * 2010-12-20 2012-07-04 鸿富锦精密工业(深圳)有限公司 Liquid-cooled radiating device
CN102543916B (en) * 2010-12-20 2016-06-01 中山市云创知识产权服务有限公司 Liquid-cooling heat radiator
CN108012508A (en) * 2017-12-25 2018-05-08 奇鋐科技股份有限公司 Multiple port interlayer liquid-cooling heat radiation structure

Similar Documents

Publication Publication Date Title
US7299647B2 (en) Spray cooling system for transverse thin-film evaporative spray cooling
US5768103A (en) Circuit board apparatus and apparatus and method for spray-cooling an electronic component
KR100228367B1 (en) Circuit pack cooling using perforations
US5316075A (en) Liquid jet cold plate for impingement cooling
JPH10284382A (en) Temperature control equipment
JPH04221843A (en) Heat-removing device
US20030168202A1 (en) CPU cooler
US5166775A (en) Air manifold for cooling electronic devices
JPH08288438A (en) Cooling device for electronic equipment
JPH05259332A (en) Cooling structure of integrated circuit
JPH07120866B2 (en) Semiconductor element cooling device
JP2819807B2 (en) Cooling module
JPH02197155A (en) Cooling structure for integrated circuit
JPH02271559A (en) Cooling device of integrated circuit
JPH02237200A (en) Cooling structure of integrated circuit
JPH025451A (en) Cooling structure for integrated circuit
JP3619386B2 (en) Semiconductor device cooling system
JPH04354152A (en) Cooling structure for integrated circuit
JPH07240589A (en) Cooling structure for heat generator
JPH0732222B2 (en) Integrated circuit cooling structure
JP2658301B2 (en) Integrated circuit cooling structure
JPH02177352A (en) Cooling structure of integrated circuit
JPH05251600A (en) Immersion jet cooling heat sink
US20220142002A1 (en) Fluid cooling device
KR200378444Y1 (en) Device for increasing the cooling efficiency of communication equipment