JPH05259124A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPH05259124A JPH05259124A JP10520292A JP10520292A JPH05259124A JP H05259124 A JPH05259124 A JP H05259124A JP 10520292 A JP10520292 A JP 10520292A JP 10520292 A JP10520292 A JP 10520292A JP H05259124 A JPH05259124 A JP H05259124A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- electrons
- semiconductor device
- irradiated
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Chemical Vapour Deposition (AREA)
- ing And Chemical Polishing (AREA)
- Drying Of Semiconductors (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、レジスト等のエッチン
グ、酸化膜のCVD成長あるいは形成した酸化膜の改質
等半導体装置の種々な製造工程において、プラズマを用
いる半導体装置の製造法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device using plasma in various manufacturing processes of the semiconductor device such as etching of a resist, CVD growth of an oxide film or modification of a formed oxide film. is there.
【0002】[0002]
【従来の技術】一般にプラズマとは正の荷電粒子である
イオンと負の荷電粒子である電子と中性原子から成り、
これら正負の荷電粒子はプラズマ内各部でつり合い、プ
ラズマ全体としては電気的に中性になっている状態をい
う。2. Description of the Related Art Generally, plasma is composed of ions which are positively charged particles, electrons which are negatively charged particles, and neutral atoms.
These positive and negative charged particles balance each other in the plasma, and the plasma as a whole is electrically neutral.
【0003】したがって、半導体装置の製造におけるプ
ラズマの発生は、正イオンを引きつける基板側を陰極と
し、対極を陽極とし、この両極間でプラズマガスを高周
波励起させているのが一般的である。Therefore, in the generation of plasma in the manufacture of a semiconductor device, it is general that the substrate side attracting positive ions is used as a cathode and the counter electrode is used as an anode, and the plasma gas is excited at a high frequency between the two electrodes.
【0004】しかし、フッ素、酸素、塩素、臭素、窒素
のような電気陰性度の大きい元素が正イオンとして基板
に照射されると、当該元素より電気陰性度の小さい基板
上にある元素から電子を奪って中性原子あるいは負イオ
ンとなる。However, when an element having a large electronegativity, such as fluorine, oxygen, chlorine, bromine, or nitrogen, is irradiated as a positive ion on the substrate, an electron is emitted from an element on the substrate having an electronegativity smaller than that element. It robs and becomes a neutral atom or negative ion.
【0005】このとき電子を奪われた元素でH+(水素
は有機系CVD材料に多く含まれている)やNa+ある
いはK+のように拡散移動度の大きなものは、照射され
てくる負イオンの反跳で、例えばゲート付近のような基
板深部に次第に追いやられ、半導体装置の性能を著しく
劣化させる欠点がある。特にNa+はこの劣化傾向を著
しくする。At this time, an electron-deprived element such as H + (a large amount of hydrogen is contained in an organic CVD material), Na +, or K + having a large diffusion mobility is exposed to negative radiation. Due to the recoil of ions, there is a drawback that the performance of the semiconductor device is significantly deteriorated by being gradually driven to the deep portion of the substrate such as the vicinity of the gate. In particular, Na + makes this deterioration tendency remarkable.
【0006】元来、例えば、アルミニウムを塩素でプラ
ズマエッチングする場合、正に分極したアルミニウムと
負に分極した塩素との反応が好ましい状態である。ま
た、レジストを酸素でプラズマエッチングする場合、レ
ジストを構成する正に分極した炭素や水素と負に分極し
た酸素との反応が好ましい状態である。Originally, for example, when aluminum is plasma-etched with chlorine, the reaction between positively polarized aluminum and negatively polarized chlorine is a preferable state. Further, when the resist is plasma-etched with oxygen, a reaction between positively polarized carbon or hydrogen constituting the resist and negatively polarized oxygen is a preferable state.
【0007】同様に、SiO2膜の成膜や改質において
活性酸素を用いる場合、正に分極したケイ素と負に分極
した酸素との作用が好ましい状態である。上記の諸例の
ように、当該元素は基板表面付近での化学反応において
は、負イオン的に作用することが必要である。Similarly, when active oxygen is used for forming and modifying a SiO 2 film, the action of positively polarized silicon and negatively polarized oxygen is in a preferable state. As in the above-mentioned examples, the element must act like a negative ion in the chemical reaction near the surface of the substrate.
【0008】フッ素、酸素、塩素、臭素、窒素等の元素
は電気陰性度が大きく、本来は負イオンになり易いもの
であるが、高周波エネルギーによって強制的に正イオン
となっているため、プラズマ温度が十分に高温でない限
り負の荷電粒子である電子を取り込み負イオンとなり易
い。これはより陽イオン化し易い元素と共存する場合に
顕著であるElements such as fluorine, oxygen, chlorine, bromine, and nitrogen have a large electronegativity and tend to be negative ions originally, but since they are forcibly positive ions due to high-frequency energy, the plasma temperature Unless the temperature is sufficiently high, electrons that are negatively charged particles are likely to be taken in and become negative ions. This is remarkable when coexisting with an element that is more easily cationized.
【0009】上記諸例に示すように、化学反応の本質か
ら負イオンを利用する方が合理的であり、また、正イオ
ンを利用したときに生ずる上記の欠点は避けられる。し
たがって、負イオンを基板に引きつけるため基板側を陽
極とし、対極を陰極とする方法がある。As shown in the above examples, it is more rational to use negative ions due to the nature of the chemical reaction, and the above-mentioned drawbacks that occur when positive ions are used are avoided. Therefore, in order to attract the negative ions to the substrate, there is a method of using the substrate side as an anode and the counter electrode as a cathode.
【0010】しかし、この場合、移動し易い電子が基板
上に照射されてしまい、基板での放電量の割りには負イ
オンの効果は上がらない欠点がある。However, in this case, there is a drawback in that the electrons, which are likely to move, are irradiated onto the substrate, and the effect of negative ions does not increase relative to the amount of discharge on the substrate.
【0011】[0011]
【発明が解決しようとする課題】本発明は、基板側を陽
極とし、対極を陰極として両極間に高周波プラズマを発
生せしめて半導体装置を製造する場合、電子が基板上に
照射され難く負イオンが照射される半導体装置の製造法
を提供しようとするものである。SUMMARY OF THE INVENTION According to the present invention, when a semiconductor device is manufactured by using a substrate side as an anode and a counter electrode as a cathode to generate high-frequency plasma between both electrodes, it is difficult for electrons to irradiate the substrate and negative ions are generated. It is intended to provide a method for manufacturing an irradiated semiconductor device.
【0012】[0012]
【課題を解決するための手段】本発明は、基板側を陽極
とし、対極を陰極として両極間で、フッ素、酸素、塩
素、臭素、窒素、水素のうち少なくとも一つ以上の元素
を含む気体をプラズマ状態にし、網状の陽極を通して取
り出す当該元素の負イオンを半導体装置の製造に用いる
ものである。このとき、相対的に正イオンになり易い炭
素、水素、ケイ素等を混ぜてもよい。According to the present invention, a substrate side is used as an anode, a counter electrode is used as a cathode, and a gas containing at least one element selected from fluorine, oxygen, chlorine, bromine, nitrogen and hydrogen is used between both electrodes. Negative ions of the element that are brought into a plasma state and taken out through a mesh-like anode are used for manufacturing a semiconductor device. At this time, carbon, hydrogen, silicon, etc., which are likely to become positive ions, may be mixed.
【0013】すなわち、プラズマ状態で生じた電子は移
動度が極めて大きいので、網状の陽極で効率的に補集で
き、基板に不要な電子を照射しないですみ、負イオンの
みを照射できる効果がある。That is, since the electrons generated in the plasma state have an extremely high mobility, they can be efficiently collected by the reticulated anode, and it is possible to irradiate only negative ions without irradiating the substrate with unnecessary electrons. .
【0014】また、網状陽極に対して負にセルフバイア
スされた基板は質量の小さい電子を網状陽極に補集され
易くする。さらに、負イオンが照射されてできる基板表
面付近の過剰な負電荷は上記の好ましくない正イオンに
帯電し易い元素を引き寄せてくれる効果も期待できるも
のである。Further, the substrate negatively self-biased with respect to the mesh anode makes it easy for electrons having a small mass to be collected in the mesh anode. Furthermore, an excessive negative charge near the surface of the substrate, which is formed by irradiation with negative ions, can be expected to have an effect of attracting the above-mentioned unfavorable positive ions, which are easily charged.
【0015】本発明は、プラズマエッチング法、プラズ
マCVD法、プラズマ膜質改質法、その他プラズマを用
いる半導体装置の一切の製造法に適用できるものであ
る。The present invention can be applied to the plasma etching method, the plasma CVD method, the plasma film quality modifying method, and any other manufacturing method of a semiconductor device using plasma.
【0016】[0016]
【実施例】図1は本実施例において使用した半導体装置
の製造装置図である。反応室内の陽極1の上にシリコン
基板4を置き500℃に加熱した。また、陽極1の上に
はアルミニウム製の網状陽極2が設置されている。陽極
の試料導入口AからHeでバブリングしたテトラエトキ
シシランを導入し、陰極3の導入口Bから酸素を導入し
た。このときの各ガスの比はテトラエトキシシラン0.
4%、He79.6%、酸素20%であった。EXAMPLE FIG. 1 is a diagram of a semiconductor device manufacturing apparatus used in this example. The silicon substrate 4 was placed on the anode 1 in the reaction chamber and heated to 500 ° C. A reticulated anode 2 made of aluminum is installed on the anode 1. Tetraethoxysilane bubbled with He was introduced from the sample introduction port A of the anode, and oxygen was introduced from the introduction port B of the cathode 3. The ratio of each gas at this time is tetraethoxysilane.
It was 4%, He79.6%, and oxygen20%.
【0017】反応室内の圧力を1KPaに保持したの
ち、13.56MHzの高周波を印加し電極間にプラズ
マを発生させ、基板上にSiO2膜を成膜した。このと
き陽極電圧0V、陰極電圧−50Vであった。After the pressure inside the reaction chamber was maintained at 1 KPa, a high frequency of 13.56 MHz was applied to generate plasma between the electrodes to form a SiO 2 film on the substrate. At this time, the anode voltage was 0V and the cathode voltage was -50V.
【0018】形成した膜を赤外分光法で分析した結果、
有機物、水酸基等は検出されず、極めて優れた膜であっ
た。これは網状陽極の作用により、基板表面付近に電子
が照射されず酸素負イオンのみが照射され、テトラエト
キシシランと酸素との反応が極めて円滑になった結果と
考えられる。As a result of analyzing the formed film by infrared spectroscopy,
No organic matter or hydroxyl group was detected, and the film was extremely excellent. It is considered that this is because, due to the action of the reticulated anode, the vicinity of the substrate surface was not irradiated with electrons but was irradiated with only oxygen negative ions, and the reaction between tetraethoxysilane and oxygen was extremely smooth.
【0019】[0019]
【発明の効果】本発明によれば、基板側を陽極とし、対
極を陰極として両極間に高周波プラズマを発生せしめて
半導体装置を製造する方法において、基板上に照射され
るイオンが正イオンではなく負イオンであるため基板表
面付近の化学反応が極めて円滑に進行し、そのため極め
て優れた半導体装置を製造できる特徴がある。また、電
子が基板上に照射され難く負イオンのみが照射されるた
め極めて優れた半導体装置を製造できる特徴がある。According to the present invention, in a method for manufacturing a semiconductor device by using a substrate side as an anode and a counter electrode as a cathode to generate high-frequency plasma between both electrodes, the ions irradiated onto the substrate are not positive ions. Since they are negative ions, the chemical reaction near the surface of the substrate progresses extremely smoothly, which is a feature that an extremely excellent semiconductor device can be manufactured. Further, since it is difficult for electrons to be irradiated onto the substrate and only negative ions are irradiated, it is possible to manufacture an extremely excellent semiconductor device.
【図1】本発明を実施するための半導体装置の製造装置
図である。FIG. 1 is a manufacturing device diagram of a semiconductor device for carrying out the present invention.
1 陽極 2 網状陽極 3 陰極 4 基板 A 試料導入口 B ガス導入口 1 Anode 2 Reticulated anode 3 Cathode 4 Substrate A Sample inlet B Gas inlet
Claims (1)
のうち少なくとも一つ以上の元素を含む気体をプラズマ
状態にし、網状の陽極を通して取り出す当該元素の負イ
オンを用いることを特徴とする半導体装置の製造法。1. A semiconductor characterized in that a gas containing at least one element of fluorine, oxygen, chlorine, bromine, nitrogen, and hydrogen is put into a plasma state, and negative ions of the element are extracted through a meshed anode. Device manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10520292A JPH05259124A (en) | 1992-03-12 | 1992-03-12 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10520292A JPH05259124A (en) | 1992-03-12 | 1992-03-12 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05259124A true JPH05259124A (en) | 1993-10-08 |
Family
ID=14401086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10520292A Pending JPH05259124A (en) | 1992-03-12 | 1992-03-12 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05259124A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002101800A1 (en) * | 2001-05-15 | 2002-12-19 | Ebara Corporation | Semiconductor manufacturing method and apparatus |
US6511575B1 (en) * | 1998-11-12 | 2003-01-28 | Canon Kabushiki Kaisha | Treatment apparatus and method utilizing negative hydrogen ion |
JP2004323977A (en) * | 2003-04-28 | 2004-11-18 | Air Products & Chemicals Inc | Method for removing metal oxide from substrate surface to be treated |
KR100806704B1 (en) * | 2004-04-22 | 2008-02-27 | (주)케이디티 | The manufacturing method of transparent conducting electrode for organic light emitting diode |
US20120056101A1 (en) * | 2010-09-03 | 2012-03-08 | Semiconductor Energy Laboratory Co., Ltd. | Ion doping apparatus and ion doping method |
-
1992
- 1992-03-12 JP JP10520292A patent/JPH05259124A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6511575B1 (en) * | 1998-11-12 | 2003-01-28 | Canon Kabushiki Kaisha | Treatment apparatus and method utilizing negative hydrogen ion |
WO2002101800A1 (en) * | 2001-05-15 | 2002-12-19 | Ebara Corporation | Semiconductor manufacturing method and apparatus |
JP2004323977A (en) * | 2003-04-28 | 2004-11-18 | Air Products & Chemicals Inc | Method for removing metal oxide from substrate surface to be treated |
KR100806704B1 (en) * | 2004-04-22 | 2008-02-27 | (주)케이디티 | The manufacturing method of transparent conducting electrode for organic light emitting diode |
US20120056101A1 (en) * | 2010-09-03 | 2012-03-08 | Semiconductor Energy Laboratory Co., Ltd. | Ion doping apparatus and ion doping method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101503412B1 (en) | Substrate cleaning method for removing oxide layer | |
US20180087148A1 (en) | Method Of Improving Ion Beam Quality In A Non-Mass-Analyzed Ion Implantation System | |
JPH05259124A (en) | Manufacture of semiconductor device | |
JP2004353066A (en) | Plasma source and plasma treatment system | |
JPS6113634A (en) | Plasma processor | |
JPH01207930A (en) | Surface modification | |
US8603363B1 (en) | Compositions for extending ion source life and improving ion source performance during carbon implantation | |
JP2956412B2 (en) | How to clean the ion source | |
CN112582252A (en) | Method for forming semiconductor structure and semiconductor structure | |
JPS58101429A (en) | Dry etching method | |
JPH09263948A (en) | Formation of thin film by using plasma, thin film producing apparatus, etching method and etching device | |
JPH09223684A (en) | Plasma process device | |
TWI642091B (en) | Method of processing workpiece | |
JPS62237733A (en) | Oxidation and apparatus therefor | |
JPH11238597A (en) | Plasma processing method and device | |
JPS5812339B2 (en) | Ion etching method | |
JPS60257515A (en) | Manufacture of thin film | |
JP2985321B2 (en) | Mask pattern forming method | |
JPS6214937B2 (en) | ||
JP2005123389A (en) | Plasma treatment method, plasma film forming method, plasma etching method and plasma treatment device | |
JP2005353636A (en) | Plasma processing apparatus | |
JPH02102528A (en) | Ashing process | |
JPS58124223A (en) | Plasma treating device | |
JPH03163735A (en) | Ion implanter | |
JPH06188227A (en) | Photo ashing device |