JPH05258993A - Electrochemical capacitor - Google Patents

Electrochemical capacitor

Info

Publication number
JPH05258993A
JPH05258993A JP4051236A JP5123692A JPH05258993A JP H05258993 A JPH05258993 A JP H05258993A JP 4051236 A JP4051236 A JP 4051236A JP 5123692 A JP5123692 A JP 5123692A JP H05258993 A JPH05258993 A JP H05258993A
Authority
JP
Japan
Prior art keywords
capacitor
activated carbon
ruthenium oxide
electrochemical capacitor
electric double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4051236A
Other languages
Japanese (ja)
Inventor
Hitoshi Dogoshi
仁 堂腰
Yutaka Nakajima
裕 中島
Koichi Shiraishi
剛一 白石
Masashi Nakamura
正志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP4051236A priority Critical patent/JPH05258993A/en
Publication of JPH05258993A publication Critical patent/JPH05258993A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE:To provide a low-cost electrochemical capacitor of high capacitance, which has higher specific capacitance than a conventional electric double-layer capacitor using active carbon and has larger specific surface area than a capacitor of pseudo-capacity where ruthenium oxide particles are used. CONSTITUTION:Hydrogen peroxide is made to drip down into the mixed solution of porous activated carbon and ruthenium chloride to obtain ruthenium oxide- loaded porous activated carbon. Activated carbon is bonded by pressure to support plates 1 which function as a current collecting plate together with binder to form polarizable electrodes 2. The polarizable electrodes 2 are arranged at a certain interval confronting each other, interposing a separating film 3 between them, the end faces of a capacitor of this design are sealed up with gaskets 4, and electrolytic solution 5 is filled into a space produced inside the capacitor to form an electrochemical capacitor of high capacitance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気化学の原理、特に
電気化学2重層を利用した大容量コンデンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a principle of electrochemistry, and more particularly to a large capacity capacitor utilizing an electrochemical double layer.

【0002】[0002]

【従来の技術】電解質溶液に電極を浸すと電極は一般に
ある電位を示し、この電位の符号と反対符号のイオンが
溶液から電極近傍に引き寄せられ、電極と溶液の界面に
電気二重層が形成される。この原理を応用したコンデン
サとして、従来、活性炭粉末とバインダであるPTFE
粉末とを成形した分極性電極と集電電極とを複合して構
成される電極を2個使用し、その電極間に電解液を収容
した電気二重層コンデンサがあった。
2. Description of the Related Art When an electrode is immersed in an electrolyte solution, the electrode generally exhibits a certain electric potential. Ions having a sign opposite to the sign of this potential are attracted from the solution to the vicinity of the electrode to form an electric double layer at the interface between the electrode and the solution. It Conventionally, as a capacitor applying this principle, activated carbon powder and binder PTFE were used.
There was an electric double layer capacitor in which two electrodes each composed of a polarizable electrode formed by molding powder and a collector electrode were used, and an electrolytic solution was housed between the electrodes.

【0003】このような性質を持つ電気二重層コンデン
サの2つの集電電極に直流電圧を印加すると、正極側の
電気二重層では、分極性電極である活性炭側で正の電荷
が、電解液側で負の電荷がそれぞれ増加し、一方、負極
側の電気二重層においては、分極性電極である活性炭側
で負の電荷が、電解液側で正の電荷がそれぞれ増加し、
2つの電気二重層に多量の電荷が蓄積される。この電気
二重層コンデンサにおいては、静電容量は、分極性電極
の比表面積に比例して増加する。
When a DC voltage is applied to the two collecting electrodes of the electric double layer capacitor having such a property, in the electric double layer on the positive electrode side, a positive charge is generated on the activated carbon side, which is a polarizable electrode, on the electrolyte side. In the electric double layer on the negative electrode side, on the other hand, the negative charge increases on the activated carbon side, which is the polarizable electrode, and the positive charge increases on the electrolyte side, respectively.
A large amount of charge is accumulated in the two electric double layers. In this electric double layer capacitor, the capacitance increases in proportion to the specific surface area of the polarizable electrode.

【0004】この電気二重層コンデンサは、電極に多孔
質の炭素薄膜成形体を使用しているため大表面積を有し
ている反面、活性炭表面と電解質との間に形成される容
量値が、20〜50μF/cm2 であった。一方、従
来、酸化ルテニウム微粒子を使用した擬似容量によるコ
ンデンサがあった。このような技術として、例えば、第
33回国際パワーソース・シンポジウム講演集の607
〜617頁(1988年6月)に「ウルトラキャパシタ
のフィルター性能」と題して、このウルトラキャパシタ
はポーラスカーボン電極に基づいたもので、疑似容量に
分類されることが開示されている。また、ジャーナル・
オブ・パワーソース,29(1990)355−364
には、酸化ルテニウム−アイオノマー組成物構造によっ
て、完全に液体電解質の無い高エネルギー密度の電気化
学コンデンサが得られたことが開示されている。また、
ザ・プロスィーディング・オブ・ザ・エレクトリカル・
ソサェティ,582〜593(1987)には、高表面
積の二酸化ルテニウムの薄フィルム電極に基づく電気化
学コンデンサを作成したこと、そのコンデンサの電気化
学的応答についての報告、及びそのコンデンサの比容量
値が170μF/cm2 と大容量であったことが開示さ
れている。
This electric double layer capacitor has a large surface area because it uses a porous carbon thin film molded body as an electrode, but on the other hand, the capacitance value formed between the activated carbon surface and the electrolyte is 20. Was about 50 μF / cm 2 . On the other hand, conventionally, there has been a capacitor having pseudo capacitance using ruthenium oxide fine particles. Examples of such technology include, for example, 607 of the 33rd International Power Source Symposium Proceedings.
Pp. 617 (June 1988) entitled "Filter Performance of Ultracapacitors", it is disclosed that this ultracapacitor is based on porous carbon electrodes and is classified as pseudocapacitance. Also, the journal
Of Power Source, 29 (1990) 355-364
Discloses that a ruthenium oxide-ionomer composition structure resulted in a high energy density electrochemical capacitor completely free of liquid electrolyte. Also,
The Proceeding Of The Electrical
Society, 582-593 (1987), prepared an electrochemical capacitor based on a high surface area ruthenium dioxide thin film electrode, reported on the electrochemical response of the capacitor, and showed a specific capacitance value of 170 μF. It was disclosed that the capacity was as high as / cm 2 .

【0005】[0005]

【発明が解決しようとする課題】ところで、前記したよ
うに、従来の一般的な電気二重層コンデンサは、比容量
値が、酸化ルテニウム微粒子を使用した擬似容量による
コンデンサより低かった。一方、酸化ルテニウム微粒子
を使用した擬似容量によるコンデンサは分極性電極の多
孔質化が困難であり、そのために比表面積は現状では1
20m2 /gであり、活性炭素の300〜2000m2
/gに比べて非常に比表面積が小さかった。
By the way, as described above, the conventional general electric double layer capacitor has a specific capacitance value lower than that of the pseudo capacitance capacitor using fine particles of ruthenium oxide. On the other hand, it is difficult to make the polarizable electrode porous in a capacitor using a pseudo capacity using ruthenium oxide fine particles, and therefore the specific surface area is currently 1
It is a 20m 2 / g, of activated carbon 300~2000m 2
The specific surface area was very small compared to / g.

【0006】そのため、酸化ルテニウム微粒子を使用し
た擬似容量によるコンデンサの容量をさらに大容量にす
るためには、比表面積を大きくする必要があった。ま
た、分極性電極を構成するためには主に酸化ルテニウム
微粒子を使用しているために、酸化ルテニウム微粒子自
体は高価であることから、コスト的に高くついていた。
そこで本発明は、従来の電気二重層コンデンサより比容
量値が高く、酸化ルテニウム微粒子を使用した擬似容量
によるコンデンサよりも比表面積を大きくでき、しかも
コストを低く抑えることができる大容量の電気化学コン
デンサを提供することを目的とする。
Therefore, in order to further increase the capacity of the capacitor by the pseudo capacity using fine particles of ruthenium oxide, it was necessary to increase the specific surface area. In addition, since ruthenium oxide fine particles are mainly used to form the polarizable electrode, the ruthenium oxide fine particles themselves are expensive, so that the cost is high.
Therefore, the present invention is a large-capacity electrochemical capacitor that has a higher specific capacitance value than the conventional electric double layer capacitor, can have a larger specific surface area than a capacitor using a pseudo capacitance using ruthenium oxide fine particles, and can keep the cost low. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】前記した問題点を解決す
るために本発明は、分極性電極と電解質界面で形成され
る電気二重層を利用した電気化学コンデンサにおいて、
分解電極として酸化ルテニウムの微粒子を担持させた多
孔質活性炭又は活性炭素繊維を用いたことを特徴とする
電気化学コンデンサとするものである。
In order to solve the above-mentioned problems, the present invention provides an electrochemical capacitor using an electric double layer formed at a polarizable electrode and an electrolyte interface,
The electrochemical capacitor is characterized by using porous activated carbon or activated carbon fiber supporting fine particles of ruthenium oxide as a decomposition electrode.

【0008】本発明では、多孔質活性炭に酸化ルテニウ
ムの微粒子を担持させる方法は次のようにして行った。
容器に多孔質活性炭の微粉と塩化ルテニウムの混合溶液
を入れ、この溶液を攪拌しながら、この溶液の温度を3
0〜40℃に保ちながら過酸化水素の滴を上から垂らす
ことによって次の式1に示す反応を行わせる。
In the present invention, the method for supporting fine particles of ruthenium oxide on the porous activated carbon was carried out as follows.
Put a mixed solution of fine powder of porous activated carbon and ruthenium chloride in a container, and stir the solution while keeping the temperature of the solution at 3
The reaction represented by the following formula 1 is carried out by dropping a drop of hydrogen peroxide from above while keeping the temperature at 0 to 40 ° C.

【0009】[0009]

【化1】 [Chemical 1]

【0010】このようにして、多孔質活性炭の微粉表面
に酸化ルテニウムRuO2 の微粉を担持させることがで
きる。次に、溶液から酸化ルテニウムRuO2 の微粉を
担持した多孔質活性炭の微粉を捕集し、乾燥させる。こ
の乾燥したものに結着剤としてポリテトラフルオロエチ
レン(以下、PTFEという)粒子を混合させる。この
混合したものを集電板となる支持板に対して50kg/
cm2 程度の圧力で成形して、支持板に接合された分極
性電極を得る。
In this way, the fine powder of ruthenium oxide RuO 2 can be carried on the surface of the fine powder of porous activated carbon. Next, fine powder of porous activated carbon carrying fine powder of ruthenium oxide RuO 2 is collected from the solution and dried. Polytetrafluoroethylene (hereinafter referred to as PTFE) particles as a binder are mixed with the dried material. 50 kg /
A polarizable electrode bonded to a support plate is obtained by molding at a pressure of about cm 2 .

【0011】この支持板には、集電板の役割を持ち且つ
電解液である硫酸を隣のセルに漏らさないストッパーの
役割を持つステンレス(SUS316)を用いることが
できる。この支持板の材料には前記SUS316の他に
比重の軽いチタン、アルミニウム、タングステン、タン
タル等が使用できる。次に、支持板に接合された分極性
電極を2枚用意し、この分極性電極を一定の距離をおい
て対向させ、その真ん中に分離膜を配置し、両端をガス
ケットで封じ、生じた空間内に電解液を充填する。
As the support plate, stainless steel (SUS316) which has a role of a current collector plate and a role of a stopper which does not leak sulfuric acid as an electrolytic solution to an adjacent cell can be used. In addition to the SUS316, titanium, aluminum, tungsten, tantalum, or the like having a low specific gravity can be used as the material of the support plate. Next, two polarizable electrodes joined to the support plate are prepared, the polarizable electrodes are opposed to each other with a certain distance, a separation membrane is placed in the middle, and both ends are sealed with a gasket to create a space. Fill the inside with electrolyte.

【0012】本発明では、多孔質活性炭として、例え
ば、粒径400Å以下、比表面積200m2 /g以上の
ものが使用される。多孔質活性炭に添加するPTFEの
量は、約10〜12重量%である。本発明で分極性電極
と組み合わせて使用する電解液は特に限定されないが、
非水溶液又は水溶液系のものが使用できる。非水溶液に
はナフィオン117(商品名:デュポン社製)が用いら
れ、水溶液には、1〜4M程度のH2 SO4 が用いられ
る。
In the present invention, as the porous activated carbon, for example, one having a particle diameter of 400 Å or less and a specific surface area of 200 m 2 / g or more is used. The amount of PTFE added to the porous activated carbon is about 10-12% by weight. The electrolytic solution used in combination with the polarizable electrode in the present invention is not particularly limited,
A non-aqueous solution or an aqueous solution can be used. Nafion 117 (trade name: manufactured by DuPont) is used as the non-aqueous solution, and H 2 SO 4 of about 1 to 4 M is used as the aqueous solution.

【0013】透過形電子顕微鏡写真によれば、酸化ルテ
ニウムは活性炭の表面に付着しているのが観察される。
From the transmission electron micrograph, it is observed that ruthenium oxide is attached to the surface of activated carbon.

【0014】[0014]

【実施例1】粒径300Å、比表面積280m2 /gの
多孔質活性炭を濃度10重量%塩化ルテニウム水溶液中
に投入し、スターラーで攪拌して多孔質活性炭を分散さ
せた。分散溶液の温度を30℃に保って、図2に示す電
気化学コンデンサ用電極材料の調製装置を用いて分散溶
液を攪拌しながら過酸化水素を滴下した。
Example 1 Porous activated carbon having a particle size of 300 liters and a specific surface area of 280 m 2 / g was put into a 10 wt% ruthenium chloride aqueous solution and stirred with a stirrer to disperse the porous activated carbon. While maintaining the temperature of the dispersion solution at 30 ° C., hydrogen peroxide was added dropwise while stirring the dispersion solution using the apparatus for preparing an electrode material for electrochemical capacitors shown in FIG.

【0015】濾過し、湿った酸化ルテニウムRuO2
微粒子が吸着された多孔質活性炭を得た。この多孔質活
性炭を120℃、1Torr程度の減圧下で乾燥した。
ついで、PTFE粒子としてポリフロンTFEディスバ
ージョン(商品名:ダイキン工業製)を10重量%とな
るように添加混合して、支持板として0.2mm厚のス
テンレス(SUS316)上に前記混合物を載せて50
kg/cm2 の圧力てプレス成形して支持板に接合され
た分極性電極を得た。
Filtration was carried out to obtain porous activated carbon on which moist fine particles of ruthenium oxide RuO 2 were adsorbed. This porous activated carbon was dried at 120 ° C. under reduced pressure of about 1 Torr.
Then, polyflon TFE disversion (trade name: manufactured by Daikin Industries, Ltd.) as PTFE particles was added and mixed so as to be 10% by weight, and the mixture was placed on a stainless steel plate (SUS316) having a thickness of 0.2 mm as a supporting plate and 50
A polarizable electrode bonded to the support plate was obtained by press molding under a pressure of kg / cm 2 .

【0016】この分極性電極2枚を互いに向かい合うよ
うに一定の距離をおいて対向させ、その真ん中に分離膜
として穴径40μm、膜厚0.17mmのポリビニル系
樹脂のユミクロン(商品名:湯浅電池製)を配置し、両
端をガスケットで封じ、生じた空間内に電解液として2
MのH2 SO4 を充填した。このようにして得られた電
気化学コンデンサを図1に示す。1は支持板、2は分極
性電極、3は分離膜、4はガスケット、5は電解液であ
る。
The two polarizable electrodes are made to face each other with a certain distance therebetween, and in the middle of them, there is used a separation resin having a hole diameter of 40 μm and a thickness of 0.17 mm of polyvinyl-based resin Umicron (trade name: Yuasa Battery). 2) is placed, both ends are sealed with gaskets, and 2
He was charged with H 2 SO 4 of M. The electrochemical capacitor thus obtained is shown in FIG. Reference numeral 1 is a support plate, 2 is a polarizable electrode, 3 is a separation membrane, 4 is a gasket, and 5 is an electrolytic solution.

【0017】本実施例1により得られた電気化学コンデ
ンサの容量値は、約2F/cm2 であった。これに対し
て、比較例として酸化ルテニウムを担持しない多孔質活
性炭から同様に製造したコンデンサの比容量値0.2F
/cm2 であった。
The capacitance value of the electrochemical capacitor obtained in Example 1 was about 2 F / cm 2 . On the other hand, as a comparative example, the specific capacity value of the capacitor similarly manufactured from porous activated carbon not supporting ruthenium oxide was 0.2F.
Was / cm 2 .

【0018】[0018]

【発明の効果】本発明の電気化学コンデンサは、分極性
電極として酸化ルテニウムの微粒子を担持させた多孔質
活性炭を用いたことにより、従来の電気二重層コンデン
サより容量が高く、酸化ルテニウム微粒子を使用した擬
似容量によるコンデンサよりも比表面積を大きくでき、
しかもコストを低く抑えることができる大容量の電気化
学コンデンサとすることができる。
The electrochemical capacitor of the present invention has a higher capacity than conventional electric double layer capacitors and uses ruthenium oxide fine particles because it uses porous activated carbon carrying fine particles of ruthenium oxide as a polarizable electrode. The specific surface area can be made larger than the capacitor with the pseudo capacitance,
Moreover, a large-capacity electrochemical capacitor whose cost can be kept low can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電気化学コンデンサを示す。FIG. 1 shows an electrochemical capacitor of the present invention.

【図2】電気化学コンデンサ用電極材料の調製装置を示
す。
FIG. 2 shows an apparatus for preparing an electrode material for electrochemical capacitors.

【符号の説明】[Explanation of symbols]

1 支持板 2 分極性電極 3 分離膜 4 ガスケット 5 電解液 1 Support plate 2 Polarizable electrode 3 Separation membrane 4 Gasket 5 Electrolyte

フロントページの続き (72)発明者 中村 正志 愛知県安城市藤井町高根10番地 アイシ ン・エィ・ダブリュ株式会社内Front Page Continuation (72) Inventor Masashi Nakamura 10 Takane, Fujii-cho, Anjo-shi, Aichi Aisin AW Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 分極性電極と電解質界面で形成される電
気二重層を利用した電気化学コンデンサにおいて、分極
性電極として酸化ルテニウムの微粒子を担持させた多孔
質活性炭又は活性炭素繊維を用いたことを特徴とする電
気化学コンデンサ。
1. An electrochemical capacitor using an electric double layer formed at an interface between a polarizable electrode and an electrolyte, wherein porous activated carbon or activated carbon fiber carrying fine particles of ruthenium oxide is used as a polarizable electrode. Characteristic electrochemical capacitor.
JP4051236A 1992-03-10 1992-03-10 Electrochemical capacitor Withdrawn JPH05258993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4051236A JPH05258993A (en) 1992-03-10 1992-03-10 Electrochemical capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4051236A JPH05258993A (en) 1992-03-10 1992-03-10 Electrochemical capacitor

Publications (1)

Publication Number Publication Date
JPH05258993A true JPH05258993A (en) 1993-10-08

Family

ID=12881318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4051236A Withdrawn JPH05258993A (en) 1992-03-10 1992-03-10 Electrochemical capacitor

Country Status (1)

Country Link
JP (1) JPH05258993A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005076296A1 (en) * 2004-02-05 2005-08-18 Companhia Brasileira De Metalurgia E Mineracao Electrochemical device and electrode body
CN100368079C (en) * 2006-02-23 2008-02-13 华南理工大学 Method for preparing carbon nanotube supported nanometer hydrated ruthenium oxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005076296A1 (en) * 2004-02-05 2005-08-18 Companhia Brasileira De Metalurgia E Mineracao Electrochemical device and electrode body
CN100368079C (en) * 2006-02-23 2008-02-13 华南理工大学 Method for preparing carbon nanotube supported nanometer hydrated ruthenium oxide

Similar Documents

Publication Publication Date Title
RU2180144C1 (en) Double-layer capacitor
US9275802B2 (en) Electrolyte synthesis for ultracapacitors
Sarangapani et al. Advanced double layer capacitors
KR101046098B1 (en) Polarizable Electrodes for Capacitors and Electrical Double Layer Capacitors Comprising the Same
RU2185675C2 (en) Double-layer capacitor
KR20080012952A (en) Electrode for electric double layer capacitor and electric double layer capacitor
EP0564498A1 (en) Supercapacitor electrode and method of fabrication thereof.
JPH097896A (en) Electric double-layer capacitor
JP2016534565A (en) Carbon-based electrode containing molecular sieve
JPWO2005088656A1 (en) Electrolytic solution for electric double layer capacitor and electric double layer capacitor
US20110128671A1 (en) Supercapacitors and methods for producing same
JP2002231585A (en) Electric double-layered capacitor
JP6049205B2 (en) Electrolyte synthesis for ultracapacitors
US8961809B2 (en) Electrolyte synthesis for ultracapacitors
JPH05258993A (en) Electrochemical capacitor
JP2764937B2 (en) Electric double layer capacitor
KR20140068896A (en) Carbon Electrodes and Electrochemical Capacitors
JP2002158140A (en) Electrochemical capacitor
JP2507125B2 (en) Electric double layer capacitor and manufacturing method thereof
JP3792528B2 (en) Manufacturing method of electric double layer capacitor
CN109074965A (en) The method for reducing supercapacitor exhaust
EP3998656A1 (en) Metal sheet having carbon material, electrode for electricity storage device, and electricity storage device
JP2010003717A (en) Capacitor
Kumar et al. Supercapacitor Based on 2D Nanomaterials and Their Hybrid
Hahn et al. A 24 V bipolar electrochemical double layer capacitor based on activated glassy carbon

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518