JPH05258934A - Magnetic material and manufacturing method thereof - Google Patents

Magnetic material and manufacturing method thereof

Info

Publication number
JPH05258934A
JPH05258934A JP4103443A JP10344392A JPH05258934A JP H05258934 A JPH05258934 A JP H05258934A JP 4103443 A JP4103443 A JP 4103443A JP 10344392 A JP10344392 A JP 10344392A JP H05258934 A JPH05258934 A JP H05258934A
Authority
JP
Japan
Prior art keywords
colloidal
sol
iron
particles
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4103443A
Other languages
Japanese (ja)
Inventor
Kenichi Suzuki
建一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4103443A priority Critical patent/JPH05258934A/en
Publication of JPH05258934A publication Critical patent/JPH05258934A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a magnetic material which has a high saturated magnetic flux density and whose effective permeability hardly deteriorates by a method wherein a thin layer of high proper resistance material is formed on the surface of Fe particles and then the particles thus processed are pressure-molded to be sintered. CONSTITUTION:A thin layer 3 of high proper resistance colloidal material is formed on the surface of Fe particles 1 by infiltrating method, etc., of a liquid such as colloidal silica sol, etc. Next, the particles thus processed are pressure- molded to be sintered. At this time, pressurized particles are contained in a furnace at the temperature exceeding at least 1/2 of the melting temperature of Fe so that a high proper resistance material may be mutually diffused into one another and mutually adhere to one another by heating step. Thus, magnetic core suffering a small eddy current loss can be manufactured. Furthermore, high saturated magnetic flux density in small counter magnetic field action, having a high effective permeability and an Fe density can be assured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属鉄を成分とする軟
磁性材料とその製造方法に関する.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soft magnetic material containing metallic iron as a component and a method for producing the same.

【0002】[0002]

【従来の技術】従来の鉄を成分とする軟磁性材料に於い
ては、その固有抵抗が低く、いわゆる「金属」の範疇に
属するため、トランスやインダクタなどの磁心として用
いると、うず電流損失が生じ実効透磁率が低下するた
め、薄板に圧延し積層磁心として用いていた。
2. Description of the Related Art Conventional soft magnetic materials containing iron have low specific resistance and belong to the category of so-called "metals". Therefore, when they are used as magnetic cores for transformers and inductors, eddy current loss occurs. As a result, the effective magnetic permeability is reduced, so that it was rolled into a thin plate and used as a laminated magnetic core.

【0003】[0003]

【発明が解決しようとする課題】そのため前記積層磁心
に於いては、どんなに薄く圧延しても機械的強度を保つ
上で薄さに限界があるため、いかに積層磁心としてみて
も、やはりうず電流損失は避けられず用いうる周波数
は、10キロヘルツ以下と低く、用途に限界があった。
Therefore, in the laminated magnetic core, there is a limit to the thinness in maintaining the mechanical strength no matter how thinly rolled, so no matter how the laminated magnetic core is considered, the eddy current loss is still caused. Inevitably, the frequency that can be used is as low as 10 kHz or less, which limits its use.

【0004】本発明は前記問題を解決しようとするもの
で、10キロヘルツ以上の周波数でも実効透磁率の低下
が少なく、かつ鉄を成分とするため飽和磁束密度の大き
い、言い換えれば高周波にも有効なインダクタか、ある
いは積層をしなくても商用周波あるいは10キロヘルツ
以上の周波数で用いうる磁性材料を提供することを目的
としている。
The present invention is intended to solve the above-mentioned problems, and the effective magnetic permeability is not significantly reduced even at a frequency of 10 kHz or higher, and since iron is a component, the saturation magnetic flux density is large, in other words, it is also effective at high frequencies. It is an object of the present invention to provide a magnetic material which can be used at a commercial frequency or at a frequency of 10 kHz or higher without being laminated with an inductor.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の磁性材料に於いては鉄を成分とする粉末粒
子の表面に高固有抵抗物質の薄層を形成し、前記処理を
行った粒子の多数個を圧粉成型して、炉に入れ鉄の融点
の少なくとも2分の1以上の温度で焼結し、前記薄層を
互いに熱拡散により融着させ一体の焼結磁性材料とし
た。
In order to achieve the above object, in the magnetic material of the present invention, a thin layer of a high specific resistance material is formed on the surface of powder particles containing iron as a component, and the above treatment is performed. A large number of the obtained particles are compacted, placed in a furnace and sintered at a temperature of at least ½ or more of the melting point of iron, and the thin layers are fused to each other by thermal diffusion to form an integral sintered magnetic material. And

【0006】前記高固有抵抗物質を鉄を成分とする粉末
粒子の表面に形成するためには、前記粉末粒子の表面を
酸化することが有効である。その他の方法としては、粉
体とは別に製造しておいた金属酸化物などのコロイド又
は溶液を粉体に浸潤させ、その後圧粉し炉に入れて焼結
させることが効果的である。あるいは炉に入れる代りに
いわゆる公知の放電焼結の方法を用いることも出来る。
放電焼結装置も広義の炉と考えられる。
In order to form the high resistivity material on the surface of powder particles containing iron, it is effective to oxidize the surface of the powder particles. As another method, it is effective to infiltrate the powder with a colloid or a solution such as a metal oxide produced separately from the powder, and then press the powder and put it in a furnace for sintering. Alternatively, a so-called known spark sintering method can be used instead of placing in a furnace.
A spark sintering device is also considered to be a furnace in a broad sense.

【0007】前記金属酸化物の外に窒化物、弗化物、塩
化物、臭化物、よう化物もよい高抵抗物質であるので、
これらの内少なくとも1つのコロイド又は溶液を別に製
造しておき、粉体に浸潤させることもできる。また前記
粉体の表面を窒化、弗化、塩化、臭化、よう化しても高
抵抗物質の薄層を形成できる。
In addition to the above metal oxides, nitrides, fluorides, chlorides, bromides, and iodides are also high-resistance substances,
It is also possible to separately produce at least one colloid or solution and infiltrate the powder. Further, even if the surface of the powder is nitrided, fluorinated, chlorinated, brominated, or the like, a thin layer of a high resistance substance can be formed.

【0008】また前記金属酸化物などの他に、いわゆる
磁性コロイド流体として知られる鉄酸化物コロイド、フ
ェライトコロイド、鉄コロイド、ニッケルコロイド、コ
バルトコロイド等の磁性体コロイドの少なくとも一つ
を、前記酸化物コロイドからよう化物コロイドまでのコ
ロイドの内少なくとも1つに混入するか、あるいは鉄酸
化物コロイドやフェライトコロイドを単独で用いれば、
単に高固有抵抗物質となるにとどまらず高透磁率をもあ
わせ持つ高固有抵抗、高透磁率物質となり、このような
コロイドを、鉄を成分とする粉末粒子の表面に浸潤等の
方法により付着形成して圧粉して焼結すれば、各多結晶
粉末粒子は互いに高固有抵抗、高透磁率物質を介して焼
結結合され一体の磁心となるので、うず電流は大幅に低
下しかつ透磁率の低下もある程度防止され、また鉄を成
分とするため高飽和磁束密度を有する磁性材料が得られ
る。
In addition to the above metal oxides, at least one of magnetic colloids such as iron oxide colloids, ferrite colloids, iron colloids, nickel colloids, and cobalt colloids known as so-called magnetic colloidal fluids is used as the oxide. If at least one of the colloids from the colloid to the iodide colloid is mixed, or if the iron oxide colloid and the ferrite colloid are used alone,
Not only a substance with a high specific resistance, but also a substance with a high specific resistance and a high magnetic permeability that also has a high magnetic permeability. Such a colloid is adhered to the surface of powder particles containing iron by a method such as infiltration. If pressed and sintered, the polycrystalline powder particles will be sintered and bonded to each other through high resistivity and high magnetic permeability materials to form an integral magnetic core, which will greatly reduce the eddy current and increase the magnetic permeability. Is prevented to some extent, and since iron is used as a component, a magnetic material having a high saturation magnetic flux density can be obtained.

【0009】圧粉成型した後、炉中に入れて焼結する際
に、その温度は理想的には鉄の融点の少し下の1150
℃位であるのが望ましいが、600℃以上であっても熱
拡散は起こり互いに融着する。
When the powder is compacted and then placed in a furnace for sintering, its temperature is ideally 1150, which is slightly below the melting point of iron.
Although it is desirable that the temperature is in the order of ° C, thermal diffusion occurs even at 600 ° C or higher and they are fused to each other.

【0010】また炉中の雰囲気は焼結条件によっても異
なるが、水素、空気、窒素、炭酸ガス、アルゴン等の不
活性気体、または前記気体のいずれかに少しの水蒸気を
含む気体あるいは真空のいずれかであることが望まし
い。
Although the atmosphere in the furnace varies depending on the sintering conditions, either an inert gas such as hydrogen, air, nitrogen, carbon dioxide, or argon, or a gas containing a small amount of water vapor in any of the above gases or a vacuum. It is desirable that

【0011】また焼結温度が、鉄の変態点である910
℃以上であるときは、焼結後は910℃前後をじょ冷し
て通過降温させることにより、鉄の磁性を向上させるこ
とが有効である。
The sintering temperature is 910, which is the transformation point of iron.
When the temperature is not lower than 0 ° C, it is effective to improve the magnetism of iron by slowly cooling around 910 ° C after sintering and passing the temperature down.

【0012】上記のように構成された磁性材料は、特に
薄板に圧延して積層磁心とせずとも、その本来の固有抵
抗は、鉄に比べて高くなることは明白である。即ち鉄の
多結晶体粒子が互いに高抵抗物質を介して焼結結合して
いるので、いわゆる磁心としての空隙が少ないわりに
は、実効透磁率が比較的高く、成型焼結してトロイダル
コア、EI型コア、L型コア、EE型コア、uu型カッ
トコアなどとすることにより、容易にインダクタやトラ
ンスの磁心とすることが出来る。
It is obvious that the magnetic material having the above-described structure has a higher intrinsic resistance than iron, even if it is not rolled into a laminated magnetic core. That is, since the polycrystalline particles of iron are sinter-bonded to each other through the high-resistance substance, the so-called magnetic core has few voids, but the effective magnetic permeability is relatively high and the sintered toroidal core, EI By using a die core, an L-type core, an EE-type core, a uu-type cut core, or the like, a magnetic core of an inductor or a transformer can be easily obtained.

【0013】[0013]

【実施例】実施例について図面を参照して説明する。図
1に於いて、1は鉄の多結晶体の1つの粒子を示し、そ
の内部に記載の線2は結晶粒界を示す。3はその表面に
形成された高固有抵抗物質の薄層を示す。図2は、図1
に示す表面処理された多結晶体を互いに圧粉焼結して出
来た焼結体を示し、1は多結晶体の1つ、2はその内部
の結晶粒界、3はその界面に形成された高抵抗物質の薄
層を示す。比較の為いわゆるダストコアと呼ばれる圧粉
磁性材料を図3に示す。1は多結晶体粉末の1つ、2は
その内部の結晶粒界、4はバインダとしての水ガラス、
あるいはプラスチックなどの絶縁物質で、1に示す多結
晶体は、3の絶縁物質の海の中に互いに孤島のように分
散しているのが特長である。このためダストコアでは、
各粒子に働く反磁界が大きく、いわゆるトロイダルコア
にした時の空隙が大きいので、透磁率を上げることは困
難である.これに比べ図2に示す本発明の磁性材料は、
互いに高抵抗物質を介しているとは言え、焼結しており
各粒子に働く反磁界は少なく、その透磁率と飽和磁束密
度がダストコアに比べて上昇することは、反磁界の理論
によっても、物質の密度の観点からも明白であり、実験
により確認されている.
EXAMPLES Examples will be described with reference to the drawings. In FIG. 1, reference numeral 1 indicates one particle of an iron polycrystal, and line 2 described therein indicates a grain boundary. Reference numeral 3 indicates a thin layer of high resistivity material formed on the surface of the material. 2 is shown in FIG.
2 shows a sintered body obtained by compacting and sintering the surface-treated polycrystals shown in FIG. 1, where 1 is a polycrystal, 2 is a grain boundary inside the polycrystal, and 3 is formed at the interface. A thin layer of high resistance material is shown. For comparison, a powder magnetic material called a so-called dust core is shown in FIG. 1 is one of polycrystalline powders, 2 is a grain boundary inside thereof, 4 is water glass as a binder,
Alternatively, an insulating material such as plastic is characterized in that the polycrystals shown in 1 are dispersed in the sea of 3 insulating materials like islands. Therefore, in the dust core,
It is difficult to increase the magnetic permeability because the demagnetizing field that acts on each particle is large and the voids when forming a so-called toroidal core are large. In comparison with this, the magnetic material of the present invention shown in FIG.
Even though they are via high-resistance substances, the particles are sintered and the demagnetizing field that acts on each particle is small, and its permeability and saturation magnetic flux density are higher than those of the dust core. It is also clear from the viewpoint of the density of the substance and confirmed by experiments.

【0014】高固有抵抗物質を粒子の表面に形成する方
法の一実施例は次の通りである.例えばコロイドシリカ
ゾルなどの液体を、鉄を成分とする粉体の表面にコロイ
ドの薄層を浸潤等の方法により形成し、圧粉して焼結す
れば、鉄粉は変形し粒子間の空間が少なくなるだけでな
く、その表面の高固有抵抗物質は互いに熱拡散によって
融着し、目的の物質を得る.
An example of a method of forming a high resistivity material on the surface of particles is as follows. For example, when a liquid such as colloidal silica sol is formed on the surface of powder containing iron by a method such as infiltration of a thin layer of colloid, and the powder is pressed and sintered, the iron powder is deformed and the space between the particles is reduced. Not only the number decreases, but the high resistivity materials on the surface fuse with each other by thermal diffusion to obtain the target material.

【0015】また高固有抵抗物質は、前記のコロイドシ
リカゾル以外のコロイドゾル即ちアルミナ、酸化チタ
ン、酸化ホウ素、酸化鉄、酸化リンなどのコロイドゾル
をコロイドシリカゾルの代りに用いることも出来る.更
に金属酸化物のコロイドにとどまらず、金属窒化物、弗
化物、酸化物、臭化物、よう化物のコロイドを前記コロ
イドシンカゾルの代りに用いても、同様に高固有抵抗物
質の薄層を鉄粉粒子の表面に形成できることは明白であ
る.また前記の鉄を成分とする多結晶体粉末を適当な雰
囲気中や、溶液中で前処理することにより、粉末粒子の
表面を酸化したり、窒化、弗化、塩化、臭化、よう化な
どして表面に高固有抵抗の薄層を形成することも出来
る.
As the high resistivity material, colloidal sols other than the above colloidal silica sols, that is, colloidal sols such as alumina, titanium oxide, boron oxide, iron oxide and phosphorus oxide can be used instead of the colloidal silica sols. Furthermore, not only colloids of metal oxides but also colloids of metal nitrides, fluorides, oxides, bromides, and iodides are used instead of the colloid syncasol, a thin layer of a high specific resistance substance is similarly obtained. It is clear that they can be formed on the surface of the particles. Further, by pre-treating the above-mentioned polycrystalline powder containing iron as a component in an appropriate atmosphere or in a solution, the surface of the powder particles is oxidized, nitriding, fluorinating, chlorinating, bromiding, iodinated, etc. Then, a thin layer with high resistivity can be formed on the surface.

【0016】さらに図4に示す高固有抵抗物質3は、本
発明の請求項他に記載の多くのコロイドの内の少なくと
も1つのコロイドに加えるに、酸化鉄コロイド、フェラ
イトコロイド、鉄コロイド、ニッケルコロイド、コバル
トコロイドなどの磁性体コロイドだけでなくモリブデン
コロイド、クロムコロイド、リンコロイド、アルミニウ
ムコロイド、シリコンコロイドなどの強磁性体の一成分
となり得る元素のコロイドの内少なくとも1つのコロイ
ドを混合したものを、鉄を成分とする粉末に浸潤させ
て、粉末粒子の表面に混合コロイドの薄層を形成させ、
圧粉後焼結すれば、図4に示す高固有抵抗物質3は高固
有抵抗物質のみでなく、その内に高透磁率物質5をも含
む、高固有抵抗、高透磁率物質の薄層となるので、焼結
体の実効透磁率は上昇する。
Further, the high resistivity material 3 shown in FIG. 4 is added to at least one of the many colloids described in the claims of the present invention and the like, in addition to iron oxide colloid, ferrite colloid, iron colloid, nickel colloid. In addition to magnetic colloids such as cobalt colloid, a mixture of molybdenum colloid, chromium colloid, phosphorus colloid, aluminum colloid, colloid of at least one element that can be one component of ferromagnetic substance such as silicon colloid, Infiltrate iron-based powder to form a thin layer of mixed colloid on the surface of powder particles,
When pressed and sintered, the high specific resistance material 3 shown in FIG. 4 is not only a high specific resistance material, but also a high magnetic permeability material 5 in the thin film of high specific resistance and high magnetic permeability material. Therefore, the effective magnetic permeability of the sintered body increases.

【0017】図4に示す1は鉄を成分とする多結晶粒
子、2は結晶粒界、3は高固有抵抗物質が互いに熱拡散
焼結した薄層、5は3の高固有抵抗物質の薄層の内部に
生成した高透磁率物質であって、酸化鉄、フェライト、
鉄、ニッケル、コバルト、モリブデン、クロム、リン、
アルミニウム、シリコンの内少なくとも1つの物質を含
む高透磁率物質である。
In FIG. 4, 1 is polycrystalline particles containing iron as a component, 2 is a grain boundary, 3 is a thin layer in which high resistivity materials are thermally diffused and sintered, and 5 is a thin layer of high resistivity material. A high-permeability substance formed inside the layer, which is iron oxide, ferrite,
Iron, nickel, cobalt, molybdenum, chromium, phosphorus,
It is a high magnetic permeability material containing at least one of aluminum and silicon.

【0018】また図1、2、4に示す、金属鉄を成分と
する多結晶粒子1としては、純鉄、けい素含有鉄、セン
ダスト、クロム含有鉄、パーマロイ、モリブデンパーマ
ロイの内少なくとも1つを用いることが出来る。
As the polycrystalline particles 1 containing metallic iron as a component shown in FIGS. 1, 2 and 4, at least one of pure iron, silicon-containing iron, sendust, chromium-containing iron, permalloy and molybdenum permalloy is used. Can be used.

【0019】また前記コロイドの製造法は公知であり、
その文献の一例を挙げる。 「コロイド化学の基礎」 中垣正幸他著/大日本図書 「磁性流体」 武冨荒他著/日刊工業新聞社
The method for producing the colloid is known,
An example of the document will be given. "Basics of Colloid Chemistry" Masayuki Nakagaki et al./Dainippon Book "Magnetic Fluid" Ara Taketomi et al./Nikkan Kogyo Shimbun

【0020】[0020]

【本発明の効果】従来の金属磁性材料のように薄板にし
て積層する必要はなく、圧紛成型、焼結することだけで
うず電流損失の少ない磁心を作ることが可能である。ま
たダストコアのように、バインダを介して圧粉成型した
だけの磁心とは異なり反磁界の働きが小さく、高い実効
透磁率が得られ、鉄の密度が高いことにより高い飽和磁
束密度も得られる。更に各多結晶体間は高固有抵抗物質
によって隔てられているため、うず電流が流れにくくそ
の事により高周波まで使用可能な磁心を得ることが出来
る。これはノーマルモードノイズフィルタの為のインダ
クタや商用周波のトランス磁心を得ることが出来ること
を意味する。
EFFECTS OF THE INVENTION It is not necessary to form a thin plate and stack it like a conventional metal magnetic material, and it is possible to produce a magnetic core with a small eddy current loss only by compression molding and sintering. Further, unlike a magnetic core such as a dust core, which is simply powder-molded through a binder, the function of the demagnetizing field is small, a high effective magnetic permeability is obtained, and a high saturation magnetic flux density is obtained due to the high iron density. Further, since the polycrystals are separated from each other by a material having a high specific resistance, it is difficult for an eddy current to flow, so that a magnetic core usable up to a high frequency can be obtained. This means that it is possible to obtain an inductor for a normal mode noise filter and a transformer core of commercial frequency.

【図面の簡単な説明】[Brief description of drawings]

【図1】鉄を成分とする多結晶体の一粒子を示す。FIG. 1 shows one particle of a polycrystalline body containing iron.

【図2】図1に示す多結晶体の粒子6個を互いに焼結し
た実施例を示す。
2 shows an example in which six particles of the polycrystalline body shown in FIG. 1 are sintered together.

【図3】ダストコアと呼ばれる従来の圧粉磁心を示す。FIG. 3 shows a conventional dust core called a dust core.

【図4】2個の多結晶粒子間を隔てる高固有抵抗物質薄
層の内部に高透磁率物質を生成させた実施例を示す。
FIG. 4 shows an example in which a high magnetic permeability material is formed inside a high resistivity material thin layer separating two polycrystalline particles.

【符号の説明】[Explanation of symbols]

1 鉄の多結晶体の粒子の1つ 2 1の内部の結晶粒界 3 1の表面に形成された高固有抵抗物質の薄層 4 ダストコアのバインダとしての絶縁物質 5 3の薄層内に生成された高透磁率物質 1 One of polycrystalline particles of iron 2 1 Grain boundary inside 1 3 Thin layer of high resistivity material formed on the surface of 1 4 Insulating material as binder of dust core 5 3 Generated in thin layer of 3 High permeability material

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも金属鉄を成分とする多結晶体
の粒子と、その多結晶体粒子の表面を被覆するように形
成した高固有抵抗物質の薄層と、前記薄層によってへだ
てられ互いに焼結された多くの多結晶体粒子からなるこ
とを特長とする焼結磁性材料.
1. Polycrystalline particles containing at least metallic iron as a component, a thin layer of a high resistivity material formed so as to cover the surfaces of the polycrystalline particles, and a thin layer which is depressed by the thin layer and mutually baked. A sintered magnetic material characterized by being composed of many polycrystalline particles bonded together.
【請求項2】 少なくとも金属鉄を成分とする多結晶体
の粒子の表面に高固有抵抗物質の薄層を形成し、前記の
如き表面処理を受けた粒子の多数個を型に入れて圧縮成
型し、前記圧粉体を焼結することを特長とする焼結磁性
材料の製造方法.
2. A thin layer of a high resistivity material is formed on the surface of particles of a polycrystalline body containing at least metallic iron as a component, and a large number of the particles subjected to the surface treatment as described above are put into a mold and compression molded. And a method of manufacturing a sintered magnetic material, characterized by sintering the green compact.
【請求項3】 請求項1及び2に於いて、「焼結」とは
鉄の融点の少なくとも2分の1以上の温度の炉中に圧粉
体を入れて、前記高固有抵抗物質を熱により互いに拡散
させ融着させたことを特長とする磁性材料の製造方法.
3. The "sintering" according to claim 1, wherein the "sintering" is performed by heating the high resistivity material by placing a green compact in a furnace having a temperature of at least ½ of the melting point of iron. A method of manufacturing magnetic materials, characterized in that they are diffused and fused to each other by.
【請求項4】 請求項1及び2に於いて記載の高固有抵
抗物質は、記載の多結晶粒子表面を酸化した酸化物であ
ることを特長とする、請求項1に記載の磁性材料.
4. The magnetic material according to claim 1, wherein the high resistivity material according to claim 1 or 2 is an oxide obtained by oxidizing the surface of the polycrystalline particles.
【請求項5】 請求項1及び2に於いて記載の高固有抵
抗物質は、金属酸化物、窒化物、弗化物、塩化物、臭化
物、よう化物、の内少なくとも1つを含む混合物である
ことを特長とする請求項1に記載の磁性材料.
5. The high resistivity material according to claim 1 or 2 is a mixture containing at least one of a metal oxide, a nitride, a fluoride, a chloride, a bromide and an iodide. The magnetic material according to claim 1, characterized in that
【請求項6】 請求項1及び2に於いて記載の高固有抵
抗物質は、シリコン、鉄、アルミニウム、ホウ素、マン
ガン、亜鉛、ニッケル、クロム、リン、チタンの各酸化
物の内、少なくとも1つを含むことを特長とする請求項
1に記載の磁性材料.
6. The high resistivity material according to claim 1 or 2, wherein at least one of oxides of silicon, iron, aluminum, boron, manganese, zinc, nickel, chromium, phosphorus and titanium is used. The magnetic material according to claim 1, wherein the magnetic material comprises:
【請求項7】 請求項1及び2に於いて記載の高固有抵
抗物質は、金属酸化物、窒化物、弗化物、塩化物、臭化
物、よう化物、及び金属元素の内、少なくとも1つのコ
ロイドゾル又は溶液を、金属鉄を成分とする粉体粒子の
表面に浸潤等の方法により付着させた後、多数の粒子を
圧粉し、焼結したことを特長とする請求項1に記載の磁
性材料。
7. The high resistivity material according to claim 1 or 2, wherein the high-resistivity substance is at least one colloidal sol selected from metal oxides, nitrides, fluorides, chlorides, bromides, iodides, and metal elements. The magnetic material according to claim 1, wherein the solution is adhered to the surface of powder particles containing metallic iron by a method such as infiltration, and then a large number of particles are pressed and sintered.
【請求項8】 請求項7に於いて記載のコロイドゾル
は、コロイドシリカゾル、コロイド酸化チタンゾル、コ
ロイドリンゾル、コロイドアルミナゾル、コロイド酸化
ホウ素ゾル、コロイド酸化鉄ゾル、コロイドフェライト
ゾル、コロイド鉄ゾル、コロイドニッケルゾル、コロイ
ドコバルトゾル、コロイドモリブデンゾル、 コロイド
クロムゾル、コロイドアルミニウムゾル、コロイドシリ
コンゾルの内少なくとも1つのコロイドゾルを含むコロ
イドゾルを、少なくとも金属鉄を成分とする粉体に浸潤
させ、粉体粒子の表面にコロイドの薄層を形成させた粉
体を圧粉成型したものを、鉄の融点の少なくとも2分の
1以上の温度で焼結したことを特長とする請求項1に記
載の磁性材料.
8. The colloidal sol according to claim 7, which is colloidal silica sol, colloidal titanium oxide sol, colloidal phosphorus sol, colloidal alumina sol, colloidal boron oxide sol, colloidal iron oxide sol, colloidal ferrite sol, colloidal iron sol, colloidal nickel. Surface of powder particles by infiltrating a colloidal sol containing at least one of sol, colloidal cobalt sol, colloidal molybdenum sol, colloidal chrome sol, colloidal aluminum sol, and colloidal silicon sol into powder containing at least metallic iron as a component. The magnetic material according to claim 1, wherein a powder obtained by compacting a powder in which a thin layer of colloid is formed is sintered at a temperature of at least ½ of the melting point of iron.
【請求項9】 請求項1に記載の少なくとも金属鉄を成
分とする多結晶体は、純鉄、けい素含有鉄、センダス
ト、クロム含有鉄、パーマロイ、モリブデンパーマロイ
の内少なくとも1つであることを特長とする請求項1に
記載の磁性材料.
9. The polycrystalline body containing at least metallic iron as a component according to claim 1, is at least one of pure iron, silicon-containing iron, sendust, chromium-containing iron, permalloy, and molybdenum permalloy. The magnetic material according to claim 1, which is characterized.
【請求項10】 請求項1に記載の焼結は、炉に入れて
焼結するか又は公知の放電焼結であることを特長とする
請求項1に記載の磁性材料.
10. The magnetic material according to claim 1, wherein the sintering according to claim 1 is performed by placing it in a furnace for sintering or by known discharge sintering.
【請求項11】 請求項1に記載の高固有抵抗物質は、
同じく記載の多結晶体粒子の表面を酸化、窒化、弗化、
塩化、臭化、よう化の内少なくとも1つの化合物を作る
ように処理して高固有抵抗物質の薄層を作るようにした
ことを特長とする請求項1に記載の磁性材料.
11. The high specific resistance material according to claim 1,
Similarly, the surface of the polycrystalline particles described above is oxidized, nitrided, fluorinated,
2. The magnetic material according to claim 1, wherein the magnetic material is treated so as to form at least one of chloride, bromide and iodide so as to form a thin layer of a high resistivity material.
JP4103443A 1992-03-11 1992-03-11 Magnetic material and manufacturing method thereof Pending JPH05258934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4103443A JPH05258934A (en) 1992-03-11 1992-03-11 Magnetic material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4103443A JPH05258934A (en) 1992-03-11 1992-03-11 Magnetic material and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPH05258934A true JPH05258934A (en) 1993-10-08

Family

ID=14354180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4103443A Pending JPH05258934A (en) 1992-03-11 1992-03-11 Magnetic material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH05258934A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6134079A (en) * 1997-09-17 2000-10-17 Fujitsu Limited Magnetic head including a pole piece with soft magnetic particles dispersed therein and manufacturing method therefor
JP2001196217A (en) * 2000-01-17 2001-07-19 Sanshin:Kk Method of manufacturing dust core
JP2006049625A (en) * 2004-08-05 2006-02-16 Denso Corp Manufacturing method of soft magnetic material
WO2009060895A1 (en) 2007-11-07 2009-05-14 Mitsubishi Materials Pmg Corporation High-strength soft-magnetic composite material obtained by compaction/burning and process for producing the same
EP2248617A2 (en) 2005-01-25 2010-11-10 Diamet Corporation Iron powder coated with Mg-containing oxide film
JP2018206835A (en) * 2017-05-31 2018-12-27 Tdk株式会社 Soft magnetic alloy particle and electronic component

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6134079A (en) * 1997-09-17 2000-10-17 Fujitsu Limited Magnetic head including a pole piece with soft magnetic particles dispersed therein and manufacturing method therefor
JP2001196217A (en) * 2000-01-17 2001-07-19 Sanshin:Kk Method of manufacturing dust core
JP2006049625A (en) * 2004-08-05 2006-02-16 Denso Corp Manufacturing method of soft magnetic material
EP2248617A2 (en) 2005-01-25 2010-11-10 Diamet Corporation Iron powder coated with Mg-containing oxide film
EP2502689A2 (en) 2005-01-25 2012-09-26 Diamet Corporation Iron powder coated with Mg-containing oxide film
US8481178B2 (en) 2005-01-25 2013-07-09 Diamet Corporation Iron powder coated with Mg-containing oxide film
US9269481B2 (en) 2005-01-25 2016-02-23 Diamet Corporation Iron powder coated with Mg-containing oxide film
WO2009060895A1 (en) 2007-11-07 2009-05-14 Mitsubishi Materials Pmg Corporation High-strength soft-magnetic composite material obtained by compaction/burning and process for producing the same
JP2018206835A (en) * 2017-05-31 2018-12-27 Tdk株式会社 Soft magnetic alloy particle and electronic component

Similar Documents

Publication Publication Date Title
EP2680281B1 (en) Composite soft magnetic material having low magnetic strain and high magnetic flux density, method for producing same, and electromagnetic circuit component
EP1737002B1 (en) Soft magnetic material, powder magnetic core and process for producing the same
EP1710815B1 (en) Powder core and method of producing thereof
US5348800A (en) Composite soft magnetic material
EP0872856B1 (en) Magnetic core and method of manufacturing the same
KR101152042B1 (en) Powder magnetic core and production method thereof
JP2007019134A (en) Method of manufacturing composite magnetic material
EP1808242A1 (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDIZED FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL USING SAID POWDER
EP2219195A1 (en) High-strength soft-magnetic composite material obtained by compaction/burning and process for producing the same
JP4782058B2 (en) Manufacturing method of high strength soft magnetic composite compacted fired material and high strength soft magnetic composite compacted fired material
JP2007299871A (en) Manufacturing method of compound magnetic substance and compound magnetic substance obtained by using the same
JP2005113169A (en) Composite sintered magnetic material, its production method, and magnetic element obtained by using the composite sintered magnetic material
JP4903101B2 (en) High specific resistance and low loss composite soft magnetic material and manufacturing method thereof
JP7246456B2 (en) Alloy powder composition, compact, method for producing same, and inductor
JPH04226003A (en) Composite soft magnetic material and coated particles for composite soft magnetic material
JP4534523B2 (en) Method for producing composite sintered magnetic material
JP4115612B2 (en) Composite magnetic material and method for producing the same
JPH05258934A (en) Magnetic material and manufacturing method thereof
JP2009164317A (en) Method for manufacturing soft magnetism composite consolidated core
JP4166460B2 (en) Composite magnetic material, magnetic element using the same, and method of manufacturing the same
JP2016004813A (en) Soft magnetic member, reactor, powder for dust core, and method for manufacturing dust core
JP2006273673A (en) Mn-CO-Zn-BASED FERRITE AND ITS PRODUCING METHOD
JP7417830B2 (en) Manufacturing method of composite magnetic material
JPH0547541A (en) Manufacture of magnetic core
JP4701531B2 (en) Dust core