JPH0525884B2 - - Google Patents

Info

Publication number
JPH0525884B2
JPH0525884B2 JP57068826A JP6882682A JPH0525884B2 JP H0525884 B2 JPH0525884 B2 JP H0525884B2 JP 57068826 A JP57068826 A JP 57068826A JP 6882682 A JP6882682 A JP 6882682A JP H0525884 B2 JPH0525884 B2 JP H0525884B2
Authority
JP
Japan
Prior art keywords
polymerization
solution
aromatic vinyl
vinyl compound
maleic anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57068826A
Other languages
Japanese (ja)
Other versions
JPS58187410A (en
Inventor
Yoshikyo Miura
Hiroshi Kudome
Michihisa Takemura
Nagaro Ariga
Atsushi Hosoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP6882682A priority Critical patent/JPS58187410A/en
Publication of JPS58187410A publication Critical patent/JPS58187410A/en
Publication of JPH0525884B2 publication Critical patent/JPH0525884B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】 本発明は無水マレイン酸の含有率が3〜30重量
%なる、成形可能な芳香族ビニル・無水マレイン
酸系共重合体の改良された製造方法に関するもの
であり、その目的とする処は、無水マレイン酸分
子が高分子鎖中にランダムに分布されている、い
わゆるランダム共重合体を製造するさいに、スケ
ールの発生を防止させうるように改良された方法
を提供するにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for producing a moldable aromatic vinyl/maleic anhydride copolymer having a maleic anhydride content of 3 to 30% by weight. The object of the present invention is to provide an improved method for preventing the formation of scale in the production of so-called random copolymers in which maleic anhydride molecules are randomly distributed in polymer chains. It is in.

ポリスチレンやアクリロニトリル・ブタジエ
ン・スチレン共重合体樹脂(ABS)などの一般
のスチレン系樹脂は、成型性と機械的強度とのバ
ランスがとれている処から、成型材料として弱電
分野、工業用部品、家庭用機器および一般用雑貨
などの各方面に使用されているが、これらの樹脂
には共通して、耐熱温度が100℃以下と極めて低
いという大きな欠点があるために、耐熱性の要求
される分野には使用できなく、この種のスチレン
系樹脂の耐熱性向上が強く要望されている。
General styrene resins such as polystyrene and acrylonitrile-butadiene-styrene copolymer resin (ABS) have a good balance between moldability and mechanical strength, so they are used as molding materials in the light electrical field, industrial parts, and household use. These resins are used in various fields such as industrial equipment and general miscellaneous goods, but they have a major drawback in common: their heat resistance is extremely low, below 100°C, so they are not suitable for fields that require heat resistance. Therefore, there is a strong desire to improve the heat resistance of this type of styrenic resin.

こうした要求に沿つて、スチレンに代表される
芳香族ビニル化合物に少量(3〜30重量%)の無
水マレイン酸を共重合させるという方法が提案さ
れるに及んで、100℃以上という耐熱温度の向上
が果され、しかもガラス繊維などの無機質との接
着性を向上させることもでき、従来のスチレン系
樹脂の欠点を補い合つて、応用範囲も大幅に拡大
されることが期待されている。
In line with these demands, a method was proposed in which a small amount (3 to 30% by weight) of maleic anhydride was copolymerized with an aromatic vinyl compound represented by styrene, and the heat resistance was improved to over 100℃. Furthermore, it is possible to improve the adhesion with inorganic materials such as glass fibers, and it is expected that the range of applications will be greatly expanded by compensating for the shortcomings of conventional styrene-based resins.

しかしながら、良く知られているように、この
種の芳香族ビニル化合物と無水マレイン酸との共
重合反応では、両者が1:1なる交互に結合され
た形の、いわゆる交互共重合体が生成し易いもの
であり、本発明の目的の一つである、少量の無水
マレイン酸とのランダム共重合体を得ることは、
次に述べる如く、多くの問題があり、技術的に容
易なことではない。
However, as is well known, in the copolymerization reaction of this type of aromatic vinyl compound and maleic anhydride, a so-called alternating copolymer is produced in which the two are bonded alternately in a 1:1 ratio. It is easy to obtain a random copolymer with a small amount of maleic anhydride, which is one of the objectives of the present invention.
As described below, there are many problems and it is not technically easy.

すなわち、たとえば90重量%のスチレン(以
下、Stと略記することもある。)と10重量%の無
水マレイン酸(以下、MAと略記することもあ
る。)とを重合槽に仕込んで加熱撹拌下に回分重
合を行つた処が、重合反応の初期にはMAが約50
重量%でStも約50重量%という交互共重合体が生
成されるものの、MAが消失したのちはスチレン
のホモ・ポリマーだけが生成するために、均一組
成の共重合体は得られなく、このような樹脂は品
質が悪くて成形材料には到底適さないものであ
る。
That is, for example, 90% by weight of styrene (hereinafter sometimes abbreviated as St) and 10% by weight of maleic anhydride (hereinafter sometimes abbreviated as MA) are charged into a polymerization tank and heated and stirred. When batch polymerization was carried out, MA was approximately 50 at the beginning of the polymerization reaction.
Although an alternating copolymer with St of about 50% by weight is produced, after MA disappears, only a homopolymer of styrene is produced, so a copolymer with a uniform composition cannot be obtained; Such resins are of poor quality and are completely unsuitable as molding materials.

ところで、この共重合反応について理論的に説
明することにすると、末端にスチレン・ラジカル
を有するポリマー・ラジカルが、MAと反応する
速度に対する、該ラジカルがスチレンと反応する
速度の比をr1とし、末端に無水マレイン酸ラジカ
ルを有するポリマー・ラジカルが、スチレンと反
応する速度に対する、MAと反応する速度の比を
r2とするならば、Mayoらにより明らかにされて
いるように、未反応単量体混合物中におけるMA
のモル分率xと、瞬間的に生成する共重合体中の
MAのモル分率yとの間には次式の如き関係が成
り立つ。
By the way, to explain this copolymerization reaction theoretically, the ratio of the rate at which a polymer radical having a styrene radical at its end reacts with MA to the rate at which the radical reacts with styrene is defined as r1 , Calculate the ratio of the rate at which polymer radicals with maleic anhydride radicals at their ends react with MA to the rate at which they react with styrene.
If r 2 , MA in the unreacted monomer mixture as revealed by Mayo et al.
molar fraction x in the instantaneously formed copolymer
The following relationship holds true between the molar fraction y of MA and y.

y=(r2−1)x2+x/(r1+r2−2)x2+2(1−
r1)x+r1 ……〔〕 ここで、T.Alfreyらにより求められたそれぞ
れ上記の反応性比は r1=0.042 r2=0 であるから〔J.Am.Chem.soc.67、2044(1945)〕、
単量体総量中におけるMAの使用率が10モル%の
ときの瞬間生成共重合体中のMA含有率は〔〕
式から42モル%と計算され、交互共重合体に近い
ことが判る。
y=( r2-1 ) x2 +x/( r1 + r2-2 )x2 + 2(1-
r 1 ) x + r 1 ... [] Here, since the above reactivity ratios determined by T. Alfrey et al. are r 1 = 0.042 r 2 = 0 [J.Am.Chem.soc. 67 , 2044 (1945)],
When the usage rate of MA in the total amount of monomers is 10 mol%, the MA content in the instantly generated copolymer is []
From the formula, it is calculated to be 42 mol%, which indicates that it is close to an alternating copolymer.

また、MA10モル%の共重合体を得るための単
量体組成は、同様に〔〕式から0.5モル%であ
ることが算出される。
Furthermore, the monomer composition for obtaining a copolymer containing 10 mol % of MA is similarly calculated to be 0.5 mol % from the formula [ ].

つまり、MAを極めて低い濃度に維持しなけれ
ば、成形材料に適するような3〜30重量%なる低
MA含有率の共重合体は得られなく、したがつて
全反応時間を通じて、重合槽中に常に少量の未反
応のMAが存在するように反応系を制御して始め
て目的とするランダム共重合体が得られるという
理屈になろう。
This means that MA must be maintained at extremely low concentrations to reach levels as low as 3-30% by weight, which is suitable for molding materials.
A copolymer with a high MA content cannot be obtained, therefore, the desired random copolymer must be obtained by controlling the reaction system so that a small amount of unreacted MA is always present in the polymerization tank throughout the entire reaction time. The theory is that we can obtain

このように、MA含有率が比較的低く、しかも
このMAが共重合体に均一に分散された成形材料
に適した共重合体を溶液重合法あるいは塊状重合
法で製造する場合には、MAの消費速度が芳香族
ビニル化合物のそれに比して非常に大きい処か
ら、連続的ないしは断続的にMAを反応系に加え
ていく必要があるが、米国特許第2971939号明細
書には、このことが開示されている。
In this way, when producing a copolymer suitable for molding materials with a relatively low MA content and MA uniformly dispersed in the copolymer, it is necessary to use a solution polymerization method or bulk polymerization method. Since the consumption rate is much higher than that of aromatic vinyl compounds, it is necessary to continuously or intermittently add MA to the reaction system, but US Pat. No. 2,971,939 describes this point. Disclosed.

しかしながら、本発明者らが追試した結果で
は、かかる方法にも幾つかの技術的難点ないしは
欠点があることが判明した。
However, as a result of additional tests conducted by the present inventors, it has been found that this method also has some technical difficulties or drawbacks.

すなわち、同明細書の記載に従い、Stに対して
MAを連続的あるいは断続的に供給する半回分式
重合実験、および撹拌機付重合槽にStとMAとを
連続的に供給する多槽連続重合実験を試みたが、
品質の上では満足すべきポリマーが得られるもの
の、いずれの場合においても、反応槽壁および撹
拌翼へのスケールの付着は避けられなかつた。
In other words, according to the statement in the specification, against St.
We attempted a semi-batch polymerization experiment in which MA was supplied continuously or intermittently, and a multi-vessel continuous polymerization experiment in which St and MA were continuously supplied in a polymerization tank equipped with a stirrer.
Although polymers with satisfactory quality were obtained, in all cases, scale adhesion to the reaction tank walls and stirring blades was unavoidable.

ところで、こうしたスケールの付着は重合熱の
効率的な除去を妨げるだけでなく、重合の時間が
経過するにつれて付着量が増大し、最悪の場合に
は反応槽内に落下して来て、たとえば流通式連続
重合法においては、そうした落下付着物が、プロ
セス中の配管や流通用ポンプなどを閉塞させると
いつた操業上、重大なトラブルとなるものであ
り、したがつて定期、不定期に運転を中断し、中
止して、かかるスケールの除去をせねばならぬこ
とになるが、元々かかるスケールは溶媒には不溶
である処から、機械的な除去が必要となるなど、
その損失たるや莫大なものとなる。
Incidentally, such scale adhesion not only hinders the efficient removal of polymerization heat, but also increases in amount as the polymerization time passes, and in the worst case, it may fall into the reaction tank, causing problems such as distribution. In the continuous polymerization method, such falling deposits cause serious operational troubles such as clogging piping and distribution pumps during the process, and therefore, regular and irregular operations are required. This means that the process must be stopped and discontinued to remove such scale, but since such scale is originally insoluble in solvents, mechanical removal is required.
The loss would be enormous.

しかるに、本発明者らは上述した如き従来技術
の欠点の存在に鑑みて鋭意研究した結果、連続的
ないしは断続的に反応槽に供給されるMAに加え
て、重合禁止剤もしくは重合抑制剤をも少量供給
せしめた処、驚くべきことに、上記の如きスケー
ルの発生を実質的に防止しうることを見出すに及
んで、本発明を完成させるに到つた。
However, as a result of intensive research in view of the above-mentioned drawbacks of the prior art, the present inventors have discovered that in addition to MA that is continuously or intermittently supplied to the reaction tank, a polymerization inhibitor or polymerization inhibitor is also added. Surprisingly, the present invention was completed by discovering that the above-mentioned scale formation could be substantially prevented by supplying a small amount.

すなわち、本発明はStおよびビニルトルエンな
らびに他のスチレン誘導体の如き芳香族ビニル化
合物aを撹拌下に60〜170℃に加熱し、MAまた
はその溶液bと、このMAまたはその溶液bに対
して0.003〜0.05重量%の重合禁止剤もしくは抑
制剤cとを連続的ないしは断続的に供給しつつ溶
液重合ないし塊状重合させ、次いで未反応の単量
体および揮発分を減圧下に除去せしめることを特
徴とする、MAの含有率が3〜30重量%なる範囲
にある成形可能な芳香族ビニル・無水マレイン酸
系共重合体の製造方法を提供するものである。
That is, in the present invention, St and an aromatic vinyl compound a such as vinyltoluene and other styrene derivatives are heated to 60 to 170° C. with stirring, and mixed with MA or a solution b of 0.003 to this MA or a solution b. Solution polymerization or bulk polymerization is carried out while continuously or intermittently supplying ~0.05% by weight of a polymerization inhibitor or inhibitor c, and then unreacted monomers and volatile components are removed under reduced pressure. The present invention provides a method for producing a moldable aromatic vinyl/maleic anhydride copolymer having an MA content of 3 to 30% by weight.

ここにおいて、前記重合禁止剤cとは、前記し
たそれぞれ芳香族ビニル化合物aとMAとのラジ
カル重合反応が開始されるまでの誘導期間を延長
させるためのものであり、他方、前記重合抑制剤
cとは、かかる重合反応の速度を減少させるため
のものであるが、生成ポリマーの分子量を低下さ
せることがない点で、重合禁止剤の使用が好まし
い。
Here, the polymerization inhibitor c is for extending the induction period until the radical polymerization reaction between the aromatic vinyl compound a and MA starts, and on the other hand, the polymerization inhibitor c The purpose of this is to reduce the rate of such polymerization reaction, but it is preferable to use a polymerization inhibitor because it does not reduce the molecular weight of the produced polymer.

代表的な重合禁止剤ないしは抑制剤cとしては
ニトロ、ニトロソ、キノイド、ヒドロキシまたは
アミノ基を含む物質で、このうち特に有用なもの
はハイドロキノン類およびアミノフエノール類で
あるが、何といつてもt−ブチルカテコール(以
下、TBCと略記する。)の効果が特に大である。
Typical polymerization inhibitors or inhibitors (c) include substances containing nitro, nitroso, quinoid, hydroxy or amino groups, among which particularly useful are hydroquinones and aminophenols, but above all t- Butylcatechol (hereinafter abbreviated as TBC) is particularly effective.

また、これら重合禁止剤もしくは抑制剤cのポ
リマー溶液への供給方法としては、MAまたはそ
れを含む溶液bに予め混合したのち、それをポリ
マー溶液に供給する仕方でもよいし、あるいは
MAまたはその溶液bとは別々にポリマー溶液に
供給する仕方でもよく、該剤cの供給量として
は、重合反応槽の構造または重合条件などによつ
ても最適範囲は異なるけれども、反応中ずつと供
給されるMAまたはその溶液bの重量を基準とし
て0.003〜0.05重量%が適当である。これらの供
給量が0.003重量%未満の場合には、スケールの
付着防止の効果が認められなくなるし、逆に、
0.05重量%を越える場合には、重合速度自体を低
下させ、結局の処、目的とする共重合体の分子量
を低下せしめたり、色相を悪化せしめる原因とも
なるので、いずれも好ましくない。
Further, as a method of supplying these polymerization inhibitors or inhibitors c to the polymer solution, it is possible to mix the polymerization inhibitor or inhibitor c in advance with MA or a solution b containing it and then supply it to the polymer solution, or
The agent c may be supplied to the polymer solution separately from MA or its solution b, and the optimal range of the supply amount of the agent c varies depending on the structure of the polymerization reaction tank and polymerization conditions, but A suitable amount is 0.003 to 0.05% by weight based on the weight of MA or its solution b to be supplied. If the amount of these supplies is less than 0.003% by weight, the effect of preventing scale adhesion will not be recognized, and conversely,
If it exceeds 0.05% by weight, the polymerization rate itself will be lowered, resulting in a decrease in the molecular weight of the desired copolymer and a worsening of the hue, which is not preferable.

こうした関係を具体的に説明するならば、当該
重合禁止剤cとして約0.0012重量%のTBCが混
入されている原料StにMAを溶解せしめ、この
MA−St溶液を供給液として用いてMA−St共重
合体を製造した処、著しくスケールの発生が見ら
れたが(比較例1)、該MA−St溶液に対して新
にその濃度が0.01重量%になるように添加し、こ
の溶液を供給液として用いてMA−St共重合体を
製造した処、スケールの発生は認められなかつた
(実施例1)。
To explain this relationship concretely, MA is dissolved in the raw material St containing approximately 0.0012% by weight of TBC as the polymerization inhibitor c, and this
When an MA-St copolymer was produced using an MA-St solution as a feed solution, significant scale formation was observed (Comparative Example 1); When MA-St copolymer was produced using this solution as a feed solution, no scale was observed (Example 1).

このように、新な重合禁止剤cのMA供給液へ
の添加はスケールの発生を防止し、各装置類への
付着を防止する上で、顕著な効果のあることが理
解されよう。
As described above, it can be seen that the addition of the new polymerization inhibitor c to the MA supply solution has a remarkable effect in preventing scale formation and adhesion to various devices.

他方、前記MAを含む溶液bとはこのMAbを、
該MAbが溶解可能な溶媒に溶解させたものであ
り、かかる溶媒として代表的なものには、本発明
方法の実施に当つて単量体の一つとして用いられ
る前記芳香族ビニル化合物a自体であり、もしく
はその他の各種芳香族化合物であり、あるいはエ
ステル類、ケトン類または有機ハロゲン化物など
があり、当該溶液bの中のMA濃度は溶媒の種類
や目的とする製品の品質ないしは品質などによつ
ても異なるが、通常は5〜30重量%とするのが適
当である。
On the other hand, the solution b containing MA is this MAb,
The MAb is dissolved in a solvent in which the MAb can be dissolved, and typical examples include the aromatic vinyl compound a itself used as one of the monomers in carrying out the method of the present invention. The MA concentration in the solution b depends on the type of solvent and the quality of the intended product. Although the amount varies, it is usually appropriate to set it at 5 to 30% by weight.

また、前記芳香族ビニル化合物aとはスチレ
ン、α−メチルスチレン、クロロスチレン、ジク
ロロスチレン、ブロモスチレンもしくはビニルト
ルエンまたはこれらの混合物である。また、当該
化合物aの50重量%の範囲で当該化合物aに前記
MAbと共重合可能な他のビニル化合物を併用で
き、かかる化合物として代表的なものにはメチル
(メタ)アクリレート、エチル(メタ)アクリレ
ート、(メタ)アクリロニトリル、(メタ)アクリ
ルアミドまたはメチルロール(メタ)アクリルア
ミドなどがある。
Further, the aromatic vinyl compound a is styrene, α-methylstyrene, chlorostyrene, dichlorostyrene, bromostyrene, vinyltoluene, or a mixture thereof. In addition, the above compound a may be added to the compound a within a range of 50% by weight of the compound a.
Other vinyl compounds that can be copolymerized with MAb can be used in combination; typical such compounds include methyl (meth)acrylate, ethyl (meth)acrylate, (meth)acrylonitrile, (meth)acrylamide or methylol (meth) Examples include acrylamide.

さらに、本発明方法によつて得られる共重合体
の耐衝撃性を向上せしめる目的で、たとえば特公
昭55−7849号公報にも開示されているように、ゴ
ム状物質の存在下に、以上に記載された如き芳香
族ビニル化合物aおよびMAないしはこのMAを
含む溶液bをはじめとする各種の単量体を共重合
させて耐衝撃性樹脂として得てもよいことは勿論
であり、かかるゴム状物質として代表的なものに
は、ポリブタジエン、ブタジエンとStとのゴム状
共重合体またはこれらの混合物があるが、これら
は予め前記芳香族ビニル化合物a、あるいは該化
合物aとさらに前記MAbと共重合可能な他のビ
ニル化合物との混合物に予め溶解させて用いるこ
とができる。
Furthermore, in order to improve the impact resistance of the copolymer obtained by the method of the present invention, as disclosed in Japanese Patent Publication No. 55-7849, in the presence of a rubbery substance, the above-mentioned It goes without saying that an impact-resistant resin may be obtained by copolymerizing various monomers including the aromatic vinyl compound a and MA or a solution b containing this MA, and such rubber-like Typical substances include polybutadiene, a rubbery copolymer of butadiene and St, or a mixture thereof, which is prepared by copolymerizing the aromatic vinyl compound a, or the compound a and the MAb in advance. It can be used by pre-dissolving it in a mixture with other possible vinyl compounds.

なお、上記した特公昭55−7849号公報に記載さ
れた発明の場合にも、芳香族ビニル化合物とMA
との交互共重合反応に基づくスケールの発生を伴
うものであるが、本発明方法に従えば、こうした
耐衝撃性樹脂を得る場合でも、スケールの発生の
問題は見事に解決される。
In addition, in the case of the invention described in the above-mentioned Japanese Patent Publication No. 55-7849, aromatic vinyl compounds and MA
However, according to the method of the present invention, the problem of scale generation is successfully solved even when such impact-resistant resins are obtained.

ここで、前記したポリマー溶液とは主として前
記芳香族ビニル化合物aおよびそのポリマーを含
む溶液を指称するもので、本発明方法により得ら
れる目的物たる芳香族ビニル化合物・無水マレイ
ン酸系共重合体とは区別して用いられるべきであ
る。
Here, the above-mentioned polymer solution mainly refers to a solution containing the aromatic vinyl compound a and its polymer, and the aromatic vinyl compound/maleic anhydride copolymer which is the target product obtained by the method of the present invention. should be used separately.

本発明方法を実施するには、一般に60〜170℃、
好ましくは70〜140℃なる温度範囲での熱重合反
応を行えばよいが、そのさい遊離基(ラジカル)
発生性重合開始剤として、公知慣用の、単量体に
可溶のパーオキシまたはパーアゾ化合物などを、
単量体の総量に対して0.001〜1.0重量%なる範囲
で添加して反応速度を促進させるのが有利であ
る。
To carry out the method of the invention, generally 60-170°C;
Preferably, the thermal polymerization reaction may be carried out at a temperature range of 70 to 140°C, but free radicals
As the generating polymerization initiator, known and commonly used peroxy or perazo compounds that are soluble in the monomer, etc.
Advantageously, it is added in an amount of 0.001 to 1.0% by weight, based on the total amount of monomers, to accelerate the reaction rate.

かくして、本発明方法の適用によりスケールの
発生ないしは付着が防止される理由は未だに明ら
かではないが、MAまたはMA溶液bと共に、重
合禁止剤ないしは抑制剤cをポリマー溶液に供給
した場合には、この供給されたMAが反応液と完
全に混合されるまでの間にできる、部分的にMA
濃度の高い部分での溶液重合ないし塊状重合が抑
制されるためであろうと考えられるし、ひいては
溶液重合ないし塊状重合に供される各種の単量体
または溶媒に不溶性の、MA含有率の高い共重合
体ないしは交互共重合体の生成が抑制され、その
結果、反応槽内でのスケールの付着が防止される
ものと推測される。
Thus, the reason why scale generation or adhesion is prevented by applying the method of the present invention is still not clear, but when a polymerization inhibitor or inhibitor c is supplied to the polymer solution together with MA or MA solution b, this Partial MA is formed before the supplied MA is completely mixed with the reaction solution.
This is thought to be due to the suppression of solution polymerization or bulk polymerization in areas with high concentrations, and this may be due to the fact that various monomers used for solution polymerization or bulk polymerization or polymers with a high MA content that are insoluble in the solvent It is presumed that the formation of polymers or alternating copolymers is suppressed, and as a result, scale adhesion within the reaction tank is prevented.

本発明方法を実施するに当つてはまた、前記ポ
リマー溶液の粘度が或程度以上に達したのちに、
前記重合禁止剤ないしは抑制剤cを供給せしめる
ことが、特にスケールの生成防止に効果あらしめ
るものであり、通常、重量平均分子量(Mw)が
10万以上なる成形可能なSt−MA共重合体の場合
には、当該粘度(ブルツク・フイールド法により
測定)が約50ポイズ以上となつた時点で供給する
のがよい。
In carrying out the method of the present invention, after the viscosity of the polymer solution reaches a certain level,
Supplying the polymerization inhibitor or inhibitor c is particularly effective in preventing scale formation, and usually the weight average molecular weight (Mw) is
In the case of a moldable St-MA copolymer having a molecular weight of 100,000 or more, it is preferable to supply the product when the viscosity (measured by the Bruck-Field method) reaches about 50 poise or more.

かかる粘度と本発明方法の特長との関係を更に
評説すれば、本発明方法を実施するにさいして
も、従来における溶液重合ないしは塊状重合反応
における場合と同様に重合反応が進行して、重合
反応槽内における重合体濃度が高くなるにつれて
粘度も上昇し、連続的ないしは断続的に供給され
るMA溶液を混合せしめることが次第に困難にな
る。
To further review the relationship between such viscosity and the features of the method of the present invention, when carrying out the method of the present invention, the polymerization reaction proceeds in the same manner as in conventional solution polymerization or bulk polymerization reactions, and polymerization does not occur. As the polymer concentration in the reaction vessel increases, the viscosity also increases, making it increasingly difficult to mix the continuously or intermittently supplied MA solution.

たとえば、Mwが約24万なる生成共重合体中の
MA含有率が約9重量%のSt−MA共重合体を製
造する場合、重合率が約40%となるまでは粘度が
50ポイズ以下であるから、連続的ないしは断続的
に供給されるMA溶液bには、もはや重合禁止剤
ないしは抑制剤cを添加しなくても、すなわち本
発明の如き方法を適用するまでもなく、比較的容
易にこのMA溶液の混合を行うことができるし、
しかもスケールの発生を伴うこともなく一応の共
重合体を得ることも可能ではある。
For example, in the produced copolymer with Mw of about 240,000,
When producing a St-MA copolymer with an MA content of approximately 9% by weight, the viscosity decreases until the polymerization rate reaches approximately 40%.
Since it is 50 poise or less, there is no need to add a polymerization inhibitor or inhibitor c to MA solution b that is continuously or intermittently supplied, that is, there is no need to apply the method of the present invention. This MA solution can be mixed relatively easily,
Moreover, it is also possible to obtain a copolymer to a certain extent without the generation of scale.

とはいうものの、このような低重合率で重合反
応を停止させ、未反応単量体、溶媒その他の揮発
分を減圧下に除去せしめるという方法は、著しく
生産性も低く、揮発分の回収のための費用も余分
にかかつて工業的に不利であるから、どうしても
重合率が40〜90%となるまでは勿論のこと、90%
以上となるまで重合反応を行わしめることが望ま
しいわけではあるが、そのようにすれば重合槽内
のポリマー溶液の粘度が非常に高まるために、低
粘度のMA溶液との混合が困難となつて、MA濃
度の高い部分で(のみ専ら)交互共重合体が発生
することになるし、かといつて、従来の方法では
スケールが発生し易いことという技術的矛盾があ
る。
However, the method of stopping the polymerization reaction at such a low polymerization rate and removing unreacted monomers, solvents, and other volatile components under reduced pressure has extremely low productivity and makes it difficult to recover volatile components. Since the cost of polymerization is extra and industrially disadvantageous, it is necessary to increase the polymerization rate until the polymerization rate reaches 40 to 90%, let alone 90%.
Although it is desirable to carry out the polymerization reaction until the above is reached, if this is done, the viscosity of the polymer solution in the polymerization tank will increase significantly, making it difficult to mix it with the low-viscosity MA solution. However, there is a technical contradiction in that alternating copolymers are generated (only) in areas with a high MA concentration, and on the other hand, scale is likely to occur in the conventional method.

そこで、ポリマー溶液の粘度が50ポイズ以上な
る領域において本発明方法を採用すれば、以上に
記述した如き本発明方法の効果が顕著なものとな
り、スケールの発生ないしは付着を防止すること
もできるし、加えて重合禁止剤ないしは抑制剤の
添加量をも節減することができる。
Therefore, if the method of the present invention is adopted in a region where the viscosity of the polymer solution is 50 poise or more, the effects of the method of the present invention as described above will be remarkable, and the generation or adhesion of scale can be prevented. In addition, the amount of polymerization inhibitor or inhibitor added can also be reduced.

かくて、本発明方法の特長は特殊な、あるいは
高価な装置を何ら必要とはせずに、スケールの発
生を防止できるということであり、MAがポリマ
ー鎖中に均一に、またはランダムに取り込まれた
品質のすぐれた成形用樹脂が得られることであ
る。
Thus, the feature of the method of the present invention is that it can prevent the formation of scale without requiring any special or expensive equipment, and MA can be incorporated uniformly or randomly into the polymer chain. A molding resin of excellent quality can be obtained.

次に、本発明を実施例および比較例により本発
明を具体的に説明するが、以下において%とある
のは重量%と意味するものとする。
Next, the present invention will be specifically explained with reference to Examples and Comparative Examples. In the following, % means weight %.

実施例 1 第1図に示すような撹拌機を備えた重合槽を三
槽を直列に並べ、第一重合槽から第二重合槽、そ
して第二重合槽から第三重合槽へと順次、反応液
を流して行き、各反応液にはその都度、MAおよ
びt−ブチルパーオキシ−2−エチルヘキサノエ
ート(以下、これをTBPEHと略記する。)を供
給しながら段階的にポリマー濃度を高めて行くと
いう、流通式連続重合装置を用い、各重合槽内の
温度は100℃に保ち、また各重合槽内の液量は2.5
に保つた。さらに、第一重合槽にはそれぞれ
MAが5.2%、およびTBCが0.0025%なる濃度で
両物質を含んだSt溶液が毎時552gの割合で、他
方、TBPEHの1%トルエン溶液が毎時31.5gの
割合で供給され、第二重合槽には副供給物とし
て、MAが14%、トルエンが40%、Stが46%およ
びTBCが0.01%なる組成比の溶液(以下、これ
を「副供給液(1)」と略記する。)が毎時116gの割
合で、他方、TBPEHの1%トルエン溶液(以
下、これを「副供給液(2)」と略記する。)が毎時
19gの割合で供給され、また第三重合槽には第二
の槽で用いたと同様の副供給液(1)および(2)がそれ
ぞれ毎時87gおよび8gの割合で供給されて、約
40時間に亘つて連続重合を行つた。このさい、第
二重合槽内の溶液粘度は約250ポイズ(ブルツ
ク・フイールド法:以下同様)であり、第三槽内
のそれは約800ポイズであつた。
Example 1 Three polymerization tanks equipped with an agitator as shown in Fig. 1 were arranged in series, and the polymerization tanks were sequentially moved from the first polymerization tank to the second polymerization tank, and from the second polymerization tank to the third polymerization tank. The reaction solution was allowed to flow, and the polymer concentration was gradually increased while supplying MA and t-butylperoxy-2-ethylhexanoate (hereinafter abbreviated as TBPEH) to each reaction solution. Using a flow-type continuous polymerization device, the temperature in each polymerization tank is kept at 100℃, and the liquid volume in each polymerization tank is kept at 2.5℃.
I kept it. Furthermore, each of the first polymerization tanks
A St solution containing both substances at a concentration of 5.2% MA and 0.0025% TBC was fed at a rate of 552 g/hour, while a 1% toluene solution of TBPEH was fed at a rate of 31.5 g/hour to the second polymerization tank. As a sub-feed, a solution with a composition ratio of 14% MA, 40% toluene, 46% St, and 0.01% TBC (hereinafter abbreviated as "sub-feed liquid (1)") is supplied every hour. On the other hand, a 1% toluene solution of TBPEH (hereinafter abbreviated as "sub-feed liquid (2)") was supplied at a rate of 116 g per hour.
The third polymerization tank was supplied with the same sub-feed liquids (1) and (2) as used in the second tank at a rate of 87 g and 8 g per hour, respectively.
Continuous polymerization was carried out over 40 hours. At this time, the viscosity of the solution in the second polymerization tank was about 250 poise (Burck-Field method: the same applies hereinafter), and that in the third tank was about 800 poise.

反応終了後に、各重合槽内における不溶性ポリ
マー(スケール)の存在について調べた処、スケ
ールの付着は全く認められなかつた。
After the reaction was completed, each polymerization tank was examined for the presence of insoluble polymer (scale), and no scale was observed at all.

第三重合槽より取り出された共重合体溶液を脱
溶媒装置に移し、未反応モノマーおよび不揮発分
を減圧下に除去して目的とする芳香族ビニル化合
物・無水マレイン酸系共重合体を得た。
The copolymer solution taken out from the third polymerization tank is transferred to a solvent removal device, and unreacted monomers and nonvolatile components are removed under reduced pressure to obtain the desired aromatic vinyl compound/maleic anhydride copolymer. Ta.

次いで、これを粉砕し射出成形して試験片を作
製した。
Next, this was crushed and injection molded to prepare a test piece.

この試験片について各種の物性試験を行つた結
果、引張強さは576Kg/cm2でビカツト軟化温度は
122℃であつた。
As a result of performing various physical property tests on this test piece, the tensile strength was 576Kg/ cm2 , and the Vikatsu softening temperature was 576Kg/cm2.
It was 122℃.

比較例 1 第一重合槽には、新なTBCの添加は一切行つ
ていない、MA濃度が5.1%なるスチレン溶液お
よびTBPEH濃度が1%なるトルエン溶液をそれ
ぞれ毎時565gおよび22gなる割合で、第二およ
び三重合槽には、TBCの新な添加を一切欠如し
た以外は実施例1と同様の副供給液(1′)と、副
供給液(2)とをそれぞれ、ただし第二槽に対しては
毎時146gと12gとの割合で、第三槽に対しては
毎時87gと5.5gとの割合で供給させるようにし、
かつ、重合時間を12時間に変更させた以外は、実
施例1と同様の操作を繰り返して、比較対照用の
共重合体を得た。
Comparative Example 1 In the first polymerization tank, a styrene solution with an MA concentration of 5.1% and a toluene solution with a TBPEH concentration of 1% were added to the first polymerization tank at a rate of 565 g and 22 g per hour, respectively. The second and third polymerization vessels were supplied with sub-feed liquid (1') and sub-feed liquid (2), respectively, which were the same as in Example 1 except for the lack of any new addition of TBC, but for the second tank. The third tank is supplied at a rate of 146g and 12g per hour, and the third tank is supplied at a rate of 87g and 5.5g per hour.
A copolymer for comparison was obtained by repeating the same operation as in Example 1, except that the polymerization time was changed to 12 hours.

本例の場合には連続重合開始後、直ちに第二お
よび三槽内にスケールの付着が認められ、その付
着量も徐々に増大されて行き、この重合開始後12
時間にして、このスケールが剥離するという現象
がみられ、結局は第二槽と第三槽との間にある配
管にスケールが詰り、遂に配管は閉塞してしまつ
た。
In the case of this example, scale adhesion was observed in the second and third tanks immediately after the start of continuous polymerization, and the amount of scale adhesion gradually increased.
A phenomenon in which this scale peeled off was observed over time, and eventually the pipe between the second tank and the third tank was clogged with scale, and the pipe was finally blocked.

なお、本例の場合における第二槽内の液粘度は
約550ポイズで、第三槽内のそれは約2200ポイズ
であつた。
In this example, the liquid viscosity in the second tank was about 550 poise, and that in the third tank was about 2200 poise.

かくて、得られた共重合体について実施例1と
同様に処理し、同様の物性試験を行つた結果、引
張強さは567Kg/cm2でビカツト軟化温度は118℃で
あつた。
The thus obtained copolymer was treated in the same manner as in Example 1 and subjected to the same physical property tests. As a result, the tensile strength was 567 Kg/cm 2 and the Vicat softening temperature was 118°C.

実施例 2 ヘリカル・リボン型撹拌機を備えた2の反応
器に、Stに694g、MAの5.6gおよびTBPEHの
0.0315gを仕込み、撹拌機の回転数を毎分60と
し、反応器内温度を100℃に保持して、MAが20
%、TBCが0.01%なる濃度のSt溶液(以下、こ
れを(3)液という。)およびTBPEHが1%、TBC
が0.01%なる濃度のSt溶液(以下、これを(4)液と
いう。)を下記の速度で連続的に供給しながら8
時間反応させた。(3)液の供給速度は供給開始時で
毎時63g、8時間後には毎時141gとなるよう毎
時漸増させ、他方、(4)液のそれは開始時で毎時
4.4g、8時間後で毎時6.6gとなるように毎時漸
増させた。
Example 2 In two reactors equipped with a helical ribbon stirrer, 694 g of St, 5.6 g of MA and TBPEH were charged.
0.0315g was charged, the rotation speed of the stirrer was set to 60 per minute, the temperature inside the reactor was maintained at 100℃, and the MA was 20.
%, TBC at a concentration of 0.01% (hereinafter referred to as solution (3)) and TBPEH at a concentration of 1%, TBC
While continuously supplying St solution with a concentration of 0.01% (hereinafter referred to as (4) solution) at the following rate,
Allowed time to react. (3) The liquid supply rate was 63 g/hour at the beginning of the supply and gradually increased to 141 g/hour after 8 hours, while (4) the liquid supply rate was 63 g/hour at the start.
The dose was 4.4 g, and the dose was gradually increased to 6.6 g/hour after 8 hours.

その結果、反応開始6時間後の反応液の粘度は
約100ポイズであり、8時間後の粘度は約1000ポ
イズであつた。
As a result, the viscosity of the reaction solution 6 hours after the start of the reaction was about 100 poise, and the viscosity after 8 hours was about 1000 poise.

反応終了後の反応器および撹拌翼には不溶性ス
ケールの付着は何ら認められなかつた。
No insoluble scale was observed on the reactor or stirring blade after the reaction was completed.

なお、かくして得られた共重合体中には実質的
に均一な組成で、約20%のMAが含有されてい
た。
The copolymer thus obtained had a substantially uniform composition and contained about 20% MA.

比較例 2 新なTBCの添加を一切行わないように、かつ、
実施例2における重合速度および得られる共重合
体中のMA含有率と同程度となすべく、(3′)液
の供給速度を供給開始時には毎時5.7g、8時間
後には毎時106gとなるように毎時漸増させるが、
(4′)液のそれは反応の全期間を通じて毎時5g
とした以外は、実施例2と同様にして行つた処、
反応終了後の反応器および撹拌翼には約2gの不
溶性スケールの付着が認められた。
Comparative Example 2 No new TBC was added, and
In order to keep the polymerization rate and the MA content in the resulting copolymer similar to those in Example 2, the supply rate of the (3') solution was set to 5.7 g/hour at the start of supply and 106 g/hour after 8 hours. Gradually increase every hour,
(4') that of the liquid is 5 g per hour during the entire period of the reaction.
The procedure was carried out in the same manner as in Example 2, except that
Approximately 2 g of insoluble scale was observed on the reactor and stirring blade after the reaction was completed.

なお、上記(3′)液および(4′)液はそれぞれ
実施例2の(3)液および(4)液からTBCを欠如させ
たものを指称するものである。
The above liquids (3') and (4') refer to liquids (3) and (4) of Example 2, respectively, in which TBC was omitted.

実施例 3 (3)液および(4)液のそれぞれのTBCに替えて同
濃度の4−ハイドロキシジフエニルアミンを用い
た以外は、実施例2と同様にして行つた処、反応
終了後の反応器および撹拌翼のいずれにも不溶性
スケールの付着は何ら認められなかつた。
Example 3 The same procedure as in Example 2 was carried out except that 4-hydroxydiphenylamine at the same concentration was used in place of TBC in each of liquids (3) and (4). No insoluble scale was observed on either the vessel or the stirring blade.

実施例 4 まず、400gのSt中に「ポリブタジエンNF55」
(旭化成工業(株)製品)の50.2g、MAの4.05g、
TBPEHの0.0375g、t−ドデシルメルカブタン
の0.18gおよびブチル化ハイドロキシトルエン
(BHT)の0.12gを溶解させて得られた溶液を、
ヘリカル・リボン型撹拌機付の1セパラブル・
フラスコに仕込み、撹拌機を毎分100回転で回転
させ、100℃に昇温させて、MAが17%、TBCが
0.02%なる濃度のSt溶液(以下、これを(5)液とい
う。)およびTBPEH濃度が0.14%なる溶液(以
下、これを(6)液という。)を下記の速度で連続的
に添加しながら、同温度で7時間反応させた。
Example 4 First, "polybutadiene NF55" was added to 400 g of St.
(Asahi Kasei Industries Co., Ltd. product) 50.2g, MA 4.05g,
A solution obtained by dissolving 0.0375 g of TBPEH, 0.18 g of t-dodecylmercabutane, and 0.12 g of butylated hydroxytoluene (BHT),
1 separable type with helical/ribbon type stirrer
Pour into a flask, rotate the stirrer at 100 revolutions per minute, raise the temperature to 100℃, and make 17% MA and 17% TBC.
While continuously adding a St solution with a concentration of 0.02% (hereinafter referred to as solution (5)) and a solution with a TBPEH concentration of 0.14% (hereinafter referred to as solution (6)) at the following rate. , and reacted at the same temperature for 7 hours.

(5)液の添加速度は添加の開始時には毎時52.8
g、7時間後には毎時55.7gとなるように毎時漸
増させるが、他方、(6)液のそれは開始時には毎時
26.1g、7時間後には毎時10.4gとなるように漸
次減少させた。
(5) The liquid addition rate is 52.8 per hour at the beginning of addition.
g, gradually increased hourly to 55.7 g/hour after 7 hours, while that of (6) liquid was increased hourly at the beginning.
The amount was gradually reduced to 26.1 g/hour and 10.4 g/hour after 7 hours.

反応終了後の反応器および撹拌機には不溶性ス
ケールの付着は何ら認められなかつた。
No insoluble scale was observed on the reactor or stirrer after the reaction was completed.

比較例 3 (5)液は新なTBCの添加を一切行わないように
変更させた以外は、実施例4と同様の操作を繰り
返した処、反応終了後において観察した結果、撹
拌機に約0.8gの不溶性スケールが付着していた。
Comparative Example 3 (5) The same operation as in Example 4 was repeated except that the liquid was changed so that no new TBC was added. As a result of observation after the reaction was completed, it was found that about 0.8 g of insoluble scale was attached.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施に用いられる流動式
連続重合装置の一例を示すフローチヤートであ
る。 図中、R1……第一重合槽、R2……第二重合槽、
R3……第三重合槽、P1,P2およびP3……ポンプ、
SD……脱溶媒装置、a……芳香族ビニル化合物、
b……無水マレイン酸またはそれを含む溶液、c
……重合禁止剤ないしは重合抑制剤、v……揮発
分。
FIG. 1 is a flowchart showing an example of a fluidized continuous polymerization apparatus used for carrying out the method of the present invention. In the figure, R1 ...first polymerization tank, R2 ...second polymerization tank,
R 3 ... Third polymerization tank, P 1 , P 2 and P 3 ... Pump,
SD...Desolvation device, a...Aromatic vinyl compound,
b...Maleic anhydride or a solution containing it, c
...Polymerization inhibitor or polymerization inhibitor, v...Volatile content.

Claims (1)

【特許請求の範囲】 1 芳香族ビニル化合物aを撹拌下に60〜170℃
に加熱し、無水マレイン酸またはそれを含む溶液
bと、上記の酸またはその溶液bに対して0.003
〜0.05重量%の重合禁止剤ないしは重合抑止剤c
とを連続的ないしは断続的に供給しつつ溶液重合
ないし塊状重合させ、次いで未反応の単量体およ
び揮発分を減圧下に除去せしめることを特徴とす
る、無水マレイン酸の含有率が3〜30重量%なる
範囲にある成形可能な芳香族ビニル・無水マレイ
ン酸系共重合体の製造方法。 2 前記芳香族ビニル化合物aがスチレンである
ことを特徴とする、特許請求の範囲第1項に記載
の方法。 3 前記芳香族ビニル化合物aがビニルトルエン
であることを特徴とする、特許請求の範囲第1項
に記載の方法。 4 前記芳香族ビニル化合物aがスチレン誘導体
であることを特徴とする、特許請求の範囲第1項
に記載の方法。 5 前記芳香族ビニル化合物aがスチレンとスチ
レン誘導体との混合物であることを特徴とする、
特許請求の範囲第1項に記載の方法。 6 前記芳香族ビニル化合物aがスチレンとビニ
ルトルエンとの混合物であることを特徴とする、
特許請求の範囲第1項に記載の方法。 7 前記芳香族ビニル化合物aがビニルトルエン
とスチレン誘導体との混合物であることを特徴と
する、特許請求の範囲第1項に記載の方法。 8 芳香族ビニル化合物aにポリブタジエンを溶
解させた混合物を撹拌下に60〜170℃に加熱し、
無水マレイン酸またはそれを含む溶液bと、上記
の酸またはその溶液bに対して0.003〜0.05重量
%の重合禁止剤ないしは重合抑止剤cとを連続的
ないしは断続的に供給しつつ溶液重合ないし塊状
重合させ、次いで未反応の単量体および揮発分を
減圧下に除去せしめることを特徴とする、無水マ
レイン酸の含有率が3〜30重量%なる範囲にある
成形可能な芳香族ビニル・無水マレイン酸系共重
合体の製造方法。 9 前記重合禁止剤ないしは抑制剤cの供給が、
重合中のポリマー溶液の粘度が約50ポイズ以上と
なつた時点で開始されることを特徴とする、特許
請求の範囲第1項記載の方法。 10 前記スチレン誘導体がα−メチルスチレン
であることを特徴とする、特許請求の範囲第4、
5または7項記載の方法。 11 前記スチレン誘導体がクロロスチレンであ
ることを特徴とする、特許請求の範囲第4、5ま
たは7項記載の方法。 12 前記スチレン誘導体がジクロロスチレンで
あることを特徴とする、特許請求の範囲第4、5
または7項記載の方法。 13 前記スチレン誘導体がブロモスチレンであ
ることを特徴とする、特許請求の範囲第4、5ま
たは7項記載の方法。 14 前記スチレン誘導体がジブロモスチレンで
あることを特徴とする、特許請求の範囲第4、5
または7項記載の方法。
[Claims] 1. Aromatic vinyl compound a is heated at 60 to 170°C with stirring.
0.003 for maleic anhydride or a solution containing it and the above acid or its solution b.
~0.05% by weight of polymerization inhibitor or polymerization inhibitor c
Solution polymerization or bulk polymerization is carried out while continuously or intermittently supplying and then unreacted monomers and volatile components are removed under reduced pressure, with a maleic anhydride content of 3 to 30 A method for producing a moldable aromatic vinyl/maleic anhydride copolymer in a range of % by weight. 2. The method according to claim 1, wherein the aromatic vinyl compound a is styrene. 3. The method according to claim 1, wherein the aromatic vinyl compound a is vinyltoluene. 4. The method according to claim 1, wherein the aromatic vinyl compound a is a styrene derivative. 5. The aromatic vinyl compound a is a mixture of styrene and a styrene derivative,
A method according to claim 1. 6. The aromatic vinyl compound a is a mixture of styrene and vinyltoluene,
A method according to claim 1. 7. The method according to claim 1, wherein the aromatic vinyl compound a is a mixture of vinyltoluene and a styrene derivative. 8. Heat a mixture of aromatic vinyl compound a and polybutadiene to 60 to 170°C with stirring,
Solution polymerization or bulk while continuously or intermittently supplying maleic anhydride or a solution b containing it and a polymerization inhibitor or polymerization inhibitor c of 0.003 to 0.05% by weight based on the acid or its solution b. A moldable aromatic vinyl maleic anhydride having a maleic anhydride content of 3 to 30% by weight, which is characterized by polymerization and then removing unreacted monomers and volatile components under reduced pressure. A method for producing an acid-based copolymer. 9 The supply of the polymerization inhibitor or inhibitor c,
2. The method of claim 1, wherein the process is started when the viscosity of the polymer solution during polymerization is about 50 poise or higher. 10 Claim 4, characterized in that the styrene derivative is α-methylstyrene,
The method according to item 5 or 7. 11. The method according to claim 4, 5 or 7, characterized in that the styrene derivative is chlorostyrene. 12 Claims 4 and 5, characterized in that the styrene derivative is dichlorostyrene.
Or the method described in Section 7. 13. The method according to claim 4, 5 or 7, characterized in that the styrene derivative is bromostyrene. 14 Claims 4 and 5, characterized in that the styrene derivative is dibromostyrene.
Or the method described in Section 7.
JP6882682A 1982-04-26 1982-04-26 Production of aromatic vinyl compound and maleic anhydride copolymer Granted JPS58187410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6882682A JPS58187410A (en) 1982-04-26 1982-04-26 Production of aromatic vinyl compound and maleic anhydride copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6882682A JPS58187410A (en) 1982-04-26 1982-04-26 Production of aromatic vinyl compound and maleic anhydride copolymer

Publications (2)

Publication Number Publication Date
JPS58187410A JPS58187410A (en) 1983-11-01
JPH0525884B2 true JPH0525884B2 (en) 1993-04-14

Family

ID=13384895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6882682A Granted JPS58187410A (en) 1982-04-26 1982-04-26 Production of aromatic vinyl compound and maleic anhydride copolymer

Country Status (1)

Country Link
JP (1) JPS58187410A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147413A (en) * 1984-01-10 1985-08-03 Idemitsu Petrochem Co Ltd Production of styrene based resin
JPS6296555A (en) * 1985-10-23 1987-05-06 Idemitsu Petrochem Co Ltd Injection molding resin composition
WO1992009641A1 (en) * 1990-11-21 1992-06-11 Idemitsu Kosan Co., Ltd. Styrenic copolymer and production thereof
JP4386645B2 (en) * 2003-01-09 2009-12-16 電気化学工業株式会社 Aromatic vinyl resin and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919106A (en) * 1972-06-16 1974-02-20
JPS55125113A (en) * 1979-03-20 1980-09-26 Toray Ind Inc Preparation of copolymer
JPS5655410A (en) * 1979-10-15 1981-05-16 Daicel Chem Ind Ltd Continuous bulk polymerization of styrene type copolymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919106A (en) * 1972-06-16 1974-02-20
JPS55125113A (en) * 1979-03-20 1980-09-26 Toray Ind Inc Preparation of copolymer
JPS5655410A (en) * 1979-10-15 1981-05-16 Daicel Chem Ind Ltd Continuous bulk polymerization of styrene type copolymer

Also Published As

Publication number Publication date
JPS58187410A (en) 1983-11-01

Similar Documents

Publication Publication Date Title
US7585924B2 (en) Pressurized high temperature polymerization process and polymerization system used therein
US4833221A (en) Method for polymerizing a methyl methacrylate molding composition
US4414370A (en) Process for continuous bulk copolymerization of vinyl monomers
CA1129150A (en) Process for the continuous mass polymerization of alkenyl-aromatic compounds
EP0027274B1 (en) Continuous bulk polymerization process for preparing a copolymer of an aromatic vinyl monomer and maleic anhydride
EP0068024A1 (en) Process for continuous bulk copolymerization of vinyl monomers and product thereof.
JPH04227910A (en) Methanol copolymerization of ethylene
JPH0931108A (en) Continuous production of polymer and apparatus therefor
JPH09502210A (en) Brominated styrene polymer
JPH07126308A (en) Production of methacrylic polymer
WO2000075193A1 (en) Method of continuous cationic living polymerization
JP5365913B2 (en) Continuous production method of living cationic polymer
KR20010039638A (en) Method and apparatus for producing hips using continuous polybutadiene feed
EP0087165A1 (en) Production of copolymers of alpha-methylstyrene
US3337650A (en) Process for preparing graft polymers having high impact strength
US5221787A (en) Method of preparing maleic anhydride terpolymers
JP5496909B2 (en) Semi-continuous integrated process for producing impact-resistant vinyl aromatic (co) polymers by sequential anion / radical polymerization
JPH0525884B2 (en)
JPS6341517A (en) Production of thermoplastic copolymer
JPH0233041B2 (en)
EP1639019A1 (en) Pressurized high temperature polymerization process
JPH0841135A (en) Process for producing styrene-acrylonitrile copolymer
JPH05331212A (en) Production of acrylic resin
JP2001055407A (en) Continuous production of living polymer
WO2011142384A1 (en) Method for producing methacrylic polymer