JP4386645B2 - Aromatic vinyl resin and method for producing the same - Google Patents

Aromatic vinyl resin and method for producing the same Download PDF

Info

Publication number
JP4386645B2
JP4386645B2 JP2003002688A JP2003002688A JP4386645B2 JP 4386645 B2 JP4386645 B2 JP 4386645B2 JP 2003002688 A JP2003002688 A JP 2003002688A JP 2003002688 A JP2003002688 A JP 2003002688A JP 4386645 B2 JP4386645 B2 JP 4386645B2
Authority
JP
Japan
Prior art keywords
parts
mass
weight
polymerization
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003002688A
Other languages
Japanese (ja)
Other versions
JP2004211036A (en
Inventor
勝彦 寺本
謙二 大嶋
淳 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003002688A priority Critical patent/JP4386645B2/en
Publication of JP2004211036A publication Critical patent/JP2004211036A/en
Application granted granted Critical
Publication of JP4386645B2 publication Critical patent/JP4386645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は高分子量、高透明性、かつ、耐熱性、色相に優れた芳香族ビニル系樹脂およびその製造方法に関する。
本発明の芳香族ビニル系樹脂は、自動車部品、電気電子部品、家電部品、雑貨等の分野に好ましく適用することができる。
【0002】
【従来の技術】
従来より,スチレン、α−メチルスチレン等の芳香族ビニル系単量体とマレイン酸、イタコン酸等の不飽和カルボン酸無水物等を共重合して得られる樹脂は、透明性が良好で耐熱付与効果があるため、AS系樹脂、MS樹脂等の耐熱性を向上させる耐熱付与材として使用されている(例えば、特許文献1または2参照。)。 しかし、これらを重合する過程において、重合温度や開始剤種により、その時発生するオリゴマー等の影響で色相が悪くなる問題があった。
【0003】
【特許文献1】
特開昭59−18747号公報。
【特許文献2】
特開昭62−169842号公報。
【0004】
【発明が解決しようとする課題】
本発明は、これら従来の欠点を解消し、回収した有機溶剤を用いても高分子量、高透明性および耐熱性、色相に優れた共重合体、及びその製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
このような問題点を解決する手段として、鋭意検討した結果、芳香族ビニル系単量体及び不飽和カルボン酸無水物に対して、半減期温度が90℃〜110℃である有機過酸化物を特定の速度で添加しながら重合することで高分子量、高透明性、および耐熱性、色相に優れた芳香族ビニル系樹脂が得られることを見出し本発明に至った。
【0006】
すなわち本発明は、芳香族ビニル系単量体(a)を60〜95質量部、不飽和カルボン酸無水物(b)を40〜5質量部含有する単量体100質量部に対し、1〜100質量部のケトン類を用いて溶液重合する方法であって前記単量体100質量部に対して、10時間半減期温度が90℃〜110℃であるパーオキシエステル系有機過酸化物(c)0.008〜0.50質量部を、前記単量体の消費反応速度6〜10質量部/時間に対して0.001〜0.018質量部/時間の添加速度で添加し、前記単量体の少なくとも70質量部を重合し、その後、ベント付き脱揮押出機に連続的に導入して、シリンダー温度200〜250℃、かつ、真空度40kPaA以下で揮発分を除去することを特徴とする、重量平均分子量が18万〜40万、ASTM D−1003に準拠して測定された厚さ2mm部の全光線透過率が88%以上、ビカット軟化温度が110℃以上、かつ、JIS K−7105に準拠して測定された厚さ2mm部の色相(Y.I.)が4.0以下である芳香族ビニル系樹脂の製造方法である。
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明に用いられる芳香族ビニル系単量体(a)としては、スチレン、α−メチルスチレン、ジメチルスチレン、ビニルトルエン、p−メチルスチレン、t−ブチルスチレン、クロロスチレン等の単量体およびその誘導体が挙げられ、これらの中で特にスチレンが好ましい。
【0008】
不飽和ジカルボン酸無水物単量体(b)としては、マレイン酸、イタコン酸、シトラコン酸、アニコット酸等の不飽和ジカルボン酸無水物系単量体が挙げられ、これらの中で特にマレイン酸無水物が好ましい。
【0009】
本発明の芳香族ビニル系樹脂には、上記芳香族ビニル系単量体(a)及び不飽和ジカルボン酸無水物単量体(b)と共重合可能な単量体を本発明の目的を損なわない範囲で共重合させることができる。
それらの単量体として、アクリロニトリル、メタクリロニトリル、フマロニトリル等のシアン化ビニル単量体、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸−2−エチルヘキシル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸イソボルニル等のメタクリル酸エステル系単量体、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸−2−エチルヘキシル、アクリル酸シクロヘキシル等のアクリル酸エステル系単量体を挙げることができる。
【0010】
本発明の芳香族ビニル系樹脂は、芳香族ビニル系単量体(a)が60〜95質量部で、かつ、不飽和ジカルボン酸無水物系単量体(b)が5〜40質量部を含有し、好ましくは芳香族ビニル系単量体(a)が70〜85質量部で、かつ不飽和ジカルボン酸無水物系単量体(b)が15〜30質量部を含有する芳香族ビニル系樹脂である。芳香族ビニル系単量体(a)が60質量部未満、不飽和ジカルボン酸無水物系単量体(b)が40質量部を越える含有量では、ビカット軟化温度に代表される耐熱性は良好となるが、全光線透過率が88%未満となり透明性が落ちる。芳香族ビニル系単量体(a)が95質量部を超え、不飽和ジカルボン酸無水物系単量体(b)が5質量部未満の含有量では、ビカット軟化温度に代表される耐熱性が110℃未満となる。
【0011】
本発明は塊状重合、溶液重合、懸濁重合等、公知の重合方法が適応できるが、これらの中で溶液重合が好ましい。
【0012】
本発明に用いられる有機過酸化物(c)は、水溶性、油溶性のものを使用することができるが、油溶性が特に好ましい。有機過酸化物(c)としては、1,1−ビス(t−ブチルペルオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルペルオキシ)シクロヘキサン、2,2−ビス(4,4−ジ−t−ブチルペルオキシシクロヘキシル)プロパン、2,2−ビス(t−ブチルペルオキシ)ブタン、n−ブチル4,4−ビス(t−ブチルペルオキシ)バレレート等のパーオキシケタール系、t−ブチルペルオキシイソプロピルモノカーボネート、t−ブチルペルオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルペルオキシ−2−エチルヘキシルモノカーボネート、t−ブチルペルオキシベンゾネート、t−ブチルペルオキサセテート等のパーオキシエステル系等の有機過酸化物が挙げられるが、これらの中でパーオキシエステル系が好ましい。
【0013】
10時間半減期温度が90℃未満の有機過酸化物を使用すると、例えば、重合が低温、かつ、長時間重合が必要となり生産性が著しく低下するとともにオリゴマーが生成され易いため、色相が悪くなる。また、生成したオリゴマーが回収有機溶剤中に残るため、次回以降重合して得られた樹脂の色相をさらに悪くする原因となる。10時間半減期温度が110℃を越える有機過酸化物を使用すると、重合温度を上げなければ重合が進行しないため、芳香族ビニル系単量体のホモポリマーが生成し透明性が著しく悪化する。また、10時間半減期温が90℃〜110℃の有機過酸化物の中でパーオキシエステル系の使用が特に好ましい。
【0014】
重合時に用いる有機過酸化物(c)は0.008〜0.50質量部、好ましくは0.01〜0.25質量部である。有機過酸化物(c)が、単量体100質量部に対し0.008質量部より少なくなると重合が著しく遅くなり、また0.50質量部より多くなると重量平均分子量が18万以上の重合体が得られない。なお、該有機過酸化物(c)は、使用量の一部を本発明の目的を損なわない範囲で重合スタート時に一括添加し、残りを本発明による特定の添加速度で添加することができる。
【0015】
本発明の単量体の消費反応速度とは、単量体の分添時間におけるポリマー生成量(質量部)を単量体合計100質量部中の割合として求め、その時の経過時間で割った速度をさす。
【0016】
重合時に用いる有機過酸化物(c)の添加速度は、該単量体の消費反応速度6〜10質量部/時間に対して0.001〜0.018質量部/時間の添加速度にすることが必要である。好ましくは0.001〜0.016質量部/時間の添加速度にすることが好ましい。0.001質量部/時間未満の添加速度では芳香族ビニル系単量体のホモポリマーが生成し、透明性、色相が著しく悪化する。0.018質量部/時間を越えた添加速度では重量平均分子量が18万未満となり、かつ、良色相の高分子量体が得られない。
【0017】
有機過酸化物(c)を添加しながら重合するにあたり、本発明で用いる単量体、芳香族ビニル系単量体(a)および不飽和ジカルボン酸無水物系単量体(b)は、両方または片方の適当量または全量を重合初期に一括で仕込み、残りを分添することができる。ここで、芳香族ビニル系単量体(a)全量および場合により不飽和ジカルボン酸無水物(b)の適当量を重合初期に一括で仕込み、不飽和ジカルボン酸無水物系単量体(b)残量を分添する方法が最も好ましい。
【0018】
本発明に用いられる樹脂の回収方法は、重合後、ベント付き脱揮押出機に連続的に導入し、揮発分を回収しながら樹脂を得る方法である。ここで言うベント付き脱揮押出機とは、重合後の揮発分と樹脂の混合物(以降、樹脂液とする。)を供給するためのフィード口とその前方に1ヶ所以上の排気ベントを有する押出機のことを言う。脱揮押出機のスクリューは単軸、二軸どちらでも構わないが、耐熱性の樹脂であり混練能力が必要なことから二軸の方が好ましい。脱揮押出機の条件は、フィードする樹脂液の温度は使用している有機溶剤の沸点より高い方が好ましい。使用する有機溶剤の該温度における平衡蒸気圧より低い圧力に急激に減圧されることで容易に揮発分の回収が可能となる。また例えば、脱揮押出機にフィードする前に、使用する有機溶剤の該温度における平衡蒸気圧より低い圧力に保った缶中に連続的に供給し、連続的に抜出す方法により事前に揮発分の何割かを回収して樹脂濃度を上げておくことも可能である。
【0019】
シリンダー温度は200〜250℃、好ましくは210〜240℃である。250℃を越えると得られる樹脂が熱履歴を受けることと、残存無水マレイン酸が影響を受ける事で色相が悪くなる。また、200℃未満では樹脂が溶融し難く、さらに残揮発分が樹脂中に多量に残り、透明性、色相を悪化させる。真空度は40kPaA(Aは、絶対圧基準をいう。)以下が必要であり、好ましくは、20kPaA以下である。40kPaAを越えると残揮発分が樹脂中に多量に残り透明性、色相を悪化させる。回収する揮発分の目安としては、得られた樹脂中の残揮発分が1%以下になるように調整することが好ましい。さらには6000ppm以下が好ましい
【0020】
本発明に用いられる有機溶剤は脱揮押出機にて回収された揮発分を蒸留による方法、液液分離による方法等公知の方法で精製して使用できる。回収された有機溶剤は全量または一部を新品と混ぜて使用できる。回収された有機溶剤の純度は97%以上が好ましく、さらに好ましくは98%以上である。回収した有機溶剤の純度が97%未満では、重合して得られる樹脂の透明性、色相が悪くなり目的の樹脂が得られない。
【0021】
本発明に用いられる有機溶剤はテトラヒドロフラン等のエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、その他、ジメチルホルムアミド、シクロヘキサン等が使用できるが、これらの中でケトン類が好ましい。これ以外の有機溶剤では脱揮押出機による回収時にシリンダー温度および真空度を上げる必要があるために得られる樹脂の色相が悪くなる場合がある
【0022】
本発明に用いる有機溶剤は、単量体100質量部に対し、1〜100質量部が好ましい。さらに好ましくは、単量体100質量部に対し5〜67質量部が好ましい。有機溶剤が100質量部より多くなると重量平均分子量が18万未満となり、目的とする高分子量の樹脂が得られない。
【0023】
本発明の分子量は、重量平均分子量が18万〜40万であり、20万〜30万のものが好ましく製造される。
【0024】
本発明の重合において、連鎖移動剤または分子量調整剤として、例えば、t−ドデシルメルカプタン、n−ドデシルメルカプタン等のメルカプタン類、ターピノーレン、α−メチルスチレンダイマー等が使用でき、種類を限定することなく既知の薬剤が使用可能である。
【0025】
本発明の樹脂は単独でフィルムや成形品として使用することが可能である。さらにはその他公知の重合体と混合させることが可能である。そして射出成形、ブロー成形やフィルム,シートにおいて耐熱性と透明性に優れた性質を示す。
【0026】
【実施例】
下記の実施例及び比較例で本発明を具体的に説明するが、本発明は以下の例に限定されるものではない。
【0027】
各実施例及び比較例中の各物性は、下記のようにして測定した。
(1)重量平均分子量
本発明で得られた芳香族ビニル系樹脂の重量平均分子量Mwは、サイズ排除クロマトグラフィー装置を用い、次の条件で測定したもので、ポリスチレン換算の分子量である。
装置;東ソー(株)製、「SYSTEM−21」
カラム;PLgel MIXED−B
温度;40℃
溶媒;テトラヒドロフラン
検出;RI
濃度;0.2質量%
注入量;100μl
検量線;標準ポリスチレン(Polymer Laboratories社製)を使用
(2)全光線透過率
東芝機械社製射出成形機(IS−50EP)を用いて、シリンダー温度240℃で厚さ1mm、2mm、3mmの三段プレートを作製した。この三段プレートの厚さ2mm部を用いて、ASTM D−1003に準拠して、日本電色工業社製HAZEメーター(NDH−1001DP)を用いて測定した。ここで測定箇所は、2mm部の中央を用いた。
そして全光線透過率88%以上のものが透明性に優れた樹脂とした。
(3)色相(Y.I.)
前記(2)の2mm部試験片を用いて、JIS K−710に準拠してY.I.を測定した。ここで測定箇所は、2mm部の中央を用いた。
そしてY.I.値4.0以下のものが色相に優れた樹脂とした。
(4)ビカット軟化温度(VSP)
ISO−2580−2に準拠して81.0mm×10.0mm×4.0mmの試料片を作製し、ISO10350/ISO306に準拠して測定した。
(5)スチレン重合率
スチレンの重合率は次のガスクロマトグラフィー装置で残存スチレンを測定し換算して求めた。
装置;Agilent Technology社製、「HP6890」
カラム;J&B社製DB−5
温度;60℃→200℃
検出器;FID
濃度;約2.0質量%
注入量;1μl
(6)無水マレイン酸重合率
無水マレイン酸の重合率は次の液体クロマトグラフィー装置で残存無水マレイン酸を測定し換算して求めた。
装置;島津製作所(株)社製、「SCL−10AVP」
カラム;(株)YMC社製 ODS−A312
溶媒;水/メタノール
検出;UV
濃度;0.2質量%
注入量;100μl
【0028】
【実施例1】
A−1:攪拌機、加熱冷却装置、温度計、原料添加装置を備えた10リットルのステンレス製反応器にスチレン90質量部を仕込み、窒素雰囲気下、内温112℃に保持し、イソブチルメチルケトン60質量部、無水マレイン酸10質量部及び10時間半減期温度98.7℃のパーオキシエステル系有機過酸化物t−ヘキシルペルオキシイソプロピルモノカーボネート0.10質量部を0.009質量部/時間の添加速度で11時間連続添加しながら、加熱攪拌し重合を行った。分添終了後引き続き2時間攪拌し重合を完了させた。スチレン、無水マレイン酸それぞれの経時重合率及びそれら該単量体の経時消費反応速度を表1に示す。その後、シリンダー温度220℃、真空度1KPaAでベント付き脱揮押出機(池貝製二軸押出機PCM−30α改)に8L/minで投入し重合体A−1を得た。結果を表2に示す。
【0029】
【実施例2】
A−2:攪拌機、加熱冷却装置、温度計、原料添加装置を備えた10リットルのステンレス製反応器にイソブチルメチルケトン0.1質量部、スチレン84質量部を仕込み、窒素雰囲気下、内温115℃に保持し、イソブチルメチルケトン64.9質量部、無水マレイン酸16質量部及び10時間半減期温度98.7℃のパーオキシエステル系有機過酸化物t−ヘキシルペルオキシイソプロピルモノカーボネート0.15質量部を0.014質量部/時間の添加速度で11時間連続添加しながら、加熱攪拌し重合を行った。分添終了後引き続き2時間攪拌し重合を完了させた。スチレン、無水マレイン酸それぞれの経時重合率及びそれら該単量体の経時消費反応速度を表1に示す。その後、シリンダー温度220℃、真空度1KPaAでベント付き脱揮押出機(池貝製二軸押出機PCM−30α改)に8L/minで投入し重合体A−2を得た。結果を表2に示す。
【0030】
【実施例3】
A−3:攪拌機、加熱冷却装置、温度計、原料添加装置を備えた10リットルのステンレス製反応器にイソブチルメチルケトン0.2質量部、スチレン70質量部、無水マレイン酸3質量部、ターピノーレン0.018質量部を仕込み、窒素雰囲気下、内温110℃に保持し、メチルエチルケトン66.8質量部、無水マレイン酸27質量部及び10時間半減期温度101.9℃のパーオキシエステル系有機過酸化物t−ブチルペルオキシアセテート0.15質量部を0.015質量部/時間の添加速度で10時間連続添加しながら、加熱攪拌し重合を行った。分添終了後引き続き2時間攪拌し重合を完了させた。スチレン、無水マレイン酸それぞれの経時重合率及びそれら該単量体の経時消費反応速度を表1に示す。その後、シリンダー温度220℃、真空度1KPaAでベント付き脱揮押出機(池貝製二軸押出機PCM−30α改)に8L/minで投入し重合体A−3を得た。結果を表2に示す。
【0031】
【実施例4】
A−4:攪拌機、加熱冷却装置、温度計、原料添加装置を備えた10リットルのステンレス製反応器にメチルエチルケトン0.2質量部、スチレン75質量部、無水マレイン酸2質量部、α−メチルスチレンダイマー0.010質量部を仕込み、窒素雰囲気下、内温110℃に保持し、メチルエチルケトン56.8質量部、無水マレイン酸23質量部及び10時間半減期温度98.7℃のパーオキシエステル系有機過酸化物t−ヘキシルペルオキシイソプロピルモノカーボネート0.10質量部を0.009質量部/時間の添加速度で11時間連続添加しながら、加熱攪拌し重合を行った。分添終了後引き続き2時間攪拌し重合を完了させた。スチレン、無水マレイン酸それぞれの経時重合率及びそれら該単量体の経時消費反応速度を表1に示す。その後、シリンダー温度220℃、真空度1KPaAでベント付き脱揮押出機(池貝製二軸押出機PCM−30α改)に8L/minで投入し重合体A−4を得た。結果を表2に示す。
【0032】
【比較例1】
B−1:攪拌機、加熱冷却装置、温度計、原料添加装置を備えた10リットルのステンレス製反応器にスチレン84質量部、α-メチルスチレンダイマー0.002質量部を仕込み、窒素雰囲気下、内温115℃に保持し、メチルエチルケトン65質量部、無水マレイン酸16質量部及び10時間半減期温度98.7℃のパーオキシエステル系有機過酸化物t−ヘキシルペルオキシイソプロピルモノカーボネート0.54質量部を0.054質量部/時間の添加速度で10時間連続添加しながら、加熱攪拌し重合を行った。分添終了後引き続き2時間攪拌し重合を完了させた。スチレン、無水マレイン酸それぞれの経時重合率及びそれら該単量体の経時消費反応速度を表1に示す。その後、シリンダー温度220℃、真空度1KPaAでベント付き脱揮押出機(池貝製二軸押出機PCM−30α改)に8L/minで投入し重合体B−1を得た。結果を表2に示す。
【0033】
【比較例2】
B−2:攪拌機、加熱冷却装置、温度計、原料添加装置を備えた10リットルのステンレス製反応器にスチレン90質量部、α-メチルスチレンダイマー0.002質量部を仕込み、窒素雰囲気下、内温120℃に保持し、イソブチルメチルケトン65質量部、無水マレイン酸10質量部及び10時間半減期温度123.7℃のジアルキルパーオキサイド系有機過酸化物ジ−t−ブチルペルオキシド0.20質量部を0.018質量部/時間の添加速度で11時間連続添加しながら、加熱攪拌し重合を行った。分添終了後引き続き2時間攪拌し重合を完了させた。スチレン、無水マレイン酸それぞれの経時重合率及びそれら該単量体の経時消費反応速度を表1に示す。その後、シリンダー温度220℃、真空度1KPaAでベント付き脱揮押出機(池貝製二軸押出機PCM−30α改)に8L/minで投入し重合体B−2を得た。結果を表2に示す。
【0034】
【表1】

Figure 0004386645
【0035】
【表2】
Figure 0004386645
【0036】
【発明の効果】
本発明は、芳香族ビニル系単量体と不飽和カルボン酸無水物の組成比、有機過酸化物種類および単量体の消費反応速度に対して有機過酸化物の添加速度を制御することで、高分子量、高透明性、かつ、耐熱性、色相に優れた芳香族ビニル系樹脂を製造することができる。[0001]
[Technical field to which the invention belongs]
The present invention relates to an aromatic vinyl resin excellent in high molecular weight, high transparency, heat resistance, and hue, and a method for producing the same.
The aromatic vinyl-based resin of the present invention can be preferably applied to the fields of automobile parts, electric / electronic parts, household appliance parts, miscellaneous goods and the like.
[0002]
[Prior art]
Conventionally, resins obtained by copolymerizing aromatic vinyl monomers such as styrene and α-methylstyrene and unsaturated carboxylic acid anhydrides such as maleic acid and itaconic acid have good transparency and impart heat resistance. Since it is effective, it is used as a heat-resistance imparting material that improves the heat resistance of AS-based resins, MS resins, and the like (see, for example, Patent Document 1 or 2). However, in the process of polymerizing these, there is a problem that the hue deteriorates due to the influence of oligomers and the like generated at that time depending on the polymerization temperature and the initiator type.
[0003]
[Patent Document 1]
JP 59-18747.
[Patent Document 2]
Japanese Patent Laid-Open No. 62-169842.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to solve these conventional drawbacks and to provide a copolymer excellent in high molecular weight, high transparency and heat resistance, and hue even when a recovered organic solvent is used, and a method for producing the same. .
[0005]
[Means for Solving the Problems]
As a means for solving such problems, as a result of intensive studies, an organic peroxide having a half-life temperature of 90 ° C. to 110 ° C. with respect to an aromatic vinyl monomer and an unsaturated carboxylic acid anhydride is obtained. The inventors have found that an aromatic vinyl resin excellent in high molecular weight, high transparency, heat resistance, and hue can be obtained by polymerization while adding at a specific rate, and have led to the present invention.
[0006]
That is, the present invention is 60 to 95 parts by weight aromatic vinyl monomer and (a), with respect to monomer 100 parts by weight of an unsaturated carboxylic acid anhydride (b) containing 40 to 5 parts by weight, 1 to a method for solution polymerization using 100 parts by weight of ketones and with respect to the monomer 100 parts by weight, peroxyester organic peroxide 10-hour half-life temperature of 90 ° C. to 110 ° C. ( c) a from 0.008 to 0.50 parts by weight, were added at an addition rate of 0.001 to 0.018 parts by weight / hour with respect to the reaction rate 6-10 parts by weight / hour of the monomer, the polymerizing at least 70 parts by weight of the monomer, wherein then continuously introduced into a vented devolatilizing extruder at a cylinder temperature of 200 to 250 ° C., and removing the volatiles in the following vacuum 40kPaA shall be the weight average molecular weight of from 180,000 to 400,000 2 mm thickness measured in accordance with ASTM D-1003 is 88% or higher, Vicat softening temperature is 110 ° C. or higher, and thickness is 2 mm measured in accordance with JIS K-7105. This is a method for producing an aromatic vinyl resin in which the hue (YI) of the part is 4.0 or less .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
Examples of the aromatic vinyl monomer (a) used in the present invention include monomers such as styrene, α-methylstyrene, dimethylstyrene, vinyltoluene, p-methylstyrene, t-butylstyrene, chlorostyrene, and the like. Derivatives are mentioned, and among these, styrene is particularly preferable.
[0008]
Examples of the unsaturated dicarboxylic acid anhydride monomer (b) include unsaturated dicarboxylic acid anhydride monomers such as maleic acid, itaconic acid, citraconic acid, and anicotic acid. Among these, maleic anhydride is particularly preferable. Things are preferred.
[0009]
In the aromatic vinyl resin of the present invention, a monomer copolymerizable with the aromatic vinyl monomer (a) and the unsaturated dicarboxylic acid anhydride monomer (b) is impaired. Copolymerization can be carried out to the extent not present.
As those monomers, vinyl cyanide monomers such as acrylonitrile, methacrylonitrile, fumaronitrile, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, methacrylate-2-ethylhexyl, phenyl methacrylate, Methacrylic acid ester monomers such as benzyl methacrylate and isobornyl methacrylate, and acrylic acid ester monomers such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and cyclohexyl acrylate A polymer can be mentioned.
[0010]
In the aromatic vinyl resin of the present invention, the aromatic vinyl monomer (a) is 60 to 95 parts by mass, and the unsaturated dicarboxylic acid anhydride monomer (b) is 5 to 40 parts by mass. Preferably, the aromatic vinyl monomer (a) is 70 to 85 parts by mass, and the unsaturated dicarboxylic anhydride monomer (b) is 15 to 30 parts by mass. Resin. When the content of the aromatic vinyl monomer (a) is less than 60 parts by mass and the amount of the unsaturated dicarboxylic acid anhydride monomer (b) exceeds 40 parts by mass, the heat resistance represented by the Vicat softening temperature is good. However, the total light transmittance is less than 88% and the transparency is lowered. When the content of the aromatic vinyl monomer (a) exceeds 95 parts by mass and the unsaturated dicarboxylic acid anhydride monomer (b) is less than 5 parts by mass, the heat resistance typified by the Vicat softening temperature is high. It becomes less than 110 degreeC.
[0011]
In the present invention, known polymerization methods such as bulk polymerization, solution polymerization, suspension polymerization and the like can be applied. Among these, solution polymerization is preferable.
[0012]
The organic peroxide (c) used in the present invention can be water-soluble or oil-soluble, but oil-soluble is particularly preferable. Examples of the organic peroxide (c) include 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, 2,2-bis ( Peroxyketals such as 4,4-di-t-butylperoxycyclohexyl) propane, 2,2-bis (t-butylperoxy) butane, n-butyl 4,4-bis (t-butylperoxy) valerate, t -Butyl peroxyisopropyl monocarbonate, t-butyl peroxy-3,5,5-trimethylhexanoate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-butyl peroxybenzoate, t-butyl peroxacetate, etc. Organic peroxides such as peroxyesters can be mentioned. Le systems are preferred.
[0013]
When an organic peroxide having a 10-hour half-life temperature of less than 90 ° C. is used, for example, the polymerization is low temperature and the polymerization is required for a long time, the productivity is significantly reduced and the oligomer is easily generated, so that the hue is deteriorated. . Moreover, since the produced | generated oligomer remains in the collection | recovery organic solvent, it becomes the cause which worsens the hue of resin obtained by superposing | polymerizing after the next time. When an organic peroxide having a 10-hour half-life temperature exceeding 110 ° C. is used, the polymerization does not proceed unless the polymerization temperature is raised, so that a homopolymer of an aromatic vinyl monomer is formed and the transparency is remarkably deteriorated. Further, among organic peroxides having a 10-hour half-life temperature of 90 ° C. to 110 ° C., use of a peroxy ester type is particularly preferable.
[0014]
The organic peroxide (c) used in the polymerization is 0.008 to 0.50 parts by mass, preferably 0.01 to 0.25 parts by mass. When the organic peroxide (c) is less than 0.008 parts by mass with respect to 100 parts by mass of the monomer, the polymerization is remarkably slow, and when it is more than 0.50 parts by mass, the polymer having a weight average molecular weight of 180,000 or more. Cannot be obtained. The organic peroxide (c) can be added all at once at the start of polymerization within a range that does not impair the object of the present invention, and the remainder can be added at a specific addition rate according to the present invention.
[0015]
The consumption reaction rate of the monomer of the present invention is the rate obtained by determining the polymer production amount (part by mass) in the monomer addition time as a ratio in 100 parts by mass of the monomer and dividing by the elapsed time at that time. Point.
[0016]
The addition rate of the organic peroxide (c) used in the polymerization should be 0.001 to 0.018 parts by mass / hour with respect to the consumption reaction rate of 6 to 10 parts by mass / hour of the monomer. is required. The addition rate is preferably 0.001 to 0.016 parts by mass / hour. When the addition rate is less than 0.001 part by mass / hour, a homopolymer of an aromatic vinyl monomer is formed, and the transparency and hue are significantly deteriorated. When the addition rate exceeds 0.018 parts by mass / hour, the weight average molecular weight is less than 180,000, and a high-molecular weight polymer having a good color cannot be obtained.
[0017]
In the polymerization while adding the organic peroxide (c), the monomer used in the present invention, the aromatic vinyl monomer (a) and the unsaturated dicarboxylic acid anhydride monomer (b) are both Alternatively, an appropriate amount or the entire amount of one can be charged at a time in the initial stage of polymerization and the remainder can be added. Here, the whole amount of the aromatic vinyl monomer (a) and optionally an appropriate amount of the unsaturated dicarboxylic acid anhydride (b) are charged all at once in the initial stage of polymerization to obtain the unsaturated dicarboxylic acid anhydride monomer (b). The method of adding the remaining amount is most preferable.
[0018]
The resin recovery method used in the present invention is a method of continuously introducing into a vented devolatilizing extruder after polymerization and obtaining the resin while recovering volatile components. The devolatilizing extruder with a vent mentioned here is an extrusion having a feed port for supplying a mixture of volatile matter after polymerization and a resin (hereinafter referred to as a resin liquid) and one or more exhaust vents in front thereof. Say about the machine. The screw of the devolatilizing extruder may be uniaxial or biaxial, but biaxial is preferred because it is a heat-resistant resin and requires kneading ability. The condition of the devolatilizing extruder is preferably such that the temperature of the resin liquid to be fed is higher than the boiling point of the organic solvent being used. The volatile matter can be easily recovered by rapidly reducing the pressure to a pressure lower than the equilibrium vapor pressure at the temperature of the organic solvent to be used. Also, for example, before feeding to the devolatilizing extruder, the organic solvent to be used is continuously fed into a can maintained at a pressure lower than the equilibrium vapor pressure at the temperature, and the volatile content is removed in advance by a continuous extraction method. It is also possible to recover some of the resin concentration and increase the resin concentration.
[0019]
Cylinder temperature is 200-250 degreeC, Preferably it is 210-240 degreeC. If the temperature exceeds 250 ° C., the resulting resin undergoes a thermal history and the residual maleic anhydride is affected, resulting in a poor hue. If the temperature is less than 200 ° C., the resin is difficult to melt, and a large amount of residual volatile matter remains in the resin, which deteriorates transparency and hue. The degree of vacuum needs to be 40 kPaA (A is an absolute pressure standard) or less, and preferably 20 kPaA or less. If it exceeds 40 kPaA, a large amount of residual volatile matter remains in the resin, and the transparency and hue deteriorate. As a measure of the volatile content to be recovered, it is preferable to adjust the residual volatile content in the obtained resin to 1% or less. Further, it is preferably 6000 ppm or less.
The organic solvent used in the present invention can be used after purifying the volatile matter recovered by a devolatilizing extruder by a known method such as a method by distillation or a method by liquid-liquid separation. The recovered organic solvent can be used by mixing all or part of it with a new one. The purity of the recovered organic solvent is preferably 97% or more, more preferably 98% or more. When the purity of the recovered organic solvent is less than 97%, the transparency and hue of the resin obtained by polymerization are deteriorated and the desired resin cannot be obtained.
[0021]
As the organic solvent used in the present invention, ethers such as tetrahydrofuran, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, dimethylformamide, cyclohexane and the like can be used. Of these, ketones are preferable. In other organic solvents, it is necessary to increase the cylinder temperature and the degree of vacuum at the time of recovery by a devolatilizing extruder, and the hue of the obtained resin may deteriorate. [0022]
As for the organic solvent used for this invention, 1-100 mass parts is preferable with respect to 100 mass parts of monomers. More preferably, 5-67 mass parts is preferable with respect to 100 mass parts of monomers. When the amount of the organic solvent exceeds 100 parts by mass, the weight average molecular weight becomes less than 180,000, and the desired high molecular weight resin cannot be obtained.
[0023]
As for the molecular weight of the present invention, those having a weight average molecular weight of 180,000 to 400,000 are preferably produced.
[0024]
In the polymerization of the present invention, for example, mercaptans such as t-dodecyl mercaptan and n-dodecyl mercaptan, terpinolene, α-methylstyrene dimer, etc. can be used as the chain transfer agent or molecular weight modifier, and are known without any limitation. Can be used.
[0025]
The resin of the present invention can be used alone as a film or a molded product. Furthermore, it can be mixed with other known polymers. It exhibits excellent heat resistance and transparency in injection molding, blow molding, films and sheets.
[0026]
【Example】
The present invention will be specifically described by the following examples and comparative examples, but the present invention is not limited to the following examples.
[0027]
Each physical property in each example and comparative example was measured as follows.
(1) Weight average molecular weight The weight average molecular weight Mw of the aromatic vinyl-type resin obtained by this invention was measured on the following conditions using the size exclusion chromatography apparatus, and is a molecular weight of polystyrene conversion.
Apparatus: “SYSTEM-21” manufactured by Tosoh Corporation
Column; PLgel MIXED-B
Temperature: 40 ° C
Solvent; tetrahydrofuran detection; RI
Concentration: 0.2% by mass
Injection volume: 100 μl
Calibration curve: Standard polystyrene (manufactured by Polymer Laboratories) is used. (2) Total light transmittance Using a Toshiba Machine Co., Ltd. injection molding machine (IS-50EP), a cylinder temperature of 240 ° C., a thickness of 1 mm, 2 mm and 3 mm. Corrugated plates were produced. Using a 2 mm thickness portion of this three-stage plate, measurement was performed using a Nippon Denshoku Industries HAZE meter (NDH-1001DP) in accordance with ASTM D-1003. Here, the center of the 2 mm part was used as the measurement location.
A resin having a total light transmittance of 88% or more is a resin having excellent transparency.
(3) Hue (YI)
With 2mm portion specimens of the (2), Y. in compliance with JIS K-710 5 I. Was measured. Here, the center of the 2 mm part was used as the measurement location.
Y. I. A resin having a value of 4.0 or less was regarded as a resin excellent in hue.
(4) Vicat softening temperature (VSP)
A sample piece of 81.0 mm × 10.0 mm × 4.0 mm was prepared based on ISO-2580-2 and measured according to ISO10350 / ISO306.
(5) Styrene polymerization rate The styrene polymerization rate was determined by measuring and converting residual styrene with the following gas chromatography apparatus.
Equipment: “HP6890” manufactured by Agilent Technology
Column; DB-5 manufactured by J & B
Temperature: 60 ℃ → 200 ℃
Detector; FID
Concentration: about 2.0% by mass
Injection volume: 1 μl
(6) Maleic anhydride polymerization rate The maleic anhydride polymerization rate was determined by measuring and converting residual maleic anhydride with the following liquid chromatography apparatus.
Equipment: “SCL-10AVP” manufactured by Shimadzu Corporation
Column; ODS-A312 manufactured by YMC Corporation
Solvent; water / methanol detection; UV
Concentration: 0.2% by mass
Injection volume: 100 μl
[0028]
[Example 1]
A-1: A 10 liter stainless steel reactor equipped with a stirrer, a heating / cooling device, a thermometer, and a raw material addition device was charged with 90 parts by mass of styrene, maintained at an internal temperature of 112 ° C. in a nitrogen atmosphere, and isobutyl methyl ketone 60 Addition of 0.009 parts by mass / hour of 0.10 parts by mass of peroxyester organic peroxide t-hexylperoxyisopropyl monocarbonate with 10 parts by mass of maleic anhydride and 10 hours half-life temperature of 98.7 ° C. While continuously adding at a rate for 11 hours, polymerization was carried out by heating and stirring. After completion of the addition, stirring was continued for 2 hours to complete the polymerization. Table 1 shows the polymerization rates with time of styrene and maleic anhydride and the consumption reaction rates with time of these monomers. Then, it was charged at 8 L / min into a vented devolatilizing extruder (Ikegai twin-screw extruder PCM-30α modified) at a cylinder temperature of 220 ° C. and a vacuum of 1 KPaA to obtain a polymer A-1. The results are shown in Table 2.
[0029]
[Example 2]
A-2: A 10-liter stainless steel reactor equipped with a stirrer, a heating / cooling device, a thermometer, and a raw material addition device was charged with 0.1 parts by mass of isobutyl methyl ketone and 84 parts by mass of styrene, and the internal temperature was 115 under a nitrogen atmosphere. Maintained at ℃, peroxyester organic peroxide t-hexylperoxyisopropyl monocarbonate 0.15 mass by weight of isobutyl methyl ketone 64.9 mass parts, maleic anhydride 16 mass parts and 10 hours half-life temperature 98.7 ℃ Polymerization was carried out by heating and stirring while continuously adding 11 parts at a rate of 0.014 parts by mass / hour for 11 hours. After completion of the addition, stirring was continued for 2 hours to complete the polymerization. Table 1 shows the polymerization rates with time of styrene and maleic anhydride and the consumption reaction rates with time of these monomers. Then, it was charged at 8 L / min into a vented devolatilizing extruder (Ikegai twin screw extruder PCM-30α modified) at a cylinder temperature of 220 ° C. and a vacuum of 1 KPaA to obtain a polymer A-2. The results are shown in Table 2.
[0030]
[Example 3]
A-3: A 10 liter stainless steel reactor equipped with a stirrer, a heating / cooling device, a thermometer, and a raw material addition device, 0.2 parts by mass of isobutyl methyl ketone, 70 parts by mass of styrene, 3 parts by mass of maleic anhydride, and tarpinolene 0 .018 parts by mass, maintained at an internal temperature of 110 ° C. in a nitrogen atmosphere, 66.8 parts by mass of methyl ethyl ketone, 27 parts by mass of maleic anhydride, and a 10-hour half-life temperature of 101.9 ° C. While continuously adding 0.15 parts by mass of the product t-butyl peroxyacetate at an addition rate of 0.015 parts by mass / hour for 10 hours, the mixture was heated and stirred for polymerization. After completion of the addition, stirring was continued for 2 hours to complete the polymerization. Table 1 shows the polymerization rates with time of styrene and maleic anhydride and the consumption reaction rates with time of these monomers. Thereafter, it was charged at 8 L / min into a vented devolatilizing extruder (Ikegai twin screw extruder PCM-30α modified) at a cylinder temperature of 220 ° C. and a vacuum degree of 1 KPaA to obtain a polymer A-3. The results are shown in Table 2.
[0031]
[Example 4]
A-4: In a 10 liter stainless steel reactor equipped with a stirrer, a heating / cooling device, a thermometer, and a raw material addition device, 0.2 parts by mass of methyl ethyl ketone, 75 parts by mass of styrene, 2 parts by mass of maleic anhydride, α-methylstyrene Peroxyester organic compound charged with 0.010 parts by weight of dimer, maintained at an internal temperature of 110 ° C. in a nitrogen atmosphere, 56.8 parts by weight of methyl ethyl ketone, 23 parts by weight of maleic anhydride, and a 10-hour half-life temperature of 98.7 ° C. While continuously adding 0.10 parts by mass of peroxide t-hexylperoxyisopropyl monocarbonate at an addition rate of 0.009 parts by mass / hour for 11 hours, polymerization was carried out by stirring with heating. After completion of the addition, stirring was continued for 2 hours to complete the polymerization. Table 1 shows the polymerization rates with time of styrene and maleic anhydride and the consumption reaction rates with time of these monomers. Then, it was charged into a vented devolatilizing extruder (Ikegai twin screw extruder PCM-30α modified) at a cylinder temperature of 220 ° C. and a vacuum of 1 KPaA at 8 L / min to obtain a polymer A-4. The results are shown in Table 2.
[0032]
[Comparative Example 1]
B-1: A 10 liter stainless steel reactor equipped with a stirrer, a heating / cooling device, a thermometer, and a raw material addition device was charged with 84 parts by mass of styrene and 0.002 parts by mass of α-methylstyrene dimer, Maintaining the temperature at 115 ° C., 0.54 parts by mass of peroxyester organic peroxide t-hexylperoxyisopropyl monocarbonate having 65 parts by mass of methyl ethyl ketone, 16 parts by mass of maleic anhydride and 10 hours half-life temperature of 98.7 ° C. While continuously adding at an addition rate of 0.054 parts by mass / hour for 10 hours, polymerization was carried out by stirring with heating. After completion of the addition, stirring was continued for 2 hours to complete the polymerization. Table 1 shows the polymerization rates with time of styrene and maleic anhydride and the consumption reaction rates with time of these monomers. Thereafter, it was charged at 8 L / min into a vented devolatilizing extruder (Ikegai twin screw extruder PCM-30α modified) at a cylinder temperature of 220 ° C. and a vacuum of 1 KPaA to obtain a polymer B-1. The results are shown in Table 2.
[0033]
[Comparative Example 2]
B-2: A 10-liter stainless steel reactor equipped with a stirrer, a heating / cooling device, a thermometer, and a raw material addition device was charged with 90 parts by mass of styrene and 0.002 parts by mass of α-methylstyrene dimer, Dialkyl peroxide organic peroxide di-t-butyl peroxide 0.20 part by mass of isobutyl methyl ketone 65 parts by mass, maleic anhydride 10 parts by mass and 10 hour half-life temperature 123.7 ° C. Was continuously stirred for 11 hours at an addition rate of 0.018 parts by mass / hour, followed by polymerization by heating and stirring. After completion of the addition, stirring was continued for 2 hours to complete the polymerization. Table 1 shows the polymerization rates with time of styrene and maleic anhydride and the consumption reaction rates with time of these monomers. Then, it was charged at 8 L / min into a devolatilizing extruder with a vent at a cylinder temperature of 220 ° C. and a vacuum degree of 1 KPaA (Ikegai twin screw extruder PCM-30α modified) to obtain a polymer B-2. The results are shown in Table 2.
[0034]
[Table 1]
Figure 0004386645
[0035]
[Table 2]
Figure 0004386645
[0036]
【The invention's effect】
The present invention controls the addition rate of the organic peroxide with respect to the composition ratio of the aromatic vinyl monomer and the unsaturated carboxylic acid anhydride, the type of organic peroxide, and the consumption reaction rate of the monomer. An aromatic vinyl resin excellent in high molecular weight, high transparency, heat resistance, and hue can be produced.

Claims (1)

芳香族ビニル系単量体(a)を60〜95質量部、不飽和カルボン酸無水物(b)を40〜5質量部含有する単量体100質量部に対し、1〜100質量部のケトン類を用いて溶液重合する方法であって前記単量体100質量部に対して、10時間半減期温度が90℃〜110℃であるパーオキシエステル系有機過酸化物(c)0.008〜0.50質量部を、前記単量体の消費反応速度6〜10質量部/時間に対して0.001〜0.018質量部/時間の添加速度で添加し、前記単量体の少なくとも70質量部を重合し、その後、ベント付き脱揮押出機に連続的に導入して、シリンダー温度200〜250℃、かつ、真空度40kPaA以下で揮発分を除去することを特徴とする、重量平均分子量が18万〜40万、ASTM D−1003に準拠して測定された厚さ2mm部の全光線透過率が88%以上、ビカット軟化温度が110℃以上、かつ、JIS K−7105に準拠して測定された厚さ2mm部の色相(Y.I.)が4.0以下である芳香族ビニル系樹脂の製造方法。Aromatic vinyl monomer (a) 60 to 95 parts by weight, relative to the monomer 100 parts by weight containing 40 to 5 parts by weight unsaturated carboxylic acid anhydride (b), 1 to 100 parts by weight of the ketone a method of solution polymerization using a kind, with respect to the monomer 100 parts by weight, peroxyester organic peroxide 10-hour half-life temperature of 90 ℃ ~110 ℃ (c) 0.008 To 0.50 parts by mass at a rate of addition of 0.001 to 0.018 parts by mass / hour with respect to a consumption reaction rate of 6 to 10 parts by mass / hour of the monomer, 70 parts by weight of the polymerization, then continuously introduced into a vented devolatilizing extruder at a cylinder temperature of 200 to 250 ° C., and, you and removing the volatiles in the following vacuum 40KPaA, weight average molecular weight of from 180,000 to 400,000, ASTM D-1 03 total light transmittance of the thickness of 2mm portion was measured according 88% or higher, Vicat softening temperature of 110 ° C. or higher, and, JIS K-7105 thickness was measured in accordance with of 2mm of the hue ( Y.I.) A process for producing an aromatic vinyl resin having a value of 4.0 or less .
JP2003002688A 2003-01-09 2003-01-09 Aromatic vinyl resin and method for producing the same Expired - Fee Related JP4386645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003002688A JP4386645B2 (en) 2003-01-09 2003-01-09 Aromatic vinyl resin and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003002688A JP4386645B2 (en) 2003-01-09 2003-01-09 Aromatic vinyl resin and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004211036A JP2004211036A (en) 2004-07-29
JP4386645B2 true JP4386645B2 (en) 2009-12-16

Family

ID=32820349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003002688A Expired - Fee Related JP4386645B2 (en) 2003-01-09 2003-01-09 Aromatic vinyl resin and method for producing the same

Country Status (1)

Country Link
JP (1) JP4386645B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009039518A2 (en) * 2007-09-21 2009-03-26 Gelesis, Inc. Methods of purifying poly(styrene-co-maleic anhydride/acid)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58187410A (en) * 1982-04-26 1983-11-01 Dainippon Ink & Chem Inc Production of aromatic vinyl compound and maleic anhydride copolymer
JPH0686497B2 (en) * 1983-12-27 1994-11-02 三井東圧化学株式会社 Styrene-based copolymer
JPS62161805A (en) * 1986-01-09 1987-07-17 Daicel Chem Ind Ltd Production of copolymer resin
JPS63104817A (en) * 1986-10-22 1988-05-10 Asahi Chem Ind Co Ltd Molded product of styrene group resin biaxially oriented sheet
JPH0251514A (en) * 1988-08-15 1990-02-21 Mitsubishi Rayon Co Ltd Preparation of maleimide copolymer
JP2592332B2 (en) * 1988-08-15 1997-03-19 三菱レイヨン株式会社 Maleimide copolymer and method for producing the same
JPH04293908A (en) * 1991-03-22 1992-10-19 Idemitsu Petrochem Co Ltd Production of styrene resin
JP3060085B2 (en) * 1993-02-18 2000-07-04 住友化学工業株式会社 Polystyrene-based copolymer, method for producing polystyrene-based copolymer, and injection-molded product
JPH06279546A (en) * 1993-03-30 1994-10-04 Asahi Chem Ind Co Ltd Stretched styrene resin sheet
JPH09324016A (en) * 1996-06-06 1997-12-16 Nippon Shokubai Co Ltd Heat-resistant methacrylic resin and its preparation
JPH1160640A (en) * 1997-08-27 1999-03-02 Nippon Shokubai Co Ltd Maleimide-based copolymer and thermoplastic resin composition
JPH11222532A (en) * 1997-12-05 1999-08-17 Daicel Chem Ind Ltd Foamed heat-resistant synthetic resin sheet and container

Also Published As

Publication number Publication date
JP2004211036A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
JP7280240B2 (en) Thermoplastic resin composition and molded article produced therefrom
WO2018220961A1 (en) Thermoplastic resin composition, production method for thermoplastic resin composition, molded article, and production method for molded article
WO2016186133A1 (en) Heat-resistant resin composition and method for producing same
JP7245333B2 (en) Maleimide-based copolymer, method for producing the same, resin composition, and injection-molded article
TW202219155A (en) Maleimide copolymer, and chlorine-containing polymer resin composition including maleimide copolymer and chlorine-containing polymer
EP3239235B9 (en) Thermoplastic resin composition, method for producing same, and molded article of same
JP7245334B2 (en) Maleimide-based copolymer, method for producing the same, and resin composition using the same
CN115667394A (en) Resin composition and resin molded article
EP0509459B1 (en) Maleimide-based copolymer,process for producing it, and thermoplastic resin composition containing the same
JP4386645B2 (en) Aromatic vinyl resin and method for producing the same
JP3923359B2 (en) Thermoplastic styrene resin composition
GB2306962A (en) Styrene base random copolymer
JP5468303B2 (en) Method for producing styrene-methacrylic acid-methyl methacrylate resin
EP0370264B1 (en) Heat resistant and impact resistant resin composition
JP2005298776A (en) Heat resistance-imparting material and resin composition using the same
CN116133821A (en) Maleimide copolymer, maleimide copolymer composition, resin composition, and injection molded article
TWI449740B (en) Rubber modified styrene resin and molded article produced
JPH0616744A (en) Rubber-modified copolymer resin composition and production thereof
JP3577380B2 (en) Continuous production method of styrene resin
JP2020139054A (en) Transparent thermoplastic resin composition and its molded article
JPH05194676A (en) Rubber modified aromatic vinyl-based copolymer resin and its production
JP4721645B2 (en) Method for producing heat-resistant styrenic resin and composition thereof
JP3297180B2 (en) Maleimide copolymer
JP7492952B2 (en) Thermoplastic resin composition and molded article thereof
JP2004339357A (en) Transparent rubber-modified polystyrene resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090929

R150 Certificate of patent or registration of utility model

Ref document number: 4386645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees