JPH05258759A - Solid electrolyte type fuel battery - Google Patents

Solid electrolyte type fuel battery

Info

Publication number
JPH05258759A
JPH05258759A JP4053952A JP5395292A JPH05258759A JP H05258759 A JPH05258759 A JP H05258759A JP 4053952 A JP4053952 A JP 4053952A JP 5395292 A JP5395292 A JP 5395292A JP H05258759 A JPH05258759 A JP H05258759A
Authority
JP
Japan
Prior art keywords
substrate
gas
fuel cell
manifold
solid oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4053952A
Other languages
Japanese (ja)
Inventor
Shinichi Maruyama
晋一 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4053952A priority Critical patent/JPH05258759A/en
Publication of JPH05258759A publication Critical patent/JPH05258759A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To cause a reaction gas to uniformly flow in gas flow slits of a substrate. CONSTITUTION:A solid electrolyte type fuel cell comprises a substrate prepared by forming slits in a central part of each side wall 24 and inserting into these slits ceramic thin plates such as anti-reducing/heat-resisting alumina or YSZ or metallic thin plates, the thin plates being positionally adjusted after they are inserted, by which the end portions of the thin plates are made equal to or lower than the upper end of the side wall 24, and gas nontransmission layers 25 inserted into the side walls.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は支持膜方式の固体電解
質型燃料電池に係り、特に基板のガス通流溝を形成する
側壁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a supporting membrane type solid oxide fuel cell, and more particularly to a side wall forming a gas flow groove of a substrate.

【0002】[0002]

【従来の技術】固体電解質型燃料電池は、イットリア安
定化ジルコニア (以下YSZと称する) で代表される高
温でイオン導電性を持つ固体電解質を電解質とした燃料
電池で、高温で運転することにより、高効率、高出力密
度等の特徴を持ち、また電解質が固体であるため、りん
酸型や溶融炭酸塩型燃料電池のように電解質の蒸発や流
出、また反応ガスの差圧制御等に対する配慮を少なくで
きるため、期待の大きい燃料電池である。
2. Description of the Related Art A solid oxide fuel cell is a fuel cell represented by yttria-stabilized zirconia (hereinafter referred to as YSZ) which uses a solid electrolyte having ionic conductivity at high temperature as an electrolyte. It has features such as high efficiency and high power density, and since the electrolyte is solid, consideration is given to evaporation and outflow of the electrolyte, and differential pressure control of the reaction gas, like phosphoric acid type and molten carbonate type fuel cells Since it can be reduced, it is a fuel cell with high expectations.

【0003】しかしYSZそれ自身の比抵抗は高く、電
池性能の点から電池内部抵抗を大きくすることは出来
ず、YSZの厚さは最大で0.3mm程度が限度である。図
3は従来の自立膜型固体電解質型燃料電池を示す分解斜
視図である。自立した薄い電解質板11の両面に燃料極
12、空気極13の二つの電極を積層して単セルが形成
される。この単セルはセパレータと交互に積層される。
しかしこの型の電池の電解質板は非常に脆いため、大面
積の単電池を形成することは難しく、また出来たとして
も取扱いが難しく、電池の大型化は困難であった。そこ
でこのYSZの薄い膜を形成するべく、多孔質基板を先
ず製作し、その上に固体電解質体をプラズマ溶射法や、
スラリーコーティング法等で積層する支持膜方式が提案
された。
However, since the specific resistance of YSZ itself is high, the internal resistance of the battery cannot be increased from the viewpoint of battery performance, and the maximum thickness of YSZ is about 0.3 mm. FIG. 3 is an exploded perspective view showing a conventional self-supporting membrane type solid oxide fuel cell. A single cell is formed by stacking two electrodes, a fuel electrode 12 and an air electrode 13, on both surfaces of a self-supporting thin electrolyte plate 11. The unit cells are alternately laminated with the separator.
However, since the electrolyte plate of this type of battery is extremely brittle, it is difficult to form a large-area cell, and even if it is possible, it is difficult to handle, and it is difficult to increase the size of the battery. Therefore, in order to form this thin film of YSZ, a porous substrate is first manufactured, and a solid electrolyte body is formed on the porous substrate by a plasma spraying method,
A supporting film method of stacking by a slurry coating method or the like has been proposed.

【0004】図4は従来の支持膜方式の固体電解質型燃
料電池を示す分解斜視図である。Ni−YSZからなる
厚い基板14の上にYSZの薄い膜からなる固体電解質
体15を形成し、さらにその上にランタンマンガナイト
La (Sr) MnO3 からなるカソード16を積層して
単電池結合体が形成される。また、ランタンマンガナイ
トLaMnO3 からなる基板18の上に緻密なランタン
クロマイトLaCrO3 17が積層されセパレータとな
る。
FIG. 4 is an exploded perspective view showing a conventional support membrane type solid oxide fuel cell. A solid electrolyte body 15 made of a thin film of YSZ is formed on a thick substrate 14 made of Ni-YSZ, and a cathode 16 made of lanthanum manganite La (Sr) MnO 3 is further laminated on the solid electrolyte body 15 to form a unit cell assembly. Is formed. Further, a dense lanthanum chromite LaCrO 3 17 is laminated on a substrate 18 made of lanthanum manganite LaMnO 3 to form a separator.

【0005】固体電解質型燃料電池は約1000℃の高
温で運転されるため、電池材料に発生する熱歪が大きい
のが一般である。このため支持膜方式の固体電解質型燃
料電池は、基板の中央部に燃料ガスおよび酸化剤ガス供
給用のマニホルドを設ける内部マニホルド方式が提案さ
れている。図5は従来の内部マニホルド方式による基板
を示す平面図である。空気供給マニホルド19, 燃料ガ
ス供給マニホルド20が基板を貫通し、燃料ガス供給マ
ニホルド20より基板の周辺部に向かって側壁22を介
してガス通流溝21が形成される。燃料ガスはこのガス
通流溝21を通って基板の中央部から周辺部へ対称に流
れる。
Since the solid oxide fuel cell is operated at a high temperature of about 1000 ° C., the thermal strain generated in the cell material is generally large. For this reason, as the support membrane type solid oxide fuel cell, an internal manifold type in which a manifold for supplying the fuel gas and the oxidant gas is provided in the center of the substrate has been proposed. FIG. 5 is a plan view showing a substrate according to a conventional internal manifold system. The air supply manifold 19 and the fuel gas supply manifold 20 penetrate the substrate, and a gas flow groove 21 is formed from the fuel gas supply manifold 20 toward the peripheral portion of the substrate via the side wall 22. The fuel gas flows symmetrically from the central portion of the substrate to the peripheral portion through the gas flow groove 21.

【0006】図6は従来の内部マニホルド方式による異
なる基板を示し、図6(a) は平面図, 図6(b) は図6
(a) のA−A矢視断面図である。空気供給マニホルドよ
り渦巻き状に空気が周辺部に向かって流れる。
FIG. 6 shows a different substrate according to the conventional internal manifold system, FIG. 6 (a) is a plan view, and FIG. 6 (b) is FIG.
It is an AA arrow sectional drawing of (a). Air flows spirally from the air supply manifold toward the periphery.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の内部マニホルド方式の基板においては、基板
が多孔質であるために反応ガスは側壁内部を拡散して隣
接するガス通流溝へと流れ、その結果反応ガスは必ずし
もガス通流溝を均等に流れることがなく基板内の反応ガ
スの分布が一様でなくなって電池特性が全体として低
く、反応ガス利用率も低くなるという問題があった。
However, in such a conventional internal manifold type substrate, since the substrate is porous, the reaction gas diffuses inside the side wall and flows to the adjacent gas passage groove. As a result, the reaction gas does not always flow evenly through the gas flow groove, and the distribution of the reaction gas in the substrate is not uniform, resulting in poor battery characteristics as a whole and a low reaction gas utilization rate. .

【0008】図7は従来の基板における反応ガスの流れ
を示す断面図である。この発明は上述の点に鑑みてなさ
れ、その目的は基板のガス通流溝を反応ガスが均一に流
れるようにして、特性に優れる固体電解質型燃料電池を
提供することにある。
FIG. 7 is a sectional view showing the flow of a reaction gas in a conventional substrate. The present invention has been made in view of the above points, and an object thereof is to provide a solid oxide fuel cell having excellent characteristics by allowing a reaction gas to uniformly flow in a gas flow groove of a substrate.

【0009】[0009]

【課題を解決するための手段】上述の目的はこの発明に
よれば、第一の基板上に電極と固体電解質体の積層され
た単電池接合体と、第二の基板上にランタンクロマイト
の積層されたセパレータとを有し、単電池結合体とセパ
レータとは交互に積層され、第一の基板は主面の中央部
を厚さ方向に貫通する酸化剤ガス供給マニホルドと燃料
ガスマニホルドとを有し、前記二つのマニホルドのうち
いずれか一方のマニホルドから基板の周辺部に向かって
反応ガスの流れるガス通流溝を備えるとともに、前記ガ
ス通流溝を形成する側壁にはガス不透過層を備え、第二
の基板は、主面の中央部を厚さ方向に貫通する酸化剤ガ
スマニホルドと燃料ガスマニホルドとを有し、前記一方
のマニホルドに対する他方のマニホルドから基板の周辺
部に向かって反応ガスの流れるガス通流溝を備えるとす
ることにより達成される。
According to the present invention, the above object is to provide a unit cell assembly in which an electrode and a solid electrolyte body are laminated on a first substrate and a lanthanum chromite layer on a second substrate. The unitary cell assembly and the separators are alternately laminated, and the first substrate has an oxidant gas supply manifold and a fuel gas manifold that penetrate the central portion of the main surface in the thickness direction. And a gas passage groove through which the reaction gas flows from one of the two manifolds toward the peripheral portion of the substrate, and a gas impermeable layer is provided on the side wall forming the gas passage groove. The second substrate has an oxidant gas manifold and a fuel gas manifold that penetrate through the central portion of the main surface in the thickness direction, and reacts from the other manifold with respect to the one manifold toward the peripheral portion of the substrate. It is accomplished by a comprises a gas channel part of the flow of the scan.

【0010】[0010]

【作用】側壁に設けられるガス不透過層は基板内部を拡
散して隣接するガス通流溝に流れる反応ガス量を制限す
る。
The gas impermeable layer provided on the side wall limits the amount of reaction gas that diffuses inside the substrate and flows into the adjacent gas flow groove.

【0011】[0011]

【実施例】【Example】

実施例1 図1はこの発明の実施例に係る固体電解質型燃料電池の
基板を示す断面図である。側壁24の外周側面にNiO
−YSZの懸濁液が塗布される。このNiO−YSZの
懸濁液は、イソプロピルアルコールとトルエンを溶媒と
してポリビニルブチラール (PVB) を溶解した中にN
iO−YSZ微粉末を懸濁させた液である。大気中15
00℃で焼成し、ガス不透過層25が形成される。
Example 1 FIG. 1 is a sectional view showing a substrate of a solid oxide fuel cell according to an example of the present invention. NiO on the outer peripheral side surface of the side wall 24
-A suspension of YSZ is applied. This NiO-YSZ suspension was prepared by dissolving polyvinyl butyral (PVB) in isopropyl alcohol and toluene as a solvent and adding N
This is a liquid in which iO-YSZ fine powder is suspended. Atmosphere 15
By firing at 00 ° C., the gas impermeable layer 25 is formed.

【0012】NiO−YSZの懸濁液に代えてエタノー
ルに分散させたYSZの懸濁液を塗布し、1450℃で
焼成してもよい。これらの懸濁液の塗布, 焼成は必要に
応じ数回くり返される。 実施例2 図2はこの発明の異なる実施例に係る固体電解質型燃料
電池の基板を示す断面図である。本実施例ではガス不透
過層25は側壁24の内部に差込まれる。このような基
板は側壁24の中央部にスリットを作り、そのスリット
の中に耐還元性で耐熱性のアルミナ若しくは、YSZの
ようなセラミックス薄板、若しくは金属薄板を差し込ん
で調製される。この時、薄板端部は側壁上端に等しいか
それより低くする。
Instead of the NiO-YSZ suspension, a YSZ suspension dispersed in ethanol may be applied and baked at 1450 ° C. The application and firing of these suspensions are repeated several times as necessary. Example 2 FIG. 2 is a sectional view showing a substrate of a solid oxide fuel cell according to another example of the present invention. In this embodiment, the gas impermeable layer 25 is inserted inside the side wall 24. Such a substrate is prepared by forming a slit in the central portion of the side wall 24 and inserting a reduction-resistant and heat-resistant alumina, a ceramic thin plate such as YSZ, or a metal thin plate into the slit. At this time, the edge of the thin plate is equal to or lower than the upper end of the side wall.

【0013】[0013]

【発明の効果】この発明によれば、第一の基板上に電極
と固体電解質体の積層された単電池接合体と、第二の基
板上にランタンクロマイトの積層されたセパレータとを
有し、単電池結合体とセパレータとは交互に積層され、
第一の基板は主面の中央部を厚さ方向に貫通する酸化剤
ガス供給マニホルドと燃料ガスマニホルドとを有し、前
記二つのマニホルドのうちいずれか一方のマニホルドか
ら基板の周辺部に向かって反応ガスの流れるガス通流溝
を備えるとともに、前記ガス通流溝を形成する側壁には
ガス不透過層を備え、第二の基板は、主面の中央部を厚
さ方向に貫通する酸化剤ガスマニホルドと燃料ガスマニ
ホルドとを有し、前記一方のマニホルドに対する他方の
マニホルドから基板の周辺部に向かって反応ガスの流れ
るガス通流溝を備えるので、ガス不透過層により基板内
部を反応ガスが拡散して隣接するガス通流溝に反応ガス
が流れることは妨げられ、その結果反応ガスがガス通流
溝を均一に流れて、電極に一様に反応ガスが分配され、
電池特性と反応ガス利用率の向上した固体電解質型燃料
電池が得られる。
According to the present invention, it has a unit cell assembly in which an electrode and a solid electrolyte body are laminated on a first substrate, and a separator in which lanthanum chromite is laminated on a second substrate, The battery cell assembly and the separator are alternately stacked,
The first substrate has an oxidant gas supply manifold and a fuel gas manifold penetrating the central portion of the main surface in the thickness direction, and from one of the two manifolds toward the peripheral portion of the substrate. The second substrate is provided with a gas flow groove through which the reaction gas flows, and a gas impermeable layer is provided on the side wall forming the gas flow groove, and the second substrate has an oxidizer penetrating the center of the main surface in the thickness direction. A gas manifold and a fuel gas manifold are provided, and since the reaction gas flows from the other manifold to the one manifold toward the peripheral portion of the substrate, the reaction gas flows inside the substrate by the gas impermeable layer. The reaction gas is prevented from diffusing and flowing into the adjacent gas flow groove, and as a result, the reaction gas uniformly flows through the gas flow groove, and the reaction gas is evenly distributed to the electrodes.
A solid oxide fuel cell having improved cell characteristics and reaction gas utilization rate can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例に係る固体電解質型燃料電池
の基板を示す断面図
FIG. 1 is a sectional view showing a substrate of a solid oxide fuel cell according to an embodiment of the present invention.

【図2】この発明の異なる実施例に係る固体電解質型燃
料電池の基板を示す断面図
FIG. 2 is a sectional view showing a substrate of a solid oxide fuel cell according to another embodiment of the present invention.

【図3】従来の自立膜型固体電解質型燃料電池を示す分
解斜視図
FIG. 3 is an exploded perspective view showing a conventional self-supporting membrane type solid oxide fuel cell.

【図4】従来の支持膜方式の固体電解質型燃料電池を示
す分解斜視図
FIG. 4 is an exploded perspective view showing a conventional support membrane type solid oxide fuel cell.

【図5】従来の内部マニホルド方式による基板を示す平
面図
FIG. 5 is a plan view showing a substrate according to a conventional internal manifold system.

【図6】従来の内部マニホルド方式による異なる基板を
示し、図6(a) は平面図, 図6(b) は図6(a) のA−A
矢視断面図
6A and 6B show different substrates according to a conventional internal manifold system, FIG. 6A is a plan view, and FIG. 6B is AA of FIG. 6A.
Sectional view

【図7】従来の基板における反応ガスの流れを示す断面
FIG. 7 is a sectional view showing a flow of a reaction gas in a conventional substrate.

【符号の説明】[Explanation of symbols]

23 ガス通流溝 24 側壁 25 ガス不透過層 15 固体電解質体 23 Gas Flow Groove 24 Side Wall 25 Gas Impermeable Layer 15 Solid Electrolyte

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】第一の基板上に電極と固体電解質体の積層
された単電池結合体と、第二の基板上にランタンクロマ
イトの積層されたセパレータとを有し、 単電池結合体とセパレータとは交互に積層され、 第一の基板は主面の中央部を厚さ方向に貫通する酸化剤
ガス供給マニホルドと燃料ガスマニホルドとを有し、前
記二つのマニホルドのうちいずれか一方のマニホルドか
ら基板の周辺部に向かって反応ガスの流れるガス通流溝
を備えるとともに、前記ガス通流溝を形成する側壁には
ガス不透過層を備え、 第二の基板は、主面の中央部を厚さ方向に貫通する酸化
剤ガスマニホルドと燃料ガスマニホルドとを有し、前記
一方のマニホルドに対する他方のマニホルドから基板の
周辺部に向かって反応ガスの流れるガス通流溝を備える
ことを特徴とする固体電解質型燃料電池。
1. A single cell combined body having an electrode and a solid electrolyte body laminated on a first substrate, and a lanthanum chromite laminated separator on a second substrate. And the first substrate has an oxidant gas supply manifold and a fuel gas manifold that penetrate through the central portion of the main surface in the thickness direction, and the first substrate is connected to either one of the two manifolds. The substrate is provided with a gas flow groove through which the reaction gas flows toward the peripheral portion of the substrate, and a gas impermeable layer is provided on the side wall forming the gas flow groove. The second substrate has a thick central portion of the main surface. Characterized by having an oxidant gas manifold and a fuel gas manifold penetrating in the vertical direction, and having a gas flow groove through which a reaction gas flows from the other manifold to the one manifold toward the peripheral portion of the substrate. Solid electrolyte type fuel cell.
【請求項2】請求項1記載の固体電解質型燃料電池にお
いて、ガス不透過層は側壁表面に設けられることを特徴
とする固体電解質型燃料電池。
2. The solid oxide fuel cell according to claim 1, wherein the gas impermeable layer is provided on the side wall surface.
【請求項3】請求項1記載の固体電解質型燃料電池にお
いて、ガス不透過層は側壁内部に差込まれることを特徴
とする固体電解質型燃料電池。
3. The solid oxide fuel cell according to claim 1, wherein the gas impermeable layer is inserted inside the side wall.
【請求項4】請求項1記載の固体電解質型燃料電池にお
いて、第一の基板はニッケル−イットリア安定化ジルコ
ニアNi−YSZ基板、第二の基板はランタンマンガナ
イトLaMnO3 であることを特徴とする固体電解質型
燃料電池。
4. The solid oxide fuel cell according to claim 1, wherein the first substrate is a nickel-yttria-stabilized zirconia Ni-YSZ substrate and the second substrate is lanthanum manganite LaMnO 3. Solid oxide fuel cell.
【請求項5】請求項1記載の固体電解質型燃料電池にお
いて、ガス不透過層はニッケル−ジルコニアNi−Zr
2 , イットリア安定化ジルコニアまたはアルミナであ
ることを特徴とする固体電解質型燃料電池。
5. The solid oxide fuel cell according to claim 1, wherein the gas impermeable layer is nickel-zirconia Ni-Zr.
A solid oxide fuel cell, which is O 2 , yttria-stabilized zirconia, or alumina.
JP4053952A 1992-03-13 1992-03-13 Solid electrolyte type fuel battery Pending JPH05258759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4053952A JPH05258759A (en) 1992-03-13 1992-03-13 Solid electrolyte type fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4053952A JPH05258759A (en) 1992-03-13 1992-03-13 Solid electrolyte type fuel battery

Publications (1)

Publication Number Publication Date
JPH05258759A true JPH05258759A (en) 1993-10-08

Family

ID=12957059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4053952A Pending JPH05258759A (en) 1992-03-13 1992-03-13 Solid electrolyte type fuel battery

Country Status (1)

Country Link
JP (1) JPH05258759A (en)

Similar Documents

Publication Publication Date Title
US5399442A (en) Solid electrolyte fuel cell
US5518829A (en) Solid oxide electrolyte fuel cell having dimpled surfaces of a power generation film
US6972161B2 (en) Fuel cell assembly and method of making the same
US6534211B1 (en) Fuel cell having an air electrode with decreased shrinkage and increased conductivity
US8252366B2 (en) Method for making toughened electrode-supported ceramic fuel cells
US20040180252A1 (en) Fuel cell and method for manufacturing fuel cell
JPH10189017A (en) Gas seal structure of honeycomb structure solid electrolyte fuel cell
JPH09326259A (en) Solid electrolyte fuel cell
JP3244308B2 (en) Solid oxide fuel cell system
JP2003263996A (en) Solid oxide fuel cell
JP4304889B2 (en) Solid oxide fuel cell
JPH03116659A (en) Solid electrolyte type fuel battery
JP2003331871A (en) Flat solid oxide fuel cell and separator
JPH05258759A (en) Solid electrolyte type fuel battery
JP6965041B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JPH0589901A (en) Solid electrolyte type fuel cell
JP2002358980A (en) Solid electrolyte fuel cell
JPH0479163A (en) Solid electrolyte type fuel cell
JPH02168568A (en) Fuel battery with solid electrolyte
JPH06196198A (en) Solid electrolyte type fuel cell
US11764389B2 (en) Fuel cell manifold having an embedded dielectric layer and methods of making thereof
JPH0562694A (en) Solid electrolyte type fuel cell
JP7132982B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JPH11126617A (en) Solid electrolyte-type fuel cell and its manufacture
US20220393219A1 (en) Fuel plenum and fuel cell stack including same