JPH05256108A - Snow power generating system - Google Patents

Snow power generating system

Info

Publication number
JPH05256108A
JPH05256108A JP8819392A JP8819392A JPH05256108A JP H05256108 A JPH05256108 A JP H05256108A JP 8819392 A JP8819392 A JP 8819392A JP 8819392 A JP8819392 A JP 8819392A JP H05256108 A JPH05256108 A JP H05256108A
Authority
JP
Japan
Prior art keywords
power generation
boiling point
low boiling
snow
point medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8819392A
Other languages
Japanese (ja)
Inventor
Kosaburo Sato
佐藤幸三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8819392A priority Critical patent/JPH05256108A/en
Publication of JPH05256108A publication Critical patent/JPH05256108A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PURPOSE:To carry out power generation by utilizing a temperature difference between thermal energy in the low temperature (0 deg.) of cumulated snow existing on a high land and thermal energy in the high temperature of the underground place in the mountains, and also utilizing positional energy in liquid condition of low boiling point medium. CONSTITUTION:A condition is set up for preparing a state in which kinetic energy in gas condition and liquid condition of a low boiling point medium by using the low boiling point medium. Power generators 1, 2 are arranged therefor in respective conditions and a turbine 5 and a water turbine 6 are rotated in respective conditions. Shafts of those turbine 5, 6 are connected directly to rotary shafts of respective power generators 1, 2 so as to obtain respective generated power 7.1 and 7.2. It is thus possible to obtain much unutilized power generation resources by utilizing a temperature difference power generating system while utilizing the amount of cumulated snow existing on a specially high snowfall area in high snow fall areas in Japan.

Description

【発明の詳細な説明】Detailed Description of the Invention 【発明の目的】[Object of the Invention]

【産業上の利用分野】本発明の産業上の利用分野として
は、電力の発電システムの分野に属する。 本発明
の目的は自然エネルギーの電力変換システムとしていろ
いろあるが、 本発明においては水力発電システム
においては未だ利用されていなかった 分野を開発
し利用することを目的とする。即ち高標高地に存在する
積雪の もつ低温と熱容量を使用する一方、地下熱
(温泉水、高温岩体等)の高温 と熱容量を利用
し、その間の温度差を利用して、低沸点媒体の気体状態
と 液体状態を発生させ、そのそれぞれの場合の運
動エネルギーを利用するこ とにより、発電機に回
転力を与え発電することを目的とする。
The field of industrial application of the present invention belongs to the field of electric power generation systems. Although the object of the present invention is various as a power conversion system for natural energy, it is an object of the present invention to develop and utilize a field that has not yet been utilized in a hydroelectric power generation system. That is, while using the low temperature and heat capacity of snow present in high altitudes, the high temperature and heat capacity of underground heat (hot spring water, hot rocks, etc.) are used, and the temperature difference between them is used to determine the low boiling point medium. The purpose is to generate a gas state and a liquid state and use the kinetic energy in each case to give a rotating force to the generator to generate electricity.

【従来の発電技術】従来の水力発電システムは公表地に
おける水の位置エネルギーを落下させることにより運動
エネルギーに変換させ、そのエネルギーによって水車を
回転させ、この軸に発電機の回転軸を直結することによ
り発電させる方式である。
2. Description of the Related Art A conventional hydroelectric power generation system is to convert the potential energy of water at the site of publication into kinetic energy by dropping it, rotate the water turbine by this energy, and connect the rotating shaft of the generator directly to this shaft. It is a method to generate electricity by.

【発明が解決しようとする課題】本発明においては従来
の水力発電システムでは未利用の分野である積雪のもつ
低温と融解時に吸収する1グラム当り約80カロリーの
莫大な吸熱容量を利用することである。又一方、日本の
脊嶺山脈中には多数の火山帯が分布し、この地下部分は
高温状態になっている。この両者を組み合わせることに
より、数10℃から100℃程度の温度差を得ることが
できる。この温度差を利用して低沸点媒体の特性であ
る、高温においては気体状態低温(0℃付近)において
は液体状態を発生させることができる。この嶺状態にお
ける運動エネルギーを利用して効率的に発電電力を得よ
うとするのが本発明の課題である。
In the present invention, it is possible to utilize the enormous heat absorption capacity of about 80 calories per gram absorbed by snow at a low temperature and when it melts, which is a field that has not been used in the conventional hydroelectric power generation system. is there. On the other hand, many volcanic zones are distributed in the Reine Mountains of Japan, and this underground part is in a high temperature state. By combining both of them, a temperature difference of several tens of degrees Celsius to 100 degrees Celsius can be obtained. Utilizing this temperature difference, it is possible to generate a liquid state at a low temperature (around 0 ° C.) which is a gas state at a high temperature, which is a characteristic of a low boiling point medium. It is an object of the present invention to efficiently generate electric power by utilizing kinetic energy in this ridge state.

【発明の構成】本発明の構成を図1に示す。図の例は、
山間地に雪ダムを作り、その突端部の傾斜部を堀削し、
地中部に低沸点媒体を気化させるための、加熱蒸発器
(3)及びタービンを直結した発電機(1)を設置す
る。発電機からは電力取り出し用端子7,1を地上部に設
ける。一方、気体状態の運動エネルギーを利用して発電
した後の低沸点媒体はそれ自体のもつ平均自由行路を利
用して高標高位置へ誘導する。この位置が前述の雪ダム
部に堆積された積雪(8)によって冷却し、液化させ、
これを液溜部(15)へ誘導し、ここから沿直に流下
(13)させ、水車部(6)の回転翼に回転力を与え、
その後U字管部( )へ流下させる。U字管部
の左側の加熱蒸発機(3)の下部には低沸点媒体の加熱
による逆流を防止する逆止弁(4)を設け、更にフロン
ポンプ(10)により液体媒体を加熱蒸発器(3)へ誘
導する。この間水車に直結する発電器(2)の発電電力
を取り出し端子(3)地上部の気体状態発電による発電
電力取り出し端子(7,1)の側に設置する。このように
して、低沸点媒体の複合利用により発電効率を上げるこ
とができる。
The structure of the present invention is shown in FIG. The example in the figure is
Make a snow dam in the mountainous area, excavate the sloped part of the tip,
A generator (1) directly connected to a heating evaporator (3) and a turbine for vaporizing a low boiling point medium is installed in the ground. The terminals 7 and 1 for extracting electric power from the generator are provided on the ground. On the other hand, the low boiling point medium, which has generated electricity using the kinetic energy of the gaseous state, is guided to the high altitude position by using the mean free path of itself. This position is cooled and liquefied by the snowfall (8) deposited on the snow dam part,
This is guided to the liquid reservoir (15), and it is made to flow down (13) from here, and a rotational force is given to the rotor blades of the water turbine unit (6),
After that, let it flow down to the U-shaped tube (). A check valve (4) for preventing a backflow due to heating of a low boiling point medium is provided below the heating evaporator (3) on the left side of the U-shaped tube portion, and a freon pump (10) heats and vaporizes the liquid medium ( Guide to 3). During this time, the generated power of the generator (2) directly connected to the water turbine is installed on the output terminal (3) side of the output terminal (7,1) for generating power by gas state power generation on the ground. In this way, the power generation efficiency can be increased by the combined use of the low boiling point medium.

【課題を解決するための手段】[Means for Solving the Problems]

【実施例】雪利用発電システムの開発は始め、気体状態
のみの低沸点媒体の運動エネルギーを利用し、温泉水
(約66℃)と積雪を利用した温度発電を小型発電シス
テムを自作し、1981年4月に日本で初めて100ワ
ットの発電に成功した。その後加熱蒸発器の電熱面積を
拡大して90℃の温水を用い、 1984年5月に
1071ワットの出力を得た。本装置の発電特性につい
ては、発電器の回転数と温度差、回転数と発電出
圧、蒸発器の電熱面積と 出力、及びP−i線図、
負荷抵抗と発電圧及び負荷消費電力の関係を求め
ると共に、回転数と液体媒体の流出、トルク及び流連と
の関係及び熱効率、 電力変換効率を求めた。
[Example] The development of a snow-based power generation system was started, and a small-scale power generation system was self-made for thermal power generation using hot spring water (about 66 ° C) and snow using the kinetic energy of a low boiling point medium in the gaseous state, 1981. In April 2012, it succeeded in generating 100 watts for the first time in Japan. Then, the heating area of the heating evaporator was expanded to use hot water at 90 ° C., and an output of 1071 watt was obtained in May 1984. Regarding the power generation characteristics of this device, the rotation speed and temperature difference of the generator, the rotation speed and power generation output pressure, the electric heating area and output of the evaporator, and the P-i diagram,
Calculate the relationship between load resistance, voltage output, and load power consumption
At the same time, the relationship between the number of rotations and the outflow of liquid medium, the torque and the flow train, and the thermal efficiency and power conversion efficiency were obtained.

【発明の効果】わが国の国土の52%は国土庁の指定す
る豪雪地帯である。この地域の内脊嶺山脈地帯は特別豪
雪地域に属する高積雪地域である。この地域には多くの
火山帯がある。雪温度差発電は、この地域において、低
沸点媒体を用い地熱資源(60〜100℃)と貯積雪
(雪ダム利用)を利用することにより行うことができ
る。本発電システムは従来電力会社においても未開発の
分野である。又わが国の化石燃料資源状態を考えると
き、国策としてぜひ開発しておかなければならないエネ
ルギー開発の部門である。本発電方式は二酸化炭素、硫
黄酸化物などの発生がなく環境問題のない技術である。
わが国土の均衡ある発展を考えるとき本発電可能地域町
村の活性化にとり、有力なエネルギー資源となると共
に、融雪処理、暖房資源となる。しかるべき財政的裏付
けにより実用化の可能性はきわめて高い。
[Effect of the Invention] 52% of Japan's national land is a heavy snowfall area designated by the National Land Agency. The Uchirei mountain range in this area is a high snowfall area that belongs to a special heavy snowfall area. There are many volcanic zones in this area. Snow temperature differential power generation can be performed in this area by using a low boiling point medium and utilizing geothermal resources (60 to 100 ° C.) and accumulated snow (using a snow dam). This power generation system is an undeveloped field in conventional power companies. Also, when considering the state of fossil fuel resources in Japan, this is an energy development sector that must be developed as a national policy. This power generation method is a technology that does not generate carbon dioxide or sulfur oxides and has no environmental problems.
Considering the balanced development of our country, it will become a major energy resource for the activation of the towns and villages that can generate electricity, and will also serve as snow melting treatment and heating resources. The possibility of commercialization is extremely high with appropriate financial support.

【図面の簡単な説明】[Brief description of drawings]

図面は、この発明を代表する実施例に基づくものであ
り、第1図は全体システム図である。 1─────発電機(気体状態図) 2─────発電機(液体状態図) 3─────蒸発器及び加熱源 4─────逆流防止弁 5─────蒸気タービン 6─────液体用水車(又はタービン) 7─────発電電力取り出し端子 8─────堆雪(雪ダム利用) 9─────融雪水 10─────フロンポンプ 11─────液状低沸点媒体 12─────気体状低沸点媒体 13─────液状低沸点媒体 14─────液状媒体の流下方向 15─────液状媒体溜 16─────山地傾斜部断面
The drawings are based on an embodiment representative of the present invention, and FIG. 1 is an overall system diagram. 1 ───── Generator (gas phase diagram) 2 ───── Generator (liquid phase diagram) 3 ─────Evaporator and heating source 4 ───── Check valve 5 ─── ── Steam turbine 6 ───── Liquid water turbine (or turbine) 7 ───── Generated power output terminal 8 ───── Snowmelt (using snow dam) 9 ───── Snowmelt water 10 ─ ──── CFC pump 11 ───── Liquid low boiling medium 12 ───── Gaseous low boiling medium 13 ───── Liquid low boiling medium 14 ───── Flowing direction of liquid medium 15 ─ ──── Liquid medium reservoir 16 ───── Cross section of mountain slope

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年5月29日[Submission date] May 29, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Name of item to be corrected] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 雪発電システム[Title of Invention] Snow power generation system

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明の産業上の利用分野として
は、電力の発電システムの分野に属する。
The field of industrial application of the present invention belongs to the field of electric power generation systems.

【0002】[0002]

【従来の技術】従来技術としては特願昭56−2213
4号に公開されているが、この技術は風力エネルギーや
太陽熱エネルギーを高温源として用い、雪および冷水を
低温部として利用し、その間に低沸点媒体を循環させた
温度差発電に関するものである。
2. Description of the Related Art As a conventional technique, Japanese Patent Application No. 56-2213 is used.
As disclosed in No. 4, this technology relates to temperature difference power generation in which wind energy and solar thermal energy are used as a high temperature source, snow and cold water are used as a low temperature portion, and a low boiling point medium is circulated therebetween.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術において
は、低沸点媒体の気体状態の運動エネルギーのみを利用
した発電システムであり、発電効率が低い。
The above-mentioned prior art is a power generation system that utilizes only the kinetic energy of the low boiling point gas in the gaseous state, and has low power generation efficiency.

【0004】[0004]

【課題を解決するための手段】本発明においては、低沸
点媒体の気体状態に加えて液体状態の運動エネルギーを
利用するためのシステムを開発し、気体及び液体状態の
複合状態を利用することにより発電効率を従来の発電シ
ステムの2倍以上にするものである。
In the present invention, by developing a system for utilizing the kinetic energy of a liquid state in addition to the gas state of a low boiling point medium, and utilizing a combined state of a gas and a liquid state. The power generation efficiency is more than double that of the conventional power generation system.

【0005】すなわち、本発明の構成を図1に示しなが
ら、手段について説明すると、図の例は、山間地に雪ダ
ムを作り、その突端部の傾斜部を堀削し、地中部に低沸
点媒体を気化させるための、加熱蒸発器(3)及びター
ビンを直結した発電機(1)を設置する。発電機からは
電力取り出し用端子7.1,7.2を地上部に設ける。一
方、気体状態の運動エネルギーを利用して発電した後の
低沸点媒体はそれ自体のもつ平均自由行路を利用して高
標高位置へ誘導する。この位置が前述の雪ダム部に堆積
された積雪(8)によって冷却し、液化させ、これを液
溜部(15)へ誘導し、ここから沿直に流下(13)さ
せ、水車部(6)の回転翼に回転力を与え、その後U字
管部(17)へ流下させる。
That is, the means of the present invention will be described with reference to FIG. 1 showing the structure of the present invention. In the example shown in the figure, a snow dam is formed in a mountainous area, and the sloped portion of its tip is excavated to have a low boiling point in the ground. A heating evaporator (3) and a generator (1) directly connected to a turbine are installed to vaporize the medium. The terminals 7.1 and 7.2 for extracting power from the generator are installed on the ground. On the other hand, the low boiling point medium, which has generated electricity using the kinetic energy of the gaseous state, is guided to the high altitude position by using the mean free path of itself. This position is cooled and liquefied by the snow (8) accumulated on the snow dam part, and is liquefied, and this is guided to the liquid reservoir part (15), and is made to flow down (13) from here, and the water turbine part (6) A rotary force is applied to the rotary blade of FIG.

【0006】U字管部の左側の加熱蒸発機(3)の下部
には低沸点媒体の加熱による逆流を防止する逆止弁
(4)を設け、更にフロンポンプ(10)により液体媒
体を加熱蒸発器(3)へ誘導する。この間水車に直結す
る発電器(2)の発電電力を取り出し端子(3)地上部
の気体状態発電による発電電力取り出し端子(7.1)の
側(7.2)に設置する。
A check valve (4) for preventing a backflow due to heating of a low boiling point medium is provided under the heating evaporator (3) on the left side of the U-shaped section, and a liquid medium is heated by a flon pump (10). Guide to the evaporator (3). During this time, the power generated by the generator (2) directly connected to the water turbine is installed on the output terminal (3), which is located on the side of the power output output terminal (7.1) for gas-state power generation above the ground (7.1).

【0007】このようにして、低沸点媒体の複合利用に
より発電効率を上げることができる。
In this way, the power generation efficiency can be increased by the combined use of the low boiling point medium.

【0008】[0008]

【実施例】雪利用発電システムの開発は始め、気体状態
のみの低沸点媒体の運動エネルギーを利用し、温泉水
(約66℃)と積雪を利用した温度発電を小型発電シス
テムを自作し、1981年4月に日本で初めて100ワ
ットの発電に成功した。その後加熱蒸発器の伝熱面積を
拡大して90℃の温水を用い、1984年5月に107
1ワットの出力を得た。本装置の発電特性については、
発電器の回転数と温度差、回転数と発電電圧、蒸発器の
伝熱面積と出力、及びP−i線図、負荷抵抗と発電圧及
び負荷消費電力の関係を求めると共に、回転数と液体媒
体の流量、トルクと流量との関係及び熱効率、電力変換
効率を求めた。従来技術においての電力変換効率は約1
5%であるが、本発明においては約この2倍以上になる
ことが予測される。
[Example] The development of a snow-based power generation system was started, and a small-scale power generation system was self-made for thermal power generation using hot spring water (about 66 ° C) and snow using the kinetic energy of a low boiling point medium in the gaseous state, 1981. In April 2012, it succeeded in generating 100 watts for the first time in Japan. After that, the heat transfer area of the heating evaporator was expanded and hot water of 90 ° C was used.
I got an output of 1 watt. For the power generation characteristics of this device,
The number of revolutions and the temperature of the generator, the number of revolutions and the voltage generated, the heat transfer area and output of the evaporator, the P-i diagram, the relationship between the load resistance and the generated voltage, and the power consumption of the load, and the number of revolutions and the liquid The flow rate of the medium, the relationship between the torque and the flow rate, the thermal efficiency, and the power conversion efficiency were obtained. The power conversion efficiency in the prior art is about 1
Although it is 5%, in the present invention, it is expected to be about twice this amount or more.

【0009】[0009]

【発明の効果】わが国の国土の52%は国土庁の指定す
る豪雪地帯である。この地域の内脊嶺山脈地帯は特別豪
雪地域に属する高積雪地域である。この地域には多くの
火山帯がある。雪温度差発電は、この地域において、低
沸点媒体を用い利用しやすい比較的低温度の地熱資源
(60〜100℃)と貯積雪(雪ダム利用)を利用する
ことにより行うことができる。本発電システムは従来電
力会社においても未開発の分野である。又わが国の化石
燃料資源状態を考えるとき、国策としてぜひ開発してお
かなければならないエネルギー開発の部門である。
[Effect of the Invention] 52% of Japan's national land is a heavy snowfall area designated by the National Land Agency. The Uchirei mountain range in this area is a high snowfall area that belongs to a special heavy snowfall area. There are many volcanic zones in this area. Snow temperature differential power generation can be performed in this area by using a relatively low temperature geothermal resource (60 to 100 ° C.) that is easy to use using a low boiling point medium and accumulated snow (using a snow dam). This power generation system is an undeveloped field in conventional power companies. Also, when considering the fossil fuel resource status of our country, this is a sector of energy development that must be developed as a national policy.

【0010】本発電方式は二酸化炭素、硫黄酸化物など
の発生がなく環境問題のない技術である。わが国土の均
衡ある発展を考えるとき本発電可能地域町村の活性化に
とり、有力なエネルギー資源となると共に、低沸点媒体
を気化させた後の地熱水等は、地域住民のための融雪処
理、暖房資源となる。しかるべき財政的裏付けにより実
用化の可能性はきわめて高い。
This power generation method is a technology that does not generate carbon dioxide, sulfur oxides, etc. and has no environmental problems. When considering the balanced development of our land, it becomes a powerful energy resource for the activation of the towns and villages where this power generation is possible, and geothermal water etc. after vaporizing the low boiling point medium is used for snow melting treatment for local residents. It becomes a heating resource. With the appropriate financial support, the possibility of commercialization is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】図面は、この発明を代表する実施例に基づくも
のであり、全体システム図である。
FIG. 1 is an overall system diagram based on an embodiment representative of the present invention.

【符号の説明】 1 発電機(気体状態図) 2 発電機(液体状態図) 3 蒸発器及び加熱源 4 逆流防止弁 5 蒸気タービン 6 液体用水車(又はタービン) 7.1,7.2 発電電力取り出し端子 8 堆雪(雪ダム利用) 9 融雪水 10 フロンポンプ 11 液状低沸点媒体 12 気体状低沸点媒体 13 液状低沸点媒体の流れ方向 14 気体状低沸点媒体の流れ方向 15 液状低沸点媒体溜 16 山地傾斜部断面 17 U字管 18 雪ダム[Explanation of symbols] 1 generator (gas state diagram) 2 generator (liquid state diagram) 3 evaporator and heating source 4 check valve 5 steam turbine 6 liquid turbine (or turbine) 7.1, 7.2 power generation Power extraction terminal 8 Snowmelt (use of snow dam) 9 Snowmelt water 10 Freon pump 11 Liquid low-boiling medium 12 Gaseous low-boiling medium 13 Flow direction of liquid low-boiling medium 14 Flow direction of gaseous low-boiling medium 15 Liquid low-boiling medium Tame 16 Mountain slope section 17 U-shaped pipe 18 Snow dam

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

Claims (1)

【特許請求の範囲】 【請求1】 低沸点媒体の気体状態及び液体状態に
おける運動エネルギーを利用して、タービンの回転翼に
回転力を与え、この回転軸を発電機の回転軸と直結する
ことにより発電することを特徴とする発電システム。 【請求2】 低沸点媒体の気体状態における発電シ
ステムと液体状態における発電システムを結合するため
の逆流止弁とフロンポンプにより液体流の流れ方向を液
体状態から気体状態へ圧入するシステム。 【請求3】 低沸点媒体の液体状態の位置エネルギ
ーを利用するため低沸点媒体の平均自由行路を利用して
液体状態に落差を作るシステム。
Claim: What is claimed is: 1. Using the kinetic energy of a low-boiling-point medium in a gas state and a liquid state, a rotary force is applied to a rotor blade of a turbine, and this rotary shaft is directly connected to a rotary shaft of a generator. A power generation system characterized by generating electricity. 2. A system for pressurizing the flow direction of a liquid flow from a liquid state to a gas state by a check valve and a freon pump for connecting a power generation system in a gas state of a low boiling point medium and a power generation system in a liquid state. 3. A system for making a drop in the liquid state by utilizing the mean free path of the low boiling point medium to utilize the potential energy of the liquid state of the low boiling point medium.
JP8819392A 1992-03-12 1992-03-12 Snow power generating system Pending JPH05256108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8819392A JPH05256108A (en) 1992-03-12 1992-03-12 Snow power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8819392A JPH05256108A (en) 1992-03-12 1992-03-12 Snow power generating system

Publications (1)

Publication Number Publication Date
JPH05256108A true JPH05256108A (en) 1993-10-05

Family

ID=13936068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8819392A Pending JPH05256108A (en) 1992-03-12 1992-03-12 Snow power generating system

Country Status (1)

Country Link
JP (1) JPH05256108A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145050A (en) * 2010-01-18 2011-07-28 Sumitomo Fudosan Kk Energy supply system reusing existing cavern
CN102434358A (en) * 2011-11-03 2012-05-02 文安县天澜新能源有限公司 Liquid working medium temperature change self circulation power generation device and power generation method
JP5190662B1 (en) * 2012-10-29 2013-04-24 岡本 應守 Siphon type binary power generator
CN106460774A (en) * 2014-05-07 2017-02-22 许相彩 Power generating method using water pressure and vapor, and generating device thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647607A (en) * 1979-09-21 1981-04-30 Mitsui Eng & Shipbuild Co Ltd Energy saving type generator
JPS6198974A (en) * 1984-10-22 1986-05-17 Mitsui Eng & Shipbuild Co Ltd Combined method of power generation from low temperature difference and water head

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647607A (en) * 1979-09-21 1981-04-30 Mitsui Eng & Shipbuild Co Ltd Energy saving type generator
JPS6198974A (en) * 1984-10-22 1986-05-17 Mitsui Eng & Shipbuild Co Ltd Combined method of power generation from low temperature difference and water head

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145050A (en) * 2010-01-18 2011-07-28 Sumitomo Fudosan Kk Energy supply system reusing existing cavern
CN102434358A (en) * 2011-11-03 2012-05-02 文安县天澜新能源有限公司 Liquid working medium temperature change self circulation power generation device and power generation method
JP5190662B1 (en) * 2012-10-29 2013-04-24 岡本 應守 Siphon type binary power generator
CN106460774A (en) * 2014-05-07 2017-02-22 许相彩 Power generating method using water pressure and vapor, and generating device thereof
JP2017515052A (en) * 2014-05-07 2017-06-08 ホ, サンチェHEO, Sang Chae In-house power generation method using water pressure and steam and power generation apparatus therefor
EP3141740A4 (en) * 2014-05-07 2018-01-10 Sang Chae Heo Independent power generating method using water pressure and vapor, and generating device thereof

Similar Documents

Publication Publication Date Title
Adibhatla et al. Energy, exergy, economic and environmental (4E) analyses of a conceptual solar aided coal fired 500 MWe thermal power plant with thermal energy storage option
Patnode Simulation and performance evaluation of parabolic trough solar power plants
Jamel et al. Advances in the integration of solar thermal energy with conventional and non-conventional power plants
Koroneos et al. Exergy analysis of renewable energy sources
Sen et al. Thermodynamic modeling and analysis of a solar and geothermal assisted multi-generation energy system
Giostri et al. Comparison of two linear collectors in solar thermal plants: parabolic trough versus Fresnel
US20120216536A1 (en) Supercritical carbon dioxide power cycle configuration for use in concentrating solar power systems
US20110041502A1 (en) Power plant using organic working fluids
US11480160B1 (en) Hybrid solar-geothermal power generation system
JP2001193419A (en) Combined power generating system and its device
Manzolini et al. A numerical model for off-design performance prediction of parabolic trough based solar power plants
CN203476624U (en) Low-temperature organic Rankine cycle solar heat power generation system
Aldali et al. Numerical simulation of the integrated solar/North Benghazi combined power plant
Xiao et al. A solar micro gas turbine system combined with steam injection and ORC bottoming cycle
JPH05256108A (en) Snow power generating system
Alshammari et al. Development of an automated design and off-design radial turbine model for solar organic Rankine cycle coupled to a parabolic trough solar collector
Karni Solar-thermal power generation
JP2003227315A (en) Solar organic rankine cycle (orc) system
Najjar et al. Modeling and simulation of solar thermal power system using parabolic trough collector
Mancini et al. Solar thermal power today and tomorrow
Botsaris et al. Modeling, simulation, and performance evaluation analysis of a parabolic trough solar collector power plant coupled to an organic rankine cycle engine in north eastern greece using trnsys
US3998056A (en) Solar energy apparatus and method
Hoque et al. Concentrating Solar Powered Transcritical CO 2 Power Generation Cycle for the Union Territory of Ladakh, India
JP2003336573A (en) Novel heat cycle and composite power generation system and device thereof
JPS6198974A (en) Combined method of power generation from low temperature difference and water head