JPH0525589B2 - - Google Patents

Info

Publication number
JPH0525589B2
JPH0525589B2 JP60208163A JP20816385A JPH0525589B2 JP H0525589 B2 JPH0525589 B2 JP H0525589B2 JP 60208163 A JP60208163 A JP 60208163A JP 20816385 A JP20816385 A JP 20816385A JP H0525589 B2 JPH0525589 B2 JP H0525589B2
Authority
JP
Japan
Prior art keywords
metal
protrusion
ceramics
ceramic
joined body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60208163A
Other languages
Japanese (ja)
Other versions
JPS6268669A (en
Inventor
Seiji Okazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP60208163A priority Critical patent/JPS6268669A/en
Publication of JPS6268669A publication Critical patent/JPS6268669A/en
Publication of JPH0525589B2 publication Critical patent/JPH0525589B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミツクスと金属とから構成され
る接合体およびその製造方法に関するものであ
り、特に鋳造手段による接合体および鋳造方法に
係るものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a joined body composed of ceramics and metal and a method for manufacturing the same, and particularly relates to a joined body by casting means and a casting method. be.

〔従来の技術〕[Conventional technology]

近年、耐熱性、耐摩耗性、高温強度などに優れ
るセラミツクスが、高品質かつバラツキなく製造
できるようになり、構造材料として注目されてい
る。しかしながら、セラミツクスを構造材料とし
て使用するためには、材料自体の一層の品質の向
上や、価格の低減が必要なことは勿論であるが、
高強度で信頼性の高い接合技術が必要不可欠であ
る。すなわち、複雑形状の部品をセラミツクスで
一体成形し、最終形状に加工できたとしても、単
一の材料によつて強度、靭性その他構造材料とし
て要求される性能を完全に満足させることはでき
ない。従つて必要部分のみをセラミツクスによつ
て形成し、他の部分は従来の金属材料によつて形
成して、両者を合体、接合して、相互の弱点を補
強すると共に、両者の特徴を生かす手段が図られ
ている。
In recent years, ceramics, which have excellent heat resistance, abrasion resistance, and high-temperature strength, are attracting attention as structural materials because they can be produced with high quality and consistency. However, in order to use ceramics as a structural material, it goes without saying that it is necessary to further improve the quality of the material itself and reduce its price.
High strength and reliable bonding technology is essential. In other words, even if a complex-shaped part can be integrally molded with ceramics and processed into the final shape, a single material cannot completely satisfy the strength, toughness, and other properties required for a structural material. Therefore, only the necessary parts are made of ceramics, the other parts are made of conventional metal materials, and the two parts are combined and joined to strengthen each other's weaknesses and take advantage of the characteristics of both parts. is planned.

セラミツクスと金属とを接合する場合の最も一
般的手段としては、鋳ぐるみによるものが知られ
ている。すなわち予めセラミツクスにより、所定
の形状に成形加工した部材を予め鋳型内の所定位
置に装入後、溶融金属を注入して、構造体の金属
部分を形成すると共に、鋳込み金属によつてセラ
ミツクスを鋳ぐるみ接合して一体化するものであ
る。この場合、金属の収縮率がセラミツクスのそ
れより著るしく大であるため、鋳込み金属凝固後
の冷却収縮に伴なつて発生する圧縮応力により、
セラミツクスが破壊することが多い。この欠点を
除去する手段として、セラミツクスと金属との接
合界面にセラミツクスフアイバーその他有機物被
覆層等の緩衝材を設ける方法が提案されている。
しかしながらこれらの方法においては、セラミツ
クス部材に鋳ぐるみ用の突起を一体的に形成する
必要がある。セラミツクスは一般に加工が非常に
困難な材料であるため、一体成形による場合は格
別として、成形後の加工は極めて困難であると共
に、長時間を要する。また金属材料で鋳ぐるみ接
合する前に、鋳ぐるみ突起の表面に緩衝用の被覆
を設けることは、徒らに工程を増加することとな
り、生産性が阻害するのみならず、接合効果に対
して悪影響を及ぼすことになる。従つてセラミツ
クス部材はあくまでも単純形状であると共に、金
属との接合部分は直接的であることが望ましい。
Casting is known as the most common means for joining ceramics and metals. In other words, a member that has been molded into a predetermined shape using ceramics is placed in a predetermined position in a mold, and then molten metal is injected to form the metal part of the structure, and the ceramic is cast using the casting metal. It is integrated by joining all the way around. In this case, since the shrinkage rate of metal is significantly higher than that of ceramics, the compressive stress generated due to cooling shrinkage after solidification of the cast metal causes
Often destroyed by ceramics. As a means to eliminate this drawback, a method has been proposed in which a buffering material such as ceramic fiber or an organic coating layer is provided at the bonding interface between ceramic and metal.
However, in these methods, it is necessary to integrally form the casting protrusion on the ceramic member. Ceramics is generally a material that is very difficult to process, so processing after molding is extremely difficult and takes a long time, especially when integral molding is used. In addition, providing a buffer coating on the surface of the casting protrusion before joining the casting with metal materials will unnecessarily increase the number of steps, which will not only hinder productivity but also reduce the joining effect. This will have a negative impact. Therefore, it is desirable that the ceramic member has a simple shape, and that the joint portion with the metal is direct.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記のような従来技術に存する欠点を
解消し、セラミツクスと金属との接合に、最も一
般的かつ量産性に優れる鋳ぐるみ手段を採用しつ
つ、最も効果的な接合体およびその接合方法を提
供することを目的とするものである。
The present invention solves the above-mentioned drawbacks of the prior art, adopts the most common casting means that is excellent in mass production for joining ceramics and metal, and provides the most effective joined body and method for joining the same. The purpose is to provide the following.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的達成のために、本発明は下記のよう
な技術的手段を採用したのである。
In order to achieve the above object, the present invention employs the following technical means.

すなわち第1の発明においては、セラミツクス
からなる基材と金属材料のみからなる突起とを固
着し、突起外周面に鋳ぐるみ金属を密着させて接
合体を構成したものである。
That is, in the first invention, a joined body is constructed by fixing a base material made of ceramics and a protrusion made only of a metal material, and closely adhering a cast metal to the outer peripheral surface of the protrusion.

次に第2の発明は、前記セラミツクスと金属と
の接合体を製造する方法であり、セラミツクスか
らなる基材に、金属材料のみからなる突起を、直
接または固着材料を介して突き合わせ、加熱およ
び/または加圧して突起を前記基材に固着してセ
ラミツクス部材を形成し、このセラミツクス部材
を予め鋳型内の所定位置に装入しておき、突起を
介してセラミツクス部材を鋳ぐるむものである。
Next, the second invention is a method for manufacturing the above-mentioned ceramic-metal bonded body, in which protrusions made only of a metal material are abutted against a base material made of ceramics, either directly or through a fixing material, heated and/or Alternatively, the protrusions are fixed to the base material by applying pressure to form a ceramic member, and the ceramic member is previously placed in a predetermined position in a mold, and the ceramic member is cast through the protrusions.

更に第3の発明は、前記第2の発明において、
金属材料のみからなる突起を基材に固着する際に
塑性変形させて外周面に凹凸部を形成する手段を
付加したものである。
Furthermore, a third invention is, in the second invention,
A means is added for plastically deforming a protrusion made of only a metal material when fixing it to a base material to form an uneven portion on the outer circumferential surface.

〔作用〕[Effect]

鋳ぐるみ金属がセラミツクス部材を鋳ぐるみ接
合する部分は、セラミツクスからなる基材に固着
した金属材料のみからなる突起外周面であるた
め、鋳ぐるみ金属の凝固後の冷却収縮に伴う圧縮
応力はセラミツクスからなる基材の部分には全く
及ばない。従つて硬質脆性の基材の破壊を防止す
る作用がある。
The part where the cast metal joins the ceramic member is the outer peripheral surface of the protrusion made only of metal material fixed to the ceramic base material, so the compressive stress due to cooling shrinkage after solidification of the cast metal is absorbed from the ceramic. It does not reach the base material part at all. Therefore, it has the effect of preventing destruction of hard and brittle base materials.

また基材と突起との間は、直接若しくは固着材
料を介して強固に接合一体化してあるため、鋳ぐ
るみ金属による突起の鋳ぐるみ接合により、基材
と鋳ぐるみ金属ともまた強固に一体化されるので
ある。この場合突起外周面に予め凹凸部を形成し
ておくと、特に突起の軸方向荷重に対する抵抗力
を増大し、引き抜け防止作用が増大する。
In addition, since the base material and the protrusion are strongly joined and integrated, either directly or through an adhesive material, the base material and the cast metal are also strongly integrated by the cast-in connection of the protrusion with the cast-in metal. It is. In this case, if an uneven portion is formed in advance on the outer circumferential surface of the protrusion, the resistance to the axial load of the protrusion is particularly increased, and the pull-out prevention effect is increased.

〔実施例〕〔Example〕

第2図は本発明の実施例におけるセラミツクス
部材の説明図である。同図において1aはセラミ
ツクスからなる基材であり、例えば15mm角×5mm
厚の大きさを有する。2aはアルミニウム合金か
らなる突起であり、例えば6mm角×7mm長の大き
さのものである。而して両者を固着一体化するに
は、610℃において0.2〜1Kg/mm2の圧力にて突起
2aを基材1aの固着面1bに圧着すれば、基材
1aと突起2aとからなるセラミツクス部材が得
られる。このセラミツクス部材を予め鋳型(図示
せず)内の所定の位置に装入しておき、すなわち
基材1aの固着面1bを含む接合面と、突起2a
のみが鋳型キヤビテイ内に臨むように設け、アル
ミニウム合金溶湯を注入すれば、溶湯は突起2a
の外周面に接して凝固後密着するから、セラミツ
クスとは金属との接合体を得ることができる。
FIG. 2 is an explanatory diagram of a ceramic member in an embodiment of the present invention. In the figure, 1a is a base material made of ceramics, for example, 15 mm square x 5 mm.
It has a size of thickness. 2a is a protrusion made of aluminum alloy, and has a size of, for example, 6 mm square x 7 mm long. Therefore, in order to bond and integrate the two, if the protrusion 2a is crimped to the fixing surface 1b of the base material 1a with a pressure of 0.2 to 1 Kg/mm 2 at 610°C, the ceramic consisting of the base material 1a and the protrusion 2a can be bonded. A member is obtained. This ceramic member is placed in a predetermined position in a mold (not shown) in advance, that is, the bonding surface including the fixed surface 1b of the base material 1a and the protrusion 2a
If the molten aluminum alloy is injected into the mold cavity, the molten metal will flow into the protrusion 2a.
Since it comes into contact with the outer circumferential surface of the ceramic and adheres closely after solidification, it is possible to obtain a bonded body between the ceramic and the metal.

第3図はセラミツクス部材の他の例を示す図で
あり、鉄系材料からなる突起2bと基材1aとの
間に、AlまたはAl合金からなる箔4を介して両
者を固着したものである。このようにすればセラ
ミツクスとの親和力が小さい金属材料からなる突
起を固着する場合に好都合である。
FIG. 3 is a diagram showing another example of a ceramic member, in which a protrusion 2b made of an iron-based material and a base material 1a are fixed with a foil 4 made of Al or an Al alloy interposed therebetween. . This is convenient when fixing a protrusion made of a metal material that has low affinity with ceramics.

第4図は第2図および第3図における突起2
a,2bの横断面を示す図であり、このように図
形中心から周辺輪郭線までの距離が相違する形状
を選ぶと、鋳ぐるみ後の突起若しくはセラミツク
ス部材の回り止めの効果がある。
Figure 4 shows protrusion 2 in Figures 2 and 3.
FIGS. 2A and 2B are cross-sectional views of FIGS. 2A and 2B, and by selecting a shape in which the distance from the center of the figure to the peripheral contour line is different in this way, there is an effect of preventing the protrusion or ceramic member from rotating after casting.

第5図はセラミツクス部材の更に他の例を示す
図であり、突起2cの外周面に凹凸部を設けたも
のである。このように形成すれば、セラミツクス
部材鋳ぐるみ後の引き抜け防止作用が更に増大す
る。第5図に示す突起2cは予めこのように形成
したものを固着してもよいが、突起2cを基材1
aに突き合わせる際の温度および/または圧力を
調整することにより、突起2cを鎖線で示す状態
から塑性変形させることができる。この場合突起
2cの座屈を防止するために、突起2cの外周に
変形後の輪郭に対応する凹部を設けたガイド若し
くは成形用型(何れも図示せず)を介装すると効
果的である。
FIG. 5 is a diagram showing still another example of the ceramic member, in which an uneven portion is provided on the outer peripheral surface of the projection 2c. If formed in this manner, the effect of preventing the ceramic member from being pulled out after being cast is further increased. The protrusion 2c shown in FIG. 5 may be formed in advance in this way and then fixed, but the protrusion 2c
By adjusting the temperature and/or pressure when abutting against a, the protrusion 2c can be plastically deformed from the state shown by the chain line. In this case, in order to prevent the protrusion 2c from buckling, it is effective to insert a guide or a mold (none of which is shown) provided with a recess corresponding to the deformed contour on the outer periphery of the protrusion 2c.

第1図は本発明の実施例を示す図であり、自動
車用エンジン等に使用されるロツカーアームであ
る。同図において1は窒化珪素からなるチツプで
あり、アルミニウム合金からなる突起2を固着し
て予めチツプ部材を形成しておき、これを鋳型内
の所定位置に装入後、アルミニウム合金3を注入
してチツプ部材を鋳ぐるみ鋳造したものである。
上記ロツカーアームは鋳造後接合部の異常は勿論
基材部材の割れその他の欠陥は全く認められなか
つた。
FIG. 1 is a diagram showing an embodiment of the present invention, and is a rocker arm used in an automobile engine or the like. In the figure, 1 is a chip made of silicon nitride, and a protrusion 2 made of aluminum alloy is fixed to form a chip member in advance. After this is inserted into a predetermined position in the mold, aluminum alloy 3 is injected. The chip member is cast by casting.
After casting, no abnormalities in the joints, cracks in the base material, or other defects were observed in the rocker arm.

本実施例においては鋳ぐるみ金属としてアルミ
ニウム合金溶湯の例を示したが、セラミツクス部
材を構成する突起の材料を適宜選定することによ
り、鋳鉄等他の鋳ぐるみ金属を使用することもで
きる。また基材と突起との固着面に介在させる固
着材料は、本実施例に示す金属箔の他に、薄板状
のもの膜状のものも使用できる他、メツキ若しく
はメタライジング処理の手段も使用できる。更に
また鋳造手段は通常の重力構造のみならず、ダイ
カスト鋳造、溶湯鍛造の手段であつても応用でき
る。なお上記固着材料は金属材料の他に、酸化
物、窒化物、硼化物等の無機材料も使用でき、基
材および突起を構成する材料その他の条件を勘案
して適宜選定する。
In this embodiment, a molten aluminum alloy is used as the casting metal, but other casting metals such as cast iron can be used by appropriately selecting the material of the protrusions forming the ceramic member. In addition to the metal foil shown in this example, the fixing material to be interposed between the fixing surface of the base material and the protrusion can be a thin plate or a film, and plating or metallizing can also be used. . Furthermore, the casting means can be applied not only to the usual gravity structure but also to die casting and molten metal forging. In addition to metal materials, inorganic materials such as oxides, nitrides, and borides can also be used as the fixing material, and are appropriately selected in consideration of the base material, the material constituting the protrusion, and other conditions.

〔発明の効果〕〔Effect of the invention〕

本発明は以上記述のように、必要部分のみ耐熱
性および/または耐摩耗性を有し、他の部分は安
価若しくは靭性を要するような複合材を、最も一
般的かつ量産性に優れる鋳ぐるみ手段によつて得
るものであるから、下記の効果を奏することがで
きる。
As described above, the present invention utilizes the most common casting means that is excellent in mass production, and is capable of producing composite materials that have heat resistance and/or wear resistance only in necessary parts, and are inexpensive or tough in other parts. Since it is obtained by the above method, the following effects can be achieved.

(1) 比較的複雑な形状の構造部材であつても容易
かつ量産することができる。
(1) Even structural members with relatively complex shapes can be easily mass-produced.

(2) 難加工材であるとセラミツクスの加工部分が
少なくなるため、加工時間を短縮できる。
(2) If the ceramic is a difficult-to-process material, there will be fewer parts to process, so processing time can be shortened.

(3) 鋳ぐるみ金属による凝固後の圧縮力は、セラ
ミツクス部材の構成部材である金属材料のみか
らなる突起部分のみに作用するに留まるため、
セラミツクスの部分の割れその他の悪影響を及
ぼさない。
(3) The compressive force after solidification due to the cast metal only acts on the protrusions made only of the metal material that constitutes the ceramic member;
Does not cause cracking or other negative effects on ceramic parts.

(4) 基材と突起との固着一体化は、突き合せ加熱
拡散整合を含む強力な接合であるため、セラミ
ツクス部材の強度は充分保証されると共に、バ
ラツキが少なく信頼性が高い。
(4) Since the fixed integration of the base material and the protrusion is a strong bond that includes butt heat diffusion matching, the strength of the ceramic member is sufficiently guaranteed, and there is little variation and high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す一部断面正面
図、第2図、第3図および第5図は夫々本発明の
実施例におけるセラミツクス部材の例を示す正面
図、第4図aおよび同図bは各々本発明の実施例
における突起の横断面図である。 1:チツプ、1a:基材、2,2a,2b:突
起、3:アルミニウム合金、4:箔。
FIG. 1 is a partially sectional front view showing an embodiment of the present invention, FIGS. 2, 3 and 5 are front views showing an example of a ceramic member in an embodiment of the present invention, and FIGS. Figure b is a cross-sectional view of the protrusion in each embodiment of the present invention. 1: Chip, 1a: Base material, 2, 2a, 2b: Projection, 3: Aluminum alloy, 4: Foil.

Claims (1)

【特許請求の範囲】 1 セラミツクスからなる基材と金属材料のみか
らなる突起とを固着し、突起外周面に鋳ぐるみ金
属を密着させたことを特徴とするセラミツクスと
金属との接合体。 2 突起を構成する金属材料と鋳ぐるみ金属とが
同材質である特許請求の範囲第1項記載のセラミ
ツクスと金属との接合体。 3 鋳ぐるみ金属がAlまたはAl合金である特許
請求の範囲第1項若しくは第2項記載のセラミツ
クスと金属との接合体。 4 鋳ぐるみ金属が鉄系合金である特許請求の範
囲第1項または第2項記載のセラミツクスと金属
との接合体。 5 突起を構成する金属材料が鉄系合金であり、
鋳ぐるみ金属が非鉄合金である特許請求の範囲第
1項記載のセラミツクスと金属との接合体。 6 セラミツクスがシリコン系セラミツクスであ
る特許請求の範囲第1項〜第5項何れかに記載の
セラミツクスと金属との接合体。 7 セラミツクスからなる基材に、金属材料のみ
からなる突起を、直接または固着材料を介して突
き合わせ、加熱および/または加圧して突起を前
記基材に固着してセラミツクス部材を形成し、こ
のセラミツクス部材を予め鋳型内の所定位置に装
入しておき、突起を介してセラミツクス部材を鋳
ぐるむことを特徴とするセラミツクスと金属との
接合体の製造方法。 8 セラミツクスからなる基材に、金属材料のみ
からなる突起を、直接または固着材料を介して突
き合わせ、加熱および/または加圧して突起を前
記基材に固着すると共に、突起を塑性変形させて
外周面に凹凸部を有するセラミツクス部材を形成
し、このセラミツクス部材を予め鋳型内の所定位
置に装入しておき、突起を介してセラミツクス部
材を鋳ぐるむことを特徴とするセラミツクスと金
属との接合体の製造方法。 9 加熱および/または加圧を非酸化性または弱
酸化性雰囲気で行う特許請求の範囲第7項若しく
は第8項記載のセラミツクスと金属との接合体の
製造方法。 10 金属材料がAlまたはAl合金である特許請
求の範囲第7項〜第9項何れかに記載のセラミツ
クスと金属との接合体の製造方法。 11 セラミツクスがシリコン系セラミツクスで
ある特許請求の範囲第7項〜第10項何れかに記
載のセラミツクスと金属との接合体の製造方法。
[Scope of Claims] 1. A joined body of ceramics and metal, characterized in that a base material made of ceramics and a protrusion made only of a metal material are fixed to each other, and a cast metal is closely attached to the outer peripheral surface of the protrusion. 2. A joined body of ceramics and metal according to claim 1, wherein the metal material constituting the protrusion and the cast metal are the same material. 3. A joined body of ceramics and metal according to claim 1 or 2, wherein the cast metal is Al or an Al alloy. 4. A joined body of ceramics and metal according to claim 1 or 2, wherein the cast metal is an iron-based alloy. 5. The metal material constituting the protrusion is an iron-based alloy,
A joined body of ceramics and metal according to claim 1, wherein the cast metal is a non-ferrous alloy. 6. A joined body of ceramic and metal according to any one of claims 1 to 5, wherein the ceramic is a silicon-based ceramic. 7. A protrusion made only of a metal material is butted against a base material made of ceramics, either directly or through a fixing material, and heated and/or pressurized to fix the protrusion to the base material to form a ceramic member. 1. A method for manufacturing a joined body of ceramics and metal, characterized in that the ceramic member is charged in advance at a predetermined position in a mold, and the ceramic member is cast through the protrusion. 8. A protrusion made of only a metal material is butted against a base material made of ceramics, either directly or through a fixing material, and heated and/or pressurized to fix the protrusion to the base material, and at the same time plastically deform the protrusion to form an outer circumferential surface. A joined body of ceramics and metal, characterized in that a ceramic member having an uneven portion is formed on the surface of the ceramic member, the ceramic member is placed in a predetermined position in a mold in advance, and the ceramic member is cast through the projections. manufacturing method. 9. The method for producing a joined body of ceramics and metal according to claim 7 or 8, wherein heating and/or pressurization is performed in a non-oxidizing or weakly oxidizing atmosphere. 10. The method for manufacturing a joined body of ceramics and metal according to any one of claims 7 to 9, wherein the metal material is Al or an Al alloy. 11. The method for manufacturing a joined body of ceramic and metal according to any one of claims 7 to 10, wherein the ceramic is a silicon-based ceramic.
JP60208163A 1985-09-20 1985-09-20 Joint body of ceramics and metal, and its manufacture Granted JPS6268669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60208163A JPS6268669A (en) 1985-09-20 1985-09-20 Joint body of ceramics and metal, and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60208163A JPS6268669A (en) 1985-09-20 1985-09-20 Joint body of ceramics and metal, and its manufacture

Publications (2)

Publication Number Publication Date
JPS6268669A JPS6268669A (en) 1987-03-28
JPH0525589B2 true JPH0525589B2 (en) 1993-04-13

Family

ID=16551696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60208163A Granted JPS6268669A (en) 1985-09-20 1985-09-20 Joint body of ceramics and metal, and its manufacture

Country Status (1)

Country Link
JP (1) JPS6268669A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0891951A (en) * 1994-09-22 1996-04-09 Sumitomo Electric Ind Ltd Aluminum-silicon nitride conjugate and its production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148013A (en) * 1981-03-09 1982-09-13 Mazda Motor Corp Method of manufacturing rocker arm of aluminum
JPS5913563A (en) * 1982-07-15 1984-01-24 Toyota Motor Corp Production of rocker arm

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148013A (en) * 1981-03-09 1982-09-13 Mazda Motor Corp Method of manufacturing rocker arm of aluminum
JPS5913563A (en) * 1982-07-15 1984-01-24 Toyota Motor Corp Production of rocker arm

Also Published As

Publication number Publication date
JPS6268669A (en) 1987-03-28

Similar Documents

Publication Publication Date Title
US5161908A (en) Joined structure comprising members of different coefficients of thermal expansion and joining method thereof
JPH0891951A (en) Aluminum-silicon nitride conjugate and its production
JP2899467B2 (en) Manufacturing method of piston
EP0366410B1 (en) Ceramic-metal composite body with friction welding joint and ceramic insert cast piston
JPH0525589B2 (en)
JP3283442B2 (en) Cast-in structure of dissimilar metal
JP2852695B2 (en) Method of manufacturing engine valve lifter
JPH0577026A (en) Composite cam shaft and manufacture of same
JPH063171B2 (en) Ceramic-Metal Friction Welding Body and Ceramic Casting Piston Composed of It
JPH07112619B2 (en) Ceramic coating casting method
JP3693082B2 (en) Engine valve and manufacturing method thereof
JP3320930B2 (en) Mold for resin molding
JP2581691B2 (en) Joining method of metal and ceramics
JPS63106305A (en) Rocker arm with ceramics pad
JP3431392B2 (en) Tappet
JPH0446069A (en) Method for bonding members different in quality
JPH0577027A (en) Cast-in ceramic piston
JPS61283446A (en) Joining method for ceramics and metal
JPH075936B2 (en) Method for manufacturing aluminum alloy composite structure
JPH0372831B2 (en)
JP3033187B2 (en) Rocker arm manufacturing method
JPH09256902A (en) Piston for internal combustion engine and manufacture thereof
JPS59111984A (en) Ceramics-metal joint mechanism
JPH0515886B2 (en)
JPH063170B2 (en) Ceramic cast toy piston