JPH0525319B2 - - Google Patents

Info

Publication number
JPH0525319B2
JPH0525319B2 JP61275650A JP27565086A JPH0525319B2 JP H0525319 B2 JPH0525319 B2 JP H0525319B2 JP 61275650 A JP61275650 A JP 61275650A JP 27565086 A JP27565086 A JP 27565086A JP H0525319 B2 JPH0525319 B2 JP H0525319B2
Authority
JP
Japan
Prior art keywords
nuclear fuel
subcriticality
rate ratio
degree
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61275650A
Other languages
Japanese (ja)
Other versions
JPS63128290A (en
Inventor
Hisashi Nakamura
Masahiro Shirakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61275650A priority Critical patent/JPS63128290A/en
Publication of JPS63128290A publication Critical patent/JPS63128290A/en
Publication of JPH0525319B2 publication Critical patent/JPH0525319B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は、核燃料を装荷または貯蔵する核燃料
設備の核燃料配置状態における未臨界度をモニタ
ーする核燃料設備の未臨界度モニター装置に関す
る。
The present invention relates to a subcriticality monitoring device for nuclear fuel equipment that monitors the subcriticality in the nuclear fuel arrangement state of nuclear fuel equipment that loads or stores nuclear fuel.

【従来技術とその問題点】[Prior art and its problems]

核燃料を装荷や貯蔵して配置された核燃料設備
における核燃料配置状態では臨界にならぬように
臨界安全管理される。このための安全管理として
核燃料再処理設備では臨界警報器が使用されてい
るが、この臨界警報器は臨界になつた時点で警報
を出すシステムとなつているので事前に臨界にな
ることは予測することはできない。したがつて未
臨界度(未臨界状態における実効増倍率)を把握
して安全管理する必要がある。 未臨界度を測定する方法として、従来、パルス
状の中性子を入射して行なうパルス中性子法や中
性子密度のゆらぎの成分を2個の検出器で測定し
て求める炉雑音解析法や中性子源を挿入して中性
子増倍の勾配から求める中性子源増倍法が知られ
ているが、これらにはパルス状の中性子を発生さ
せる特殊な中性子源発生装置や、2個の検出器に
よる検出を同期させる同期回路等の特殊な回路等
を必要とし、さらに臨界近傍で反応度較正実験を
必要とし、煩雑な装置や手間を要するという欠点
がある。
Criticality safety management is performed to ensure that the nuclear fuel in nuclear fuel equipment loaded or stored with nuclear fuel does not become critical. Criticality alarms are used in nuclear fuel reprocessing facilities as a safety control for this purpose, but this criticality alarm is a system that issues an alarm when it becomes critical, so it is possible to predict in advance that it will become critical. It is not possible. Therefore, it is necessary to understand the degree of subcriticality (effective multiplication factor in a subcritical state) and manage safety. Conventional methods for measuring subcriticality include the pulsed neutron method, which involves injecting pulsed neutrons, the reactor noise analysis method, which measures the fluctuation components of neutron density with two detectors, and the insertion of a neutron source. Neutron source multiplication methods are known, which are calculated from the gradient of neutron multiplication, but these methods require a special neutron source generator that generates pulsed neutrons, and a synchronization method that synchronizes detection by two detectors. This method requires a special circuit, such as a circuit, and also requires a reactivity calibration experiment near the criticality, which has the drawbacks of requiring complicated equipment and time.

【発明の目的】[Purpose of the invention]

本発明は、前述のような点に鑑み臨界近傍での
反応度較正実験を必要とせず、通常の中性子計数
手段を用いて核燃料設備の該燃料配置状態の未臨
界度をモニターする核燃料設備の未臨界度モニタ
ー装置を提供することを目的とする。
In view of the above-mentioned points, the present invention does not require a reactivity calibration experiment in the vicinity of criticality, and uses ordinary neutron counting means to monitor the subcriticality of the fuel arrangement state of nuclear fuel equipment. The purpose of the present invention is to provide a criticality monitoring device.

【発明の要点】[Key points of the invention]

上記の目的は、本発明によれば熱中性子エネル
ギーに対して高感度の検出器と、速中性子エネル
ギーに対してより高感度を有する検出器からなる
対検出器と、この対検出器による検出中性子の計
数率比を演算する計数回路と、前記計数率比から
未臨界度を求める演算プログラムを有するメモリ
ーと、前記計数回路からの計数率比と前記演算プ
ログラムとを入力して現在の核燃料の配置状態に
対応した未臨界度を決定するとともに、核燃料装
荷時の未臨界度を予測する演算器と、この演算器
から得られた前記核燃料装荷時の未臨界度と安全
管理上の所定値とを照合して警報を出す警報器と
から構成することにより達成される。
According to the present invention, the above object is to provide a pair of detectors consisting of a detector with high sensitivity to thermal neutron energy and a detector with higher sensitivity to fast neutron energy; a counting circuit that calculates the counting rate ratio of , a memory having a calculation program that calculates the degree of subcriticality from the counting rate ratio, and a memory having a calculation program that calculates the degree of subcriticality from the counting rate ratio, and inputting the counting rate ratio from the counting circuit and the calculation program to calculate the current nuclear fuel arrangement. A computing device that determines the degree of subcriticality corresponding to the state and predicts the degree of subcriticality at the time of nuclear fuel loading, and a predetermined value for safety management and the degree of subcriticality at the time of loading the nuclear fuel obtained from this computing device. This is achieved by configuring the system with an alarm device that issues a warning based on the comparison.

【発明の実施例】[Embodiments of the invention]

以下図面を用いて本発明の実施例を説明する。
第1図は本発明の実施例による核燃料設備のモニ
ター装置の系統図である。図において1は相異な
る中性子エネルギー応答特性を有する2個の検出
器からなる対検出器である。対検出器1は相異な
る中性子エネルギー応答特性、すなわち熱中性子
エネルギーに対して高感度のものと速中性子エネ
ルギー(約1MeV以上)に対してより高感度を有
する検出器の組み合わせであり、例えば235U核分
裂計数管と238U核分裂計数管、10B計数管と237Np
核分裂計数管、235U核分裂計数管と237Np核分裂
計数管の組み合わせである。なお前記組み合わせ
の配列の前者は熱中性子に対して高感度であり、
後者は速中性子に対して高感度の検出器であり、
対検出器1は核燃料設備に適する組み合わせのも
のを選択すればよい。 対検出器1は対検出器案内筒2に挿入され、核
燃料設備の核燃料の配置場所に配設する。すなわ
ち対検出器1は第2図に示すように核燃料の配置
場所の核燃料の集合領域3に複数個配設したり、
第3図に示すように集合領域3の周辺領域4に複
数個配設したり、この集合領域3と周辺領域4の
両領域に複数個配設したりする。なお対検出器1
の数は任意でよいが、数が多いほど決定する未臨
界度の精度は良くなる。 計数回路5は対検出器案内筒2内の対検出器1
にリード線14により接続され、対検出器1で核
燃料の集合領域3または周辺領域4(第2図、第
3図参照)等で中性子源により生じた中性子を計
数し、計数率比を演算する。なお中性子源は通常
の中性子源発生装置による外部中性子源、または
核燃料自身に含まれる同位元素の自発核分裂中性
子による内部中性子源でよい。 7は演算器としてのマイクロコンピユータであ
り、計数回路5から入力される計数率比と後述す
るメモリー11からの計算プログラム8とデータ
ベース9とからなる演算プログラム10とを入力
して対検出器1が配された核燃料設備の核燃料配
置状態の未臨界度を計算し、決定および予測す
る。 なお、12はマイクロコンピユータ7の出力を
プリントするプリンタであり、13は臨界安全管
理上の所定値と照合して警報を出す警報器であ
る。 メモリー11は対検出器1で計数した中性子の
計数比から対検出器1を配した核燃料設備の核燃
料配置状態の未臨界度(未臨界状態における実効
増倍率)を計算する計算プログラム8とこの計算
時に必要な吸収断面積等のデータを保有するデー
タベース9とからなる演算プログラム10を記憶
している。 演算プログラム10は計数率比Rから未臨界度
を演算するものであり、つぎにこの演算方法につ
いて説明する。 未臨界状態の体系における中性子のふるまい
は、通常中性子束分布関数φ(γ、E)で記述さ
れる。ここでφは、空間座標γとエネルギーEに
依存する分布関数であり、公知のボルツマン方程
式で表わされ、演算子を用いて表わされる下記の
ボルツマン方程式 Hφ=S ……(1) を解くことにより求められる。ここでHはボルツ
マン演算子であり、Sは外部中性子源による線源
項である。また中性子束分布関数φは、一般的に
(1)式に対応する下記の固有値方程式 H0φ0o=0 ……(2) を解いて求まる固有関数φ0o(n=0、1、2、
…)の1次結合で表わされる。すなわちaoを任意
の係数とすると、中性子束分布関数φは φ= 〓n aoφ0o ……(3) となる。 (2)式の正の固有値のうち最小固有値に属する固
有関数をφ0で表わすと、臨界状態では最小固有
値状態φ0のみが実現されており、この時(2)式は
臨界方程式と呼ばれる。そしてさらに(1)式と(2)式
は等価となり φ=φ0(臨界状態) ……(4) である。 ところで、対検出器2の二つの検出器の応答関
数をそれぞれΣ1およびΣ2とすると、対検出器2
で計数された中性子の計数率比Rはそれぞれの検
出器による計数比<Σ1φと<Σ2φ>との比となる。
すなわち R=<Σ2φ>/<Σ1φ> ……(5) ここで記号<>はγおよびEによる位相空間に
わたる積分量であることを表わす。 (5)式の計数率比Rは未臨界状態で測定可能な量
であり、、通常スペクトル・インデツクスと呼ば
れている。一方、この量を臨界状態に結びつける
ために固有値方程式(2)の解である最小固有値状態
φ0を用いて(5)式と全く同様に R0=<Σ2φ0>/<Σ1φ0> ……(6) で定義される固有計数率比R0を考える。ここで
この固有計数率比R0を用いて R′=R/R0 ……(7) である新たな量R′を導入する。なおR′を実効計
数率比と呼ぶ。したがつて実効計数率比R′は実
効増倍率k=1の時の臨界状態では(4)式の関係
(φ=φ0)を(5)、(6)式に適用すると R′=1 ……(8) となる。したがつて実効計数率比R′は実効増倍
率kに対応する。 上記の関係より実効計数率比R′は一般的に任
意の関数形F(x)を用いて次式のように表わされ
る。 R′=C0−F(1−k) ……(9) ここでC0は定数、kは実効増倍率である。 ただし、F(0)=0であり、理論的に臨界状態
k=1のときで(8)式より C0=1 ……(10) となる。 すなわち、一般的に一組の対検出器と燃料設備
内での核燃料の配置を決めた上で、核燃料装荷に
よる臨界近接手順により核燃料設備を臨界状態に
持つていくときの関係は(9)式のうちの一つの曲線
で表わされ、(9)式は実効計数率比R′と実効増倍
率k(反応度は(k−1)/kである)の基本関
係式となる。 したがつて核燃料設備の未臨界状態の実効増倍
率kは(9)式に基づいて実効計数率比R′を介して
得られる。ここでR′は(7)式で示すように計数率
比の比という形であることにより、検出器計数効
率が直接的には関係しないので計数誤差の入り難
しい量であるが、さらにR′の値の評価精度を向
上するために、計数率比Rの測定データと計数値
とがよく一致するようにボルツマン方程式におけ
る中性子断面積等の入力データを修正する。この
入力データの修正な実効増倍率kの計算値をも同
時に修正することになる。 このように調整して得られた(R′、k)の値
の組は計数率比を測定した核燃料の装荷状態の体
系の数だけ得られることになり、この値の組を(9)
式に適用するとC0をはじめとする関数形F(1−
k)の計数パラメータを決定することができる。
この時上述の調整の確からしさを保障するのは(10)
式のk=1のときのC0=1の条件である。なお
上記の計数パラメータを決定する際、中性子断面
積の他にもう一つのパラメータとして計数率比規
格化定数CRをとつて通常の回帰解折の手順が行
なわれ、(9)式の係数パラメータを確定する。な
お、上記の計数率比規格化定数CRは次式のよう
に定義される。 CR=Rc/Re ……(11) ここでReは対検出器の計数率比に対する測定
値であり、Rcは計算値である。 上記の回帰解析の手順が、いわば反応度較正と
いうもので臨界近傍の測定データが含まれなくて
もよい。 以上のような構成により対検出器1を核燃料設
備の核燃料配置場所に配設して中性子源により増
倍する中性子の計数率比を計数回路5により演算
し、メモリー11から計算プログラム8とデータ
ベース9との演算プログラム10を取出してミニ
コンピユータ7による演算により未臨界度が求め
られる。 なお、上述の未臨界度を求める過程における実
効計数率比R′の評価精度はきわめてよいので、
来るべき核燃料装荷状態に対する実効計数率比
R′値も精度よく予測することができる。したが
つてこのR′値を較正済の(9)式に適用すれば実効
増倍率kの予測値が得られる。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a system diagram of a nuclear fuel equipment monitoring device according to an embodiment of the present invention. In the figure, reference numeral 1 denotes a paired detector consisting of two detectors having different neutron energy response characteristics. Pair detector 1 is a combination of detectors with different neutron energy response characteristics, one with high sensitivity to thermal neutron energy and the other with higher sensitivity to fast neutron energy (approximately 1 MeV or higher), such as 235 U Fission counter and 238 U fission counter, 10 B counter and 237 Np
Fission counter, a combination of a 235 U fission counter and a 237 Np fission counter. Note that the former of the above combination arrays is highly sensitive to thermal neutrons,
The latter is a highly sensitive detector for fast neutrons;
The pair detector 1 may be selected from a combination suitable for the nuclear fuel equipment. The counter-detector 1 is inserted into a counter-detector guide tube 2 and placed at a location where nuclear fuel is placed in a nuclear fuel facility. That is, as shown in FIG. 2, a plurality of pair detectors 1 are arranged in the nuclear fuel collection area 3 at the nuclear fuel arrangement location, or
As shown in FIG. 3, a plurality of them may be arranged in the surrounding area 4 of the gathering area 3, or a plurality of them may be arranged in both the gathering area 3 and the surrounding area 4. In addition, paired detector 1
The number of subcriticality may be arbitrary, but the greater the number, the better the accuracy of the determined degree of subcriticality. The counting circuit 5 is connected to the paired detector 1 in the paired detector guide tube 2.
The detector 1 counts the neutrons generated by the neutron source in the nuclear fuel collection area 3 or surrounding area 4 (see Figures 2 and 3), and calculates the count rate ratio. . Note that the neutron source may be an external neutron source using a normal neutron source generator, or an internal neutron source using spontaneous fission neutrons of an isotope contained in the nuclear fuel itself. 7 is a microcomputer as a calculation unit, which inputs the count rate ratio inputted from the counting circuit 5 and a calculation program 10 consisting of a calculation program 8 from a memory 11 and a database 9, which will be described later, and calculates the paired detector 1. Calculate, determine, and predict the degree of subcriticality of the nuclear fuel arrangement state of the nuclear fuel equipment. Note that 12 is a printer that prints the output of the microcomputer 7, and 13 is an alarm that issues a warning by comparing it with a predetermined value for criticality safety management. The memory 11 includes a calculation program 8 that calculates the subcriticality (effective multiplication factor in a subcritical state) of the nuclear fuel arrangement state of the nuclear fuel facility equipped with the paired detector 1 from the count ratio of neutrons counted by the paired detector 1, and this calculation. It stores an arithmetic program 10 consisting of a database 9 that holds data such as absorption cross sections that are sometimes required. The calculation program 10 calculates the degree of subcriticality from the count rate ratio R, and the calculation method will be explained next. The behavior of neutrons in a subcritical state system is usually described by a neutron flux distribution function φ(γ, E). Here, φ is a distribution function that depends on the spatial coordinate γ and the energy E, and is expressed by the well-known Boltzmann equation. Solving the following Boltzmann equation Hφ=S ...(1), which is expressed using operators. It is determined by Here, H is the Boltzmann operator and S is the source term due to the external neutron source. In addition, the neutron flux distribution function φ is generally
The eigenfunction φ 0o (n = 0 , 1, 2,
...) is expressed as a linear combination of That is, if a o is an arbitrary coefficient, the neutron flux distribution function φ is φ= 〓 n a o φ 0o ……(3). If the eigenfunction belonging to the minimum eigenvalue among the positive eigenvalues in equation (2) is represented by φ 0 , only the minimum eigenvalue state φ 0 is realized in the critical state, and in this case, equation (2) is called a critical equation. Furthermore, equations (1) and (2) are equivalent, and φ=φ 0 (critical state)...(4). By the way, if the response functions of the two detectors of paired detector 2 are Σ 1 and Σ 2 , respectively, then paired detector 2
The count rate ratio R of the neutrons counted is the ratio of the count ratios <Σ 1 φ and <Σ 2 φ> by the respective detectors.
That is, R=<Σ 2 φ>/<Σ 1 φ> (5) Here, the symbol <> represents an integral quantity over the phase space by γ and E. The count rate ratio R in equation (5) is a quantity that can be measured in a subcritical state, and is usually called a spectral index. On the other hand, in order to connect this quantity to the critical state, we use the minimum eigenvalue state φ 0 , which is the solution to the eigenvalue equation (2), and write R 0 =<Σ 2 φ 0 >/<Σ 1 φ, exactly as in equation (5). Consider the unique count rate ratio R 0 defined by 0 > ...(6). Here, using this unique count rate ratio R 0 , a new quantity R' is introduced as follows: R'=R/R 0 (7). Note that R' is called the effective count rate ratio. Therefore, in the critical state when the effective multiplication factor k=1, by applying the relationship (φ=φ 0 ) in equation (4) to equations (5) and (6), the effective count rate ratio R′ becomes R′=1. ...(8) becomes. Therefore, the effective count rate ratio R' corresponds to the effective multiplication factor k. From the above relationship, the effective count rate ratio R' can generally be expressed as follows using an arbitrary functional form F(x). R'=C 0 -F(1-k)...(9) Here, C 0 is a constant and k is an effective multiplication factor. However, when F(0)=0 and theoretically the critical state k=1, from equation (8), C 0 =1 (10). In other words, in general, after determining the arrangement of a pair of detectors and the nuclear fuel in the fuel equipment, the relationship when bringing the nuclear fuel equipment to a critical state by the near-criticality procedure by loading nuclear fuel is expressed by equation (9). Equation (9) is a basic relation between the effective count rate ratio R' and the effective multiplication factor k (reactivity is (k-1)/k). Therefore, the effective multiplication factor k in the subcritical state of the nuclear fuel equipment can be obtained via the effective counting rate ratio R' based on equation (9). Here, R′ is in the form of a ratio of counting rate ratios as shown in equation (7), so it is not directly related to the detector counting efficiency, so it is difficult to include counting errors, but in addition, R′ In order to improve the evaluation accuracy of the value of , input data such as the neutron cross section in the Boltzmann equation is corrected so that the measured data of the count rate ratio R and the count value agree well. The calculated value of the corrected effective multiplication factor k of this input data is also corrected at the same time. The set of (R', k) values obtained by adjusting in this way will be obtained for the number of nuclear fuel loading state systems for which the count rate ratio was measured, and this set of values can be expressed as (9)
When applied to the equation, the functional form F( 1-
k) counting parameters can be determined.
In this case, (10) guarantees the certainty of the above adjustment.
This is the condition of C 0 =1 when k=1 in the equation. When determining the above counting parameters, the normal regression analysis procedure is performed using the counting rate ratio normalization constant C R as another parameter in addition to the neutron cross section, and the coefficient parameters of equation (9) are determined. Confirm. Note that the count rate ratio normalization constant C R mentioned above is defined as the following equation. C R =R c /R e (11) where R e is a measured value for the count rate ratio of the detector to the detector, and R c is a calculated value. The above-mentioned regression analysis procedure is so-called reactivity calibration and does not need to include measurement data near the critical level. With the above configuration, the paired detector 1 is arranged at the nuclear fuel installation location of the nuclear fuel facility, and the counting circuit 5 calculates the counting rate ratio of neutrons multiplied by the neutron source, and the calculation program 8 and the database 9 are stored in the memory 11. The degree of subcriticality is determined by taking out the calculation program 10 and performing calculations on the minicomputer 7. Furthermore, since the evaluation accuracy of the effective count rate ratio R' in the process of determining the degree of subcriticality mentioned above is extremely good,
Effective count rate ratio for upcoming nuclear fuel loading conditions
The R′ value can also be predicted with high accuracy. Therefore, by applying this R' value to the calibrated equation (9), a predicted value of the effective multiplication factor k can be obtained.

【発明の効果】【Effect of the invention】

以上の説明から明らかなように本発明によれ
ば、対検出器により核燃料設備の核燃料装荷ステ
ツプごとに計数率比を測定し、この計数率比から
核燃料設備の現在および来るべき核燃料の配置状
態の未臨界度を演算器により演算して決定および
予測するようにしたことにより、あらかじめ未臨
界度の臨界安全管理上の所定の警報値を設定でき
るので、警報器により警報を出して臨界になるの
を未然に防ぐことができ、また未臨界度の予測機
能により来るべき核燃料装荷状態の臨界事故を、
臨界安全管理基準により事前に予測して警報を出
し、予防措置を講ずる余裕を得るので、より安全
な臨界管理ができる。 また上記の未臨界度の決定および予測は従来技
術のように別途反応度較正実験を必要とせず、か
つ通常の中性子源発成装置あるいは核燃料自身よ
りの自発分裂中性子と中性子計数回路により行な
われるので、モニター装置のコストが安く、かつ
その保守も容易になるという効果もある。
As is clear from the above description, according to the present invention, the counting rate ratio is measured by a pair of detectors at each nuclear fuel loading step of the nuclear fuel equipment, and the current and future nuclear fuel placement status of the nuclear fuel equipment is determined from this counting rate ratio. By determining and predicting the degree of subcriticality by calculating it with a calculator, it is possible to set a predetermined alarm value for criticality safety management of the degree of subcriticality in advance. In addition, the subcriticality prediction function can prevent future criticality accidents due to nuclear fuel loading.
Criticality safety management standards enable safer criticality management by predicting and issuing warnings in advance, giving us time to take preventive measures. In addition, the determination and prediction of the degree of subcriticality described above does not require a separate reactivity calibration experiment unlike the conventional technology, and is performed using spontaneous fission neutrons and neutron counting circuits from a normal neutron source generator or the nuclear fuel itself. This also has the effect that the cost of the monitoring device is low and its maintenance is easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による核燃料設備の未
臨界度モニター装置の系統図、第2図は第1図の
未臨界度モニター装置の対検出器の配置を示す配
置図、第3図は対検出器の異なる配置を示す配置
図である。 1:対検出器、5:計数回路、7:演算器、1
0:演算プログラム、11:メモリー。
FIG. 1 is a system diagram of a subcriticality monitoring device for a nuclear fuel facility according to an embodiment of the present invention, FIG. 2 is a layout diagram showing the arrangement of a pair of detectors in the subcriticality monitoring device of FIG. 1, and FIG. FIG. 6 is a layout diagram showing different arrangements of paired detectors. 1: Pair detector, 5: Counting circuit, 7: Arithmetic unit, 1
0: Arithmetic program, 11: Memory.

Claims (1)

【特許請求の範囲】[Claims] 1 熱中性子エネルギーに対して高感度の検出器
と、速中性子エネルギーに対してより高感度を有
する検出器からなる対検出器と、この対検出器に
よる検出中性子の計数率比を演算する計数回路
と、前記計数率比から未臨界度を求める演算プロ
グラムを有するメモリーと、前記計数回路からの
計数率比と前記演算プログラムとを入力して現在
の核燃料の配置状態に対応した未臨界度を決定す
るとともに、核燃料装荷時の未臨界度を予測する
演算器と、この演算器から得られた前記核燃料装
荷時の未臨界度と安全管理上の所定値とを照合し
て警報を出す警報器とからなることを特徴とする
核燃料設備の未臨界度モニター装置。
1. A pair of detectors consisting of a detector with high sensitivity to thermal neutron energy and a detector with higher sensitivity to fast neutron energy, and a counting circuit that calculates the count rate ratio of neutrons detected by this pair of detectors. and a memory having a calculation program for calculating the degree of subcriticality from the count rate ratio, and inputting the count rate ratio from the counting circuit and the calculation program to determine the degree of subcriticality corresponding to the current arrangement state of the nuclear fuel. At the same time, a computing device predicts the degree of subcriticality at the time of nuclear fuel loading, and an alarm device that issues an alarm by comparing the degree of subcriticality at the time of nuclear fuel loading obtained from this computing device with a predetermined value for safety management. A subcriticality monitor device for nuclear fuel equipment, characterized by comprising:
JP61275650A 1986-11-19 1986-11-19 Non-critical degree monitor device for nuclear fuel facility Granted JPS63128290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61275650A JPS63128290A (en) 1986-11-19 1986-11-19 Non-critical degree monitor device for nuclear fuel facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61275650A JPS63128290A (en) 1986-11-19 1986-11-19 Non-critical degree monitor device for nuclear fuel facility

Publications (2)

Publication Number Publication Date
JPS63128290A JPS63128290A (en) 1988-05-31
JPH0525319B2 true JPH0525319B2 (en) 1993-04-12

Family

ID=17558414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61275650A Granted JPS63128290A (en) 1986-11-19 1986-11-19 Non-critical degree monitor device for nuclear fuel facility

Country Status (1)

Country Link
JP (1) JPS63128290A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240464A (en) * 2006-03-10 2007-09-20 Toshiba Corp Core monitor unit of boiling water reactor
JP4864588B2 (en) * 2006-08-03 2012-02-01 株式会社東芝 Method of loading irradiated fuel into subcritical neutron multiplication system and calculating effective multiplication factor of irradiated fuel

Also Published As

Publication number Publication date
JPS63128290A (en) 1988-05-31

Similar Documents

Publication Publication Date Title
US6181759B1 (en) Method and apparatus for determining nearness to criticality of a nuclear fueled electric power generating unit
KR101428404B1 (en) Nuclear reactor protection system using in-core sensors
US4588547A (en) Method and apparatus for determining the nearness to criticality of a nuclear reactor
EP0326267B1 (en) Core reactivity validation computer and method
US4803040A (en) Expert system for surveillance and diagnosis of breach fuel elements
US20220084705A1 (en) Nuclear fuel failure protection method
JPH0525319B2 (en)
CN111312417A (en) Method for measuring reactivity
JPH0525320B2 (en)
JP2647573B2 (en) Core power distribution monitoring device, reactor protection device, reactor core detector device, and reactor core monitoring method
Antonopoulos-Domis et al. Moderator temperature coefficient of reactivity in Pressurized Water Reactors: theoretical investigation and numerical simulations
JP3137569B2 (en) Method for evaluating neutron source intensity and gamma ray intensity of reactor
JPS6161096A (en) Measuring device for distribution of gamma ray in nuclear reactor
JPH04115193A (en) Measuring apparatus for average burnup of nuclear fuel assembly
JP2023030894A (en) Spent nuclear fuel degree-of-subcriticality measurement device and spent nuclear fuel criticality management method
JP2023030895A (en) Neutron monitoring device, and spent nuclear fuel criticality management method
JPH06214038A (en) Neutron monitoring method and device therefor
JPS6161095A (en) Measuring device for distribution of gamma ray in nuclear reactor
JPH04256897A (en) Neutron monitor device
JPH0465360B2 (en)
Trimmer Instrumentation and control of reactors
Simon et al. Famos III, burn-up measurement system suitable for la Hague acceptance criteria control
Tsoglin Possible Solutions for Improving Operational Safety of NPP
JPH08320380A (en) Method for monitoring subcriticality of nuclear fuel by gamma-ray measurement
JPH04151590A (en) Neutron monitor apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees