JPH05252217A - Delay detecting system - Google Patents

Delay detecting system

Info

Publication number
JPH05252217A
JPH05252217A JP4048832A JP4883292A JPH05252217A JP H05252217 A JPH05252217 A JP H05252217A JP 4048832 A JP4048832 A JP 4048832A JP 4883292 A JP4883292 A JP 4883292A JP H05252217 A JPH05252217 A JP H05252217A
Authority
JP
Japan
Prior art keywords
signal
phase
error
detection system
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4048832A
Other languages
Japanese (ja)
Inventor
Tokihiro Mishiro
時博 御代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4048832A priority Critical patent/JPH05252217A/en
Publication of JPH05252217A publication Critical patent/JPH05252217A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a delay detection system in which a code error rate is not deteriorated even when a reception frequency is changed in the delay detection system. CONSTITUTION:The delay detection system in which a reception signal is branched, the one branched signal is left as it is and the other passes through a delay circuit, the signal is demodulated based on phase comparison between both branched signals is provided with a phase correction section 4 added to the delay circuit and with an error detection section 5 integrating an error signal resulting from eliminating the modulation component from the demodulation output, and the phase correction section 4 controls so that the level of the demodulation output is constant based on the output of the error detection section 5. The reception signal is the phase modulation signal preferably. Furthermore, the reception signal is a signal on a phase plane resulting from applying quasi-synchronization quadrature detection to the quadrature modulation wave signal and applying polar coordinate transformation to the result.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は遅延検波方式に関し、更
に詳しくは受信信号を分岐し、一方はそのまま、かつ他
方は遅延回路を経由させることにより、両信号間の位相
比較に基づいて復調を行う遅延検波方式に関する。今
日、衛星通信や移動体通信においては、通信品質の向上
のために音声信号をディジタル化し、無線周波に変調を
かけて伝送する方式が一般化しつつある。この変調方式
にはBPSK、QPSK、π/4シフトQPSK、QA
M等があり、その復調方式には大別して同期検波方式と
遅延検波方式とがある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a differential detection system, and more specifically, it divides a received signal, one of them is left as it is, and the other is passed through a delay circuit to perform demodulation based on a phase comparison between the two signals. The present invention relates to a differential detection method. 2. Description of the Related Art In satellite communication and mobile communication, a method of digitizing a voice signal and modulating the radio frequency for transmission is becoming popular in satellite communication and mobile communication. This modulation method includes BPSK, QPSK, π / 4 shift QPSK, QA
M, etc., and the demodulation methods thereof are roughly classified into a synchronous detection method and a differential detection method.

【0002】同期検波方式では、受信変調波から位相変
動のない基準となる搬送波を再生し、この基準波と受信
変調波の位相を比較することにより復調を行う。同期検
波方式によれば、もし同一のC/Nが得られるなら、遅
延検波方式に比べて復調の符号誤り率を小さくできる。
しかし、特に移動体通信では、移動体の移動に伴って激
しいフェージングが生ずるために、基準搬送波の再生は
困難である。このために、移動体通信では基準搬送波の
再生が不要な遅延検波方式が一般的に用いられる。
In the synchronous detection system, a reference carrier wave having no phase fluctuation is reproduced from the received modulated wave, and demodulation is performed by comparing the phases of the reference wave and the received modulated wave. According to the synchronous detection method, if the same C / N can be obtained, the code error rate of demodulation can be made smaller than that of the differential detection method.
However, in mobile communication in particular, it is difficult to reproduce the reference carrier because severe fading occurs as the mobile moves. For this reason, in mobile communication, a differential detection method that does not require reproduction of a reference carrier is generally used.

【0003】[0003]

【従来の技術】図5は従来の遅延検波方式を説明する図
で、図において1は電力分配器、2は1タイムスロット
分の遅延時間τを有する遅延素子、3は位相比較器であ
る。図5の(A)において、電力分配器1はBPSK変
調波の受信IF信号を2分岐し、一方はそのまま、他方
は遅延素子2を経由させることにより、夫々を位相比較
器3に入力する。位相比較器3は、現タイムスロットの
受信信号φと1タイムスロット前の受信信号φ-1の位相
を比較することにより、位相差に比例した復調ベースバ
ンド信号を出力する。
2. Description of the Related Art FIG. 5 is a diagram for explaining a conventional differential detection system. In the figure, 1 is a power divider, 2 is a delay element having a delay time .tau. Of one time slot, and 3 is a phase comparator. In FIG. 5A, the power divider 1 splits the received IF signal of the BPSK modulated wave into two, one of which is left as it is and the other of which is passed through the delay element 2 to input each to the phase comparator 3. The phase comparator 3 outputs the demodulated baseband signal proportional to the phase difference by comparing the phases of the reception signal φ of the current time slot and the reception signal φ −1 of the previous time slot.

【0004】図5の(B)において、このような遅延素
子2の遅延時間τは受信IF信号周期(1/f0 )の整
数倍に選ばれる。従って、受信IF信号の周波数f0
変動が無い場合には、位相比較器3の各入力には変調に
応じて相互に位相差0又はπの受信信号φ,φ-1が得ら
れる。しかし、実際の装置では送信周波数や受信ローカ
ル発振器の周波数等に変動があり、これに応じて受信I
F信号の周波数f0 も変動する。しかるに、従来のよう
に遅延時間τが固定であると、もはや受信IF信号周期
の整数倍の関係は保てなくなり、遅延素子2の出力には
本来の変調成分である位相差0又はπに対して角周波数
変動分△ωによる位相誤差△θ=τ×△ωが重畳する。
このために、復調ベースバンド信号の復調レベルが変動
し、しばしば符号点の識別を誤ることにより、符号誤り
率が劣化するという問題があった。
In FIG. 5B, the delay time τ of such a delay element 2 is selected to be an integral multiple of the reception IF signal period (1 / f 0 ). Therefore, when there is no fluctuation in the frequency f 0 of the received IF signal, the received signals φ and φ −1 with a phase difference of 0 or π are obtained at the respective inputs of the phase comparator 3 depending on the modulation. However, in an actual device, there are variations in the transmission frequency, the frequency of the reception local oscillator, etc., and the reception I
The frequency f 0 of the F signal also changes. However, if the delay time τ is fixed as in the conventional case, the relationship of an integral multiple of the reception IF signal period can no longer be maintained, and the output of the delay element 2 has a phase difference of 0 or π which is the original modulation component. The phase error Δθ = τ × Δω due to the angular frequency variation Δω is superimposed.
For this reason, there is a problem that the demodulation level of the demodulated baseband signal fluctuates, and the code points are often erroneously identified, resulting in deterioration of the code error rate.

【0005】[0005]

【発明が解決しようとする課題】上記のように従来の遅
延検波方式では、受信周波数が変化すると符号誤り率が
劣化するという問題があった。本発明の目的は、受信周
波数が変化しても符号誤り率が劣化しない遅延検波方式
を提供することにある。
As described above, the conventional differential detection system has a problem that the code error rate deteriorates when the reception frequency changes. An object of the present invention is to provide a differential detection method in which the code error rate does not deteriorate even if the reception frequency changes.

【0006】[0006]

【課題を解決するための手段】上記の課題は図1の構成
により解決される。即ち、本発明の遅延検波方式は、受
信信号を分岐し、一方はそのまま、かつ他方は遅延回路
を経由させることにより、両信号間の位相比較に基づい
て復調を行う遅延検波方式において、遅延回路に付加し
た位相補正部4と、復調出力より変調成分を除去した誤
差信号を積分する誤差検出部5とを備え、誤差検出部5
の出力により復調出力のレベルが一定となるように位相
補正部4を制御するものである。
The above problems can be solved by the structure shown in FIG. That is, in the differential detection method of the present invention, the received signal is branched and one is left as it is, and the other is passed through the delay circuit so that the delay circuit can perform demodulation based on the phase comparison between the two signals. And an error detection unit 5 for integrating the error signal obtained by removing the modulation component from the demodulation output.
The phase correction unit 4 is controlled so that the level of the demodulation output becomes constant by the output of.

【0007】[0007]

【作用】本発明の遅延検波方式においては、受信信号を
2分岐し、一方はそのまま、他方は遅延回路2及び位相
補正部4を経由させることにより、夫々を位相比較器3
に入力する。受信周波数に変動がない場合は、位相比較
器3は、現タイムスロットの受信信号φと1タイムスロ
ット前の受信信号φ-1´の位相を比較することにより、
位相差0又はπに比例した各符号点の復調ベースバンド
信号S0 を出力する。
In the differential detection system of the present invention, the received signal is branched into two, one of them is left as it is, and the other is passed through the delay circuit 2 and the phase correction section 4, so that the phase comparator 3
To enter. When there is no fluctuation in the reception frequency, the phase comparator 3 compares the phases of the reception signal φ of the current time slot and the reception signal φ −1 ′ of the previous time slot,
The demodulated baseband signal S 0 of each code point proportional to the phase difference 0 or π is output.

【0008】しかし、受信周波数が変動すると、位相比
較器3の各入力間には角周波数変動分△ωによる位相誤
差△θ=τ×△ωが生じるので、その復調ベースバンド
信号S0 は本来の符号点レベルからずれてしまう。そこ
で、誤差検出部5は、復調ベースバンド信号S0 から本
来の変調成分である符号点レベルを除去することにより
位相誤差成分を抽出し、更にこの位相誤差成分を積分す
ることにより雑音成分を取り除き、その出力で位相補正
部4に負帰還をかける。これにより、位相補正部4は、
1タイムスロット前の受信信号φ-1を位相誤差△θを打
ち消す方向に移相させ、もって位相比較器3の各入力間
の位相誤差△θは打ち消される。従って、位相比較器3
は常に変調に応じた位相差0又はπに比例した各符号点
の復調ベースバンド信号S0 を出力することとなり、か
くして、受信周波数が変動しても符号誤り率が劣化しな
い遅延検波方式を提供できる。
However, when the reception frequency fluctuates, a phase error Δθ = τ × Δω due to the angular frequency fluctuation Δω occurs between the respective inputs of the phase comparator 3, so that the demodulated baseband signal S 0 is originally Will be deviated from the code point level of. Therefore, the error detection unit 5 extracts the phase error component from the demodulated baseband signal S 0 by removing the code point level which is the original modulation component, and further removes the noise component by integrating this phase error component. , And outputs the negative feedback to the phase corrector 4. As a result, the phase correction unit 4
The received signal φ -1 one time slot before is phase-shifted in the direction in which the phase error Δθ is canceled, so that the phase error Δθ between the respective inputs of the phase comparator 3 is canceled. Therefore, the phase comparator 3
Always outputs the demodulation baseband signal S 0 of each code point proportional to the phase difference 0 or π according to the modulation, and thus provides the differential detection method in which the code error rate does not deteriorate even if the reception frequency changes. it can.

【0009】好ましくは、受信信号は位相変調波信号で
ある。また好ましくは、受信信号は直交変調波信号を準
同期直交検波してこれらを極座標変換した位相平面上の
信号である。
[0009] Preferably, the received signal is a phase modulated wave signal. Further, preferably, the received signal is a signal on a phase plane obtained by performing quasi-synchronous quadrature detection on the quadrature modulated wave signal and converting them into polar coordinates.

【0010】[0010]

【実施例】以下、添付図面に従って本発明による実施例
を詳細に説明する。なお、全図を通して同一符号は同一
又は相当部分を示すものとする。図2は第1実施例の遅
延検波方式の構成を示す図で、図において1は電力分配
器、2は1タイムスロット分の遅延時間τを有する遅延
素子、3は位相比較器、4は可変移相器(図1の位相補
正部)、5は誤差検出部、51 は識別回路、52はアナ
ログスイッチ、53 は減算回路、54 は積分回路であ
る。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. Note that the same reference numerals denote the same or corresponding parts throughout the drawings. FIG. 2 is a diagram showing the configuration of the differential detection system of the first embodiment, in which 1 is a power divider, 2 is a delay element having a delay time τ of one time slot, 3 is a phase comparator, and 4 is variable. The phase shifter (phase correction unit in FIG. 1), 5 is an error detection unit, 5 1 is an identification circuit, 5 2 is an analog switch, 5 3 is a subtraction circuit, and 5 4 is an integration circuit.

【0011】図3は第1実施例の遅延検波方式の動作を
説明する図で、以下、図2及び図3を参照して動作を説
明する。図3において、例えば送信すべき2値データx
K =「01101001」とする。不図示の送信側で
は、yK =yK-1 +xK の和動演算により送信信号系列
K =「10110001」を形成し、さらに、yK
1の場合は搬送波信号を位相πに変調し、またyK =0
の場合は位相0に変調することによりBPSK変調波を
送信する。
FIG. 3 shows the operation of the differential detection system of the first embodiment.
In the following figures, the operation will be described with reference to FIGS. 2 and 3.
Reveal In FIG. 3, for example, binary data x to be transmitted
K= “01101001”. On the sending side not shown
Is yK= YK-1+ XKTransmit signal sequence by sum operation of
y K= “10110001”, and further yK=
In the case of 1, the carrier signal is modulated to the phase π, and yK= 0
In the case of, the BPSK modulated wave can be obtained by modulating the phase 0.
Send.

【0012】一方、これを受信した受信IF信号は図示
のようになる。図は説明の簡単のために1タイムスロッ
トに1波形分しか示していないが、実際は複数の波が含
まれている。受信周波数に変動がない場合は、位相比較
器3は、現タイムスロットの受信信号φと1タイムスロ
ット前の受信信号φ-1´の位相を比較することにより、
位相差0又はπに比例した各符号点レベルM0 又はM1
の復調ベースバンド信号S0 を出力する。これを差動変
換xK =yK −yK-1 により復調すれば受信2値データ
K =「01101001」が得られる。
On the other hand, the received IF signal which has received this is as shown in the figure. Although the figure shows only one waveform for one time slot for the sake of simplicity of description, a plurality of waves are actually included. When there is no fluctuation in the reception frequency, the phase comparator 3 compares the phases of the reception signal φ of the current time slot and the reception signal φ −1 ′ of the previous time slot,
Each code point level M 0 or M 1 proportional to the phase difference 0 or π
The demodulated baseband signal S 0 is output. This differential conversion x K = y K -y K- 1 receives the binary data if demodulated by x K = "01101001" is obtained.

【0013】しかし、受信IF信号の周波数が変動する
と、現タイムスロットの受信信号φと1タイムスロット
前の受信信号φ-1´の間の位相には受信周波数の変動方
向に応じて+Δθ又は−Δθの変動分が重畳してしま
う。またこれに応じて、復調ベースバンド信号S0 のレ
ベルも本来の符号点レベルM0 又はM1 よりずれて、誤
差信号+ER又は−ERが加算されたものとなる。
However, when the frequency of the reception IF signal fluctuates, the phase between the reception signal φ of the current time slot and the reception signal φ -1 ′ of one time slot before is + Δθ or − depending on the direction of fluctuation of the reception frequency. The fluctuation of Δθ is superimposed. Further, accordingly, the level of the demodulated baseband signal S 0 is also deviated from the original code point level M 0 or M 1 , and the error signal + ER or −ER is added.

【0014】そこで、誤差検出部5の識別回路51 は、
復調ベースバンド信号S0 と所定閾値TH とを比較する
ことにより該復調ベースバンド信号S0 がいずれの符号
点の側に存在するかを判別し、スイッチ52 の接続を該
識別符号点に応じた側に切り換える。これにより減算回
路53 は復調ベースバンド信号S0 から識別符号点に応
じたレベルM0 又はM1 を除去し、位相誤差に対応する
誤差信号ERを抽出する。更に、積分回路54 は誤差信
号ERを積分することにより雑音成分を取り除き、受信
IF信号の周波数変動に基づく制御信号Cを形成して可
変移相器4に負帰還をかける。これにより、可変移相器
4は、周波数が大の場合は位相の過剰な回り込み分を補
正すべく遅延素子2の出力の信号φ-1を遅相させ、また
周波数が小の場合は位相の回り込みの不足分を補正すべ
く遅延素子2の出力の信号φ-1を進相させる。
Therefore, the discrimination circuit 5 1 of the error detection section 5 is
Determine demodulated baseband signal S 0 by comparing the demodulated baseband signal S 0 and a predetermined threshold value T H is present on the side of any code point, the connection of the switch 5 2 to the identification code point Switch to the appropriate side. As a result, the subtraction circuit 5 3 removes the level M 0 or M 1 corresponding to the identification code point from the demodulated baseband signal S 0 and extracts the error signal ER corresponding to the phase error. Furthermore, the integration circuit 5 4 removes noise components by integrating the error signal ER, to form a control signal C based on the frequency variation of the received IF signal negative feedback to the variable phase shifter 4. Thereby, the variable phase shifter 4 delays the signal φ −1 of the output of the delay element 2 in order to correct the excessive wraparound of the phase when the frequency is high, and when the frequency is low, The signal φ −1 output from the delay element 2 is advanced in order to correct the shortage of wraparound.

【0015】従って、位相比較器3の各入力間では、常
に、変調成分に応じた位相差0又はπの受信信号φ,φ
-1´が得られることとなり、位相比較器3はこれに比例
した各符号点の復調ベースバンド信号S0 を出力する。
図4は第2実施例の遅延検波方式の構成を示す図で、こ
の例では、受信IF信号を準同期検波し、これを極座標
変換した位相平面上の復調ベースバンド信号θに対して
本発明の遅延検波方式を適用している。
Therefore, between the inputs of the phase comparator 3, the received signals φ, φ having a phase difference of 0 or π depending on the modulation component are always provided.
−1 ′ is obtained, and the phase comparator 3 outputs the demodulated baseband signal S 0 at each code point proportional to this.
FIG. 4 is a diagram showing the configuration of the differential detection system of the second embodiment. In this example, the present invention is applied to the demodulation baseband signal θ on the phase plane in which the received IF signal is quasi-coherently detected and polar coordinate converted. The differential detection method of is applied.

【0016】図において、11はπ/2移相器、12は
電力分配器、13,14は位相比較器、15,16はA
/D変換器(A/D)、17は受信IF信号と同一周波
数の発振器、18は極座標変換部、2はメモリ(図1の
遅延回路)、3は減算回路(図1の位相比較器)、4は
加算回路(図1の位相補正部)、5は誤差検出部、5 1
は識別回路、52 はセレクタ(SEL)、53 は減算回
路、54 は積分回路である。
In the figure, 11 is a π / 2 phase shifter, and 12 is
Power distributor, 13, 14 are phase comparators, 15 and 16 are A
/ D converter (A / D), 17 has the same frequency as the received IF signal
Number oscillator, 18 is a polar coordinate converter, 2 is a memory (see FIG. 1).
Delay circuit), 3 is a subtraction circuit (phase comparator of FIG. 1), 4 is
Adder circuit (phase correction unit in FIG. 1), 5 is an error detection unit, 5 1
Is an identification circuit, 52Is a selector (SEL), 53Is the subtraction time
Road 5,FourIs an integrating circuit.

【0017】固定の発振器17をローカル源として受信
IF信号を位相比較器13,14により直交で準同期検
波し、得られた2系列の信号I´,Q´を夫々A/D変
換器15,16によりA/D変換する。更に、これらの
ディジタルI,Q信号(直交座標信号)を極座標変換部
18により極座標変換して受信IF信号の位相θを得
る。なお、この極座標への変換はθ=tan-1Q/Iの
演算で行えるが、予めこのような演算結果をROMに記
憶しておけば、ディジタルI,Q信号のアドレス指定に
より位相θを高速に読み出せる。この様にして得られた
位相θと1タイムスロット前の位相θ-1´を比較するこ
とにより第1実施例と同様にして遅延検波が行われる。
Using the fixed oscillator 17 as a local source, the received IF signal is quasi-coherently detected by the phase comparators 13 and 14 in quadrature, and the obtained two series of signals I'and Q'are respectively converted into A / D converters 15 and 15. A / D conversion is performed by 16. Further, these digital I and Q signals (orthogonal coordinate signals) are polar coordinate-converted by the polar coordinate converter 18 to obtain the phase θ of the received IF signal. The conversion to polar coordinates can be performed by the calculation of θ = tan −1 Q / I. However, if such a calculation result is stored in the ROM in advance, the phase θ can be increased at high speed by addressing the digital I and Q signals. Can be read. By comparing the phase θ thus obtained with the phase θ −1 ′ one time slot before, differential detection is performed in the same manner as in the first embodiment.

【0018】一例としてQPSK変調の場合は、その復
調出力には0,π/2,2π/2,3π/2に近いコー
ドが得られる。減算回路53 は識別回路51 の判別出力
n(=0〜3)に従って復調出力から前記4つのコード
のうち最も近いコードnπ/2を引き算する。これによ
り位相誤差ERが得られ、更にこの誤差ERを積分回路
4 で積分した後、これを位相誤差Δθの補正分θC
してメモリ2の遅延出力θ-1に加算する。従って、減算
回路3の各入力間においては、受信周波数の変動に応じ
た位相誤差成分Δθが常に相殺される方向にあり、これ
により減算回路3は変調成分に応じた位相0,π/2,
2π/2又は3π/2の復調出力を安定に出力する。
As an example, in the case of QPSK modulation, codes close to 0, π / 2, 2π / 2 and 3π / 2 are obtained in the demodulated output. The subtraction circuit 5 3 subtracts the closest code nπ / 2 of the four codes from the demodulation output according to the discrimination output n (= 0 to 3) of the identification circuit 5 1 . Thus the phase error ER is obtained, further the after the error ER was integrated by the integrating circuit 5 4, which is added to the delayed output theta -1 of the memory 2 as the correction amount theta C of the phase error [Delta] [theta]. Therefore, between the respective inputs of the subtraction circuit 3, the phase error component Δθ corresponding to the fluctuation of the reception frequency is always canceled out, so that the subtraction circuit 3 causes the phase 0, π / 2, or 2 depending on the modulation component.
The demodulation output of 2π / 2 or 3π / 2 is stably output.

【0019】[0019]

【発明の効果】以上述べた如く本発明によれば、受信信
号を分岐し、一方はそのまま、かつ他方は遅延回路を経
由させることにより、両信号間の位相比較に基づいて復
調を行う遅延検波方式において、遅延回路に付加した位
相補正部4と、復調出力より変調成分を除去した誤差信
号を積分する誤差検出部5とを備え、誤差検出部5の出
力により復調出力のレベルが一定となるように位相補正
部4を制御するので、受信周波数に変動があっても符号
誤り率の劣化が生じないような遅延検波が可能となる。
As described above, according to the present invention, the received signal is branched and one is left as it is and the other is passed through the delay circuit to perform the delay detection for demodulating based on the phase comparison between the two signals. The system includes a phase correction unit 4 added to a delay circuit and an error detection unit 5 that integrates an error signal obtained by removing a modulation component from a demodulation output, and the output of the error detection unit 5 makes the level of the demodulation output constant. Since the phase correction unit 4 is controlled as described above, it is possible to perform the delay detection such that the code error rate does not deteriorate even if the reception frequency changes.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の原理的構成図である。FIG. 1 is a principle configuration diagram of the present invention.

【図2】図2は第1実施例の遅延検波方式の構成を示す
図である。
FIG. 2 is a diagram showing a configuration of a differential detection system of the first embodiment.

【図3】図3は第1実施例の遅延検波方式の動作を説明
する図である。
FIG. 3 is a diagram for explaining the operation of the differential detection method of the first embodiment.

【図4】図4は第2実施例の遅延検波方式の構成を示す
図である。
FIG. 4 is a diagram showing a configuration of a differential detection system according to a second embodiment.

【図5】図5は従来の遅延検波方式を説明する図であ
る。
FIG. 5 is a diagram illustrating a conventional differential detection method.

【符号の説明】[Explanation of symbols]

2 遅延回路 3 位相比較器 4 位相補正部 5 誤差検出部 2 delay circuit 3 phase comparator 4 phase corrector 5 error detector

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 受信信号を分岐し、一方はそのまま、か
つ他方は遅延回路を経由させることにより、両信号間の
位相比較に基づいて復調を行う遅延検波方式において、 遅延回路に付加した位相補正部(4)と、 復調出力より変調成分を除去した誤差信号を積分する誤
差検出部(5)とを備え、 誤差検出部(5)の出力により復調出力のレベルが一定
となるように位相補正部(4)を制御することを特徴と
する遅延検波方式。
1. A phase correction added to a delay circuit in a differential detection system in which a received signal is branched, one of the signals is left unchanged and the other is passed through a delay circuit to perform demodulation based on a phase comparison between the two signals. A section (4) and an error detection section (5) for integrating an error signal obtained by removing the modulation component from the demodulation output, and phase correction so that the level of the demodulation output becomes constant by the output of the error detection section (5). A differential detection system characterized by controlling a section (4).
【請求項2】 受信信号は位相変調波信号であることを
特徴とする請求項1の遅延検波方式。
2. The differential detection system according to claim 1, wherein the received signal is a phase modulation wave signal.
【請求項3】 受信信号は直交変調波信号を準同期直交
検波してこれらを極座標変換した位相平面上の信号であ
ることを特徴とする請求項1の遅延検波方式。
3. The differential detection system according to claim 1, wherein the received signal is a signal on a phase plane obtained by quasi-synchronous quadrature detection of a quadrature modulated wave signal and polar-converting these signals.
JP4048832A 1992-03-05 1992-03-05 Delay detecting system Withdrawn JPH05252217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4048832A JPH05252217A (en) 1992-03-05 1992-03-05 Delay detecting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4048832A JPH05252217A (en) 1992-03-05 1992-03-05 Delay detecting system

Publications (1)

Publication Number Publication Date
JPH05252217A true JPH05252217A (en) 1993-09-28

Family

ID=12814217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4048832A Withdrawn JPH05252217A (en) 1992-03-05 1992-03-05 Delay detecting system

Country Status (1)

Country Link
JP (1) JPH05252217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100697032B1 (en) * 2006-08-16 2007-03-20 이순익 Method of repairing for paved road and repair device thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100697032B1 (en) * 2006-08-16 2007-03-20 이순익 Method of repairing for paved road and repair device thereof

Similar Documents

Publication Publication Date Title
US5787123A (en) Receiver for orthogonal frequency division multiplexed signals
US5440268A (en) AFC circuit for QPSK demodulator
EP0464814B1 (en) Demodulator circuit for demodulating PSK modulated signals
JPH021675A (en) Carrier recovering circuit for offset qpsk system
RU2216113C2 (en) Digital sound broadcasting signal receiver
JPS62222745A (en) Demodulator
JP2003018230A (en) Demodulator, broadcasting system and semiconductor device
US3984777A (en) Carrier wave reproducer device for use in the reception of a multi-phase phase-modulated wave
US5170131A (en) Demodulator for demodulating digital signal modulated by minimum shift keying and method therefor
JPH0136745B2 (en)
JPS6347313B2 (en)
US5541966A (en) System and circuit for estimating the carrier frequency of a PSK numeric signal
JPH05252217A (en) Delay detecting system
JP2931454B2 (en) Digital phase modulation signal demodulation circuit
JP3164944B2 (en) Sync detection circuit
EP0940005B1 (en) Method and device for use with phase modulated signals
JPH0897874A (en) Offset qpsk demodulator
JPH06311195A (en) Apsk modulated signal demodulator
US6246730B1 (en) Method and arrangement for differentially detecting an MPSK signal using a plurality of past symbol data
JPH07183927A (en) Delay detecting device for multiphase modulated signal
US6587523B1 (en) Radio signal receiving apparatus and a method of radio signal reception
JP3865893B2 (en) Demodulator circuit
JP3410841B2 (en) Phase modulated wave carrier regeneration circuit
JPH0630072A (en) Carrier reproduction circuit for quadrature amplitude modulated wave
JPH066397A (en) Delay detector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518