JPH0525201A - Production of highly cyanoethylated pullulan - Google Patents

Production of highly cyanoethylated pullulan

Info

Publication number
JPH0525201A
JPH0525201A JP3186553A JP18655391A JPH0525201A JP H0525201 A JPH0525201 A JP H0525201A JP 3186553 A JP3186553 A JP 3186553A JP 18655391 A JP18655391 A JP 18655391A JP H0525201 A JPH0525201 A JP H0525201A
Authority
JP
Japan
Prior art keywords
cyanoethylated
pullulan
cyanoethylated pullulan
highly
cyanoethylation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3186553A
Other languages
Japanese (ja)
Other versions
JP2512352B2 (en
Inventor
Makiko Yamaura
真生子 山浦
Shoji Sakamoto
昭二 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kasei Chemical Co Ltd
Original Assignee
Nippon Kasei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kasei Chemical Co Ltd filed Critical Nippon Kasei Chemical Co Ltd
Priority to JP3186553A priority Critical patent/JP2512352B2/en
Publication of JPH0525201A publication Critical patent/JPH0525201A/en
Application granted granted Critical
Publication of JP2512352B2 publication Critical patent/JP2512352B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain a highly cyanoethylated pullulan which, when used as a binder for an EL element, can impart high brightness and long life to the EL element CONSTITUTION:A cyanoethylated pullulan having a degree of cyanoethyl- substitution of 50-90% is cyanoethylated in a nonaqueous medium in the presence of a basic catalyst to produce a highly cyanoethylated pullulan having a degree of cyanoethyl-substitution of 95-100%, which has been difficult to attain by any conventional method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はシアノエチル化置換率95
〜 100%の高シアノエチル化プルランの製造方法に関す
る。
This invention relates to a cyanoethylation substitution rate of 95.
~ 100% high cyanoethylated pullulan production method.

【0002】[0002]

【従来技術】分散型エレクトロルミネッセンス(EL)
素子は、一般にアルミニウム箔などを背面電極とし、こ
の背面電極上に酸化チタンやチタン酸バリウム等の無機
高誘電体粉末を有機高誘電体バインダーに分散させた反
射絶縁体層を形成し、さらにその上に硫化亜鉛などの蛍
光体粉末を有機高誘電体バインダーに分散させた発光層
を形成し、最後にITO(酸化インジウムと酸化スズの
混合物)等の透明電極を対電極として設置した構造を有
し、両電極間に交流電極を印加することにより蛍光体が
発光するものである。
2. Description of the Related Art Dispersed electroluminescence (EL)
The element generally has an aluminum foil or the like as a back electrode, and a reflective insulating layer in which an inorganic high dielectric powder such as titanium oxide or barium titanate is dispersed in an organic high dielectric binder is formed on the back electrode. It has a structure in which a light-emitting layer is formed by dispersing phosphor powder such as zinc sulfide in an organic high-k dielectric binder, and finally a transparent electrode such as ITO (a mixture of indium oxide and tin oxide) is installed as a counter electrode. However, the phosphor emits light by applying an AC electrode between both electrodes.

【0003】尚、背面電極と透明電極の間に発光層のみ
を挟み込んだ形態の分散型EL素子も用いられる。
A dispersion type EL element in which only a light emitting layer is sandwiched between a back electrode and a transparent electrode is also used.

【0004】このようなEL素子に使用される蛍光体層
や絶縁体層用のバインダーは高い誘電率をもつことが要
求される。従来EL素子用バインダーとしてはシアノエ
チル化セルロース、シアノエチル化ポバール、シアノエ
チル化ヒドロキシエチルセルロース、シアノエチル化プ
ルラン、シアノエチル化スターチなどのシアノエチル化
高分子誘電体が用いられている。この内、シアノエチル
化プルランは耐熱性が高いので特に好ましく用いられ
る。これらのシアノエチル化高分子の製造方法としては
米国特許 3,161,539号、同第 3,637,656号公報などに記
載されているような水酸基をアルカリ存在下でアクリロ
ニトリルと反応させる方法が一般的であり、またプルラ
ンのシアノエチル化方法としては特開昭56-8601 号公報
にプルランを水の存在下アルカリ触媒でアクリロニトリ
ルと反応させる方法が開示されている。
Binders for phosphor layers and insulator layers used in such EL devices are required to have a high dielectric constant. Conventionally, cyanoethylated polymer dielectrics such as cyanoethylated cellulose, cyanoethylated poval, cyanoethylated hydroxyethyl cellulose, cyanoethylated pullulan, and cyanoethylated starch have been used as binders for EL devices. Of these, cyanoethylated pullulan is particularly preferably used because it has high heat resistance. As a method for producing these cyanoethylated polymers, a method of reacting a hydroxyl group with acrylonitrile in the presence of an alkali is generally used as described in U.S. Pat.Nos. 3,161,539 and 3,637,656, and cyanoethyl of pullulan is also used. As a method of conversion, JP-A-56-8601 discloses a method of reacting pullulan with acrylonitrile in the presence of water with an alkali catalyst.

【0005】しかし、これらの方法で具体的に開示され
るシアノエチル化プルランはシアノエチル化置換率が最
高でも90%程度であるため、誘電率が余り高くならず、
高い輝度を要するEL素子のバインダーとしては不満足
の場合があった。また残存水酸基が存在するため耐湿性
が悪く、EL素子の寿命が短くなるという不利益もあっ
た。
However, the cyanoethylated pullulan specifically disclosed by these methods has a cyanoethylated substitution ratio of about 90% at the maximum, so that the dielectric constant does not become so high.
In some cases, it was unsatisfactory as a binder for EL devices that require high brightness. Further, since residual hydroxyl groups are present, the moisture resistance is poor and there is a disadvantage that the life of the EL element is shortened.

【0006】このためシアノエチル化プルランのシアノ
エチル化置換率を上げようとする試みがなされている
が、アルカリ水溶液を用いるシアノエチル化では副反応
としてシアノエチル基の加水分解(シアノエチル基がカ
ルボン酸もしくはカルボン酸アミドに加水分解する)が
進行し、 100%シアノエチル化を達成することが出来な
かった。
For this reason, attempts have been made to increase the cyanoethylation substitution rate of cyanoethylated pullulan. However, in the cyanoethylation using an alkaline aqueous solution, hydrolysis of the cyanoethyl group (wherein the cyanoethyl group is a carboxylic acid or a carboxylic acid amide) is a side reaction. However, 100% cyanoethylation could not be achieved.

【0007】[0007]

【発明が解決しようとする課題】本発明者等はEL素子
のバインダーとして使用する時、高い輝度を有し、寿命
の長いEL素子を得ることのできる誘電率が高く、残存
水酸基が極めて少ない高シアノエチル化プルランを製造
すべく鋭意検討を行った。
The inventors of the present invention can obtain an EL device having high brightness and long life when used as a binder for an EL device. The dielectric constant is high and the residual hydroxyl group is extremely small. An intensive study was carried out to produce cyanoethylated pullulan.

【0008】[0008]

【課題を解決するための手段】本発明の高シアノエチル
化プルランの製造方法は、シアノエチル化置換率50〜90
%のシアノエチル化プルランを非水溶媒中で塩基触媒の
存在下、残存水酸基をシアノエチル化することを特徴と
するシアノエチル化置換率95〜 100%の高シアノエチ
ル化プルランを得る方法である。
The method for producing highly cyanoethylated pullulan of the present invention comprises a cyanoethylated substitution ratio of 50 to 90.
% Cyanoethylated pullulan in a non-aqueous solvent in the presence of a base catalyst to cyanoethylate residual hydroxyl groups, which is a method for obtaining highly cyanoethylated pullulan having a cyanoethylated substitution rate of 95 to 100%.

【0009】本発明の特色は非水溶媒中で塩基触媒の存
在下でシアノエチル化を行うことであり、非水溶媒中で
はシアノエチル基の加水分解のおそれがないため、長時
間反応を行うことができ、このためシアノエチル化置換
率が向上するものと考えられる。
A feature of the present invention is that cyanoethylation is carried out in a non-aqueous solvent in the presence of a base catalyst. Since there is no fear of hydrolysis of the cyanoethyl group in the non-aqueous solvent, it is possible to carry out the reaction for a long time. Therefore, it is considered that the cyanoethylation substitution rate is improved.

【0010】本発明ではシアノエチル化置換率が50〜90
%のシアノエチル化プルランを原料として用いる。置換
率が50%未満では反応が余りに長時間になりすぎて工業
的に不利となる。原料のシアノエチル化プルランのシア
ノエチル化置換率はなるべく高い方が好ましいが90%以
上のシアノエチル化プルランは従来の提案されている方
法では入手が困難である。このようなシアノエチル化プ
ルランは市販のものを用いても良いし、又通常の水溶媒
中でプルランをアルカリ触媒の存在下シアノエチル化す
ることにより製造される。例えば前記米国特許 3,161,5
39号、 3,637,656号、特開昭 56-8601号公報の方法等が
利用される。
In the present invention, the cyanoethylation substitution ratio is 50 to 90.
% Cyanoethylated pullulan is used as a raw material. If the substitution rate is less than 50%, the reaction takes too long, which is industrially disadvantageous. The cyanoethylated pullulan of the raw material is preferably as high as possible in the cyanoethylated substitution rate, but cyanoethylated pullulan having a cyanoethylated pullulan of 90% or more is difficult to obtain by the conventionally proposed method. Such cyanoethylated pullulan may be a commercially available product, or may be produced by cyanoethylating pullulan in an ordinary water solvent in the presence of an alkali catalyst. For example, U.S. Pat.
The methods disclosed in JP-A No. 39, 3,637,656 and JP-A-56-8601 are used.

【0011】非水溶媒としては、ジメチルホルムアミ
ド、アセトン、ジクロロメタン、アセトニトリル等が用
いられるが、アクリロニトリルを溶媒として兼用するこ
ともできる。塩基触媒としては有機塩基である1,8−
ジアザビシクロ[5,4,0]−7−ウンデセン(DB
U)、1,4−ジアザビシクロ[2,2,2]−オクタ
ン(DBO)、1,5−ジアザビシクロ[4,3,0]
−ノン−5エン(DBN)、炭酸カリウム、炭酸ナトリ
ウム、炭酸水素ナトリウム等が用いられるが特にDBU
が好ましい。有機塩基は溶媒に溶解するので反応し易く
好ましく用いられるが無機塩基も使用することができ
る。
As the non-aqueous solvent, dimethylformamide, acetone, dichloromethane, acetonitrile and the like are used, but acrylonitrile can also be used as the solvent. 1,8- which is an organic base as a base catalyst
Diazabicyclo [5,4,0] -7-undecene (DB
U), 1,4-diazabicyclo [2,2,2] -octane (DBO), 1,5-diazabicyclo [4,3,0]
-Non-5ene (DBN), potassium carbonate, sodium carbonate, sodium hydrogen carbonate, etc. are used, but especially DBU
Is preferred. Since an organic base dissolves in a solvent and easily reacts, it is preferably used, but an inorganic base can also be used.

【0012】本発明のシアノエチル化プルランの製造方
法は上述の低シアノエチル化プルランを非水溶媒中に溶
解もしくは分散させ、この溶媒中に有機塩基の存在下、
アクリロニトリルを加え、好ましくは20〜80℃で1日〜
10日間反応せしめる。非水溶媒はシアノエチル化プルラ
ン1重量部に対し好ましくは5〜20重量部使用される。
またシアノエチル化プルラン1重量部に対しアクリロニ
トリル5〜20重量部、有機塩基0.01〜 0.5当量使用する
ことが好ましい。反応が終了した後、反応液を適当な酸
を用いて中和した後、溶媒を濃縮し、濃縮物をアセトン
で溶解、水−メタノール混合液(水:メタノール=1:
1)で晶析することを3回以上繰返した後、得られた晶
出物を真空乾燥する。
The method for producing cyanoethylated pullulan of the present invention comprises dissolving or dispersing the above-mentioned low cyanoethylated pullulan in a non-aqueous solvent, and in the presence of an organic base in the solvent,
Add acrylonitrile, preferably at 20-80 ° C for 1 day-
Let react for 10 days. The non-aqueous solvent is preferably used in an amount of 5 to 20 parts by weight based on 1 part by weight of cyanoethylated pullulan.
Further, it is preferable to use 5 to 20 parts by weight of acrylonitrile and 0.01 to 0.5 equivalents of an organic base with respect to 1 part by weight of cyanoethylated pullulan. After the reaction was completed, the reaction solution was neutralized with a suitable acid, the solvent was concentrated, the concentrate was dissolved in acetone, and a water-methanol mixed solution (water: methanol = 1: 2) was added.
After repeating the crystallization in 1) three times or more, the obtained crystallized product is vacuum dried.

【0013】このようにしてシアノエチル化置換率が95
〜100 %好ましくは98〜100 %、更に好ましくは99〜10
0 %の極めてシアノエチル化の高いシアノエチル化プル
ランを容易に得ることができる。シアノエチル化置換率
はキェルダー法により窒素含量を測定し、この値から換
算して求めた。
Thus, the cyanoethylation substitution rate is 95
-100%, preferably 98-100%, more preferably 99-10
A cyanoethylated pullulan having a very high cyanoethylation of 0% can be easily obtained. The cyanoethylation substitution rate was determined by measuring the nitrogen content by the Kjelder method and converting from this value.

【0014】一般に誘電率はシアノエチル化プルランの
シアノエチル化率が高くなるに従い高くなるため、本発
明によって得られた高シアノエチル化プルランは誘電率
が24〜26と高く、EL素子蛍光体層用バインダーや絶縁
体層用バインダーとして好適に用いられる。
Generally, the higher the cyanoethylation rate of cyanoethylated pullulan, the higher the cyanoethylated pullulan. Therefore, the high cyanoethylated pullulan obtained according to the present invention has a high dielectric constant of 24 to 26. It is preferably used as a binder for an insulating layer.

【0015】以下、実施例により本発明を具体的に説明
するが、本発明はこれら実施例に限定されるものではな
い。
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to these Examples.

【0016】[0016]

【実施例】実施例1 低シアノエチル化プルラン(CR−S、信越化学製、シ
アノエチル化置換率85%)1重量部をアクリロニトリル
7.5重量部に溶解し、DBU0.06重量部(0.3当量)を加
えた。室温(約20℃)にて約10日間放置したのち、酢酸
で中和しアクリロニトリルを濃縮した。残渣を少量のア
セトンに溶かし、(水:メタノール1:1)混合液で晶
出することを3回くり返した。晶出物を真空乾燥し、目
的物0.98重量部(収率 90.7%)を得た。
Example 1 1 part by weight of low cyanoethylated pullulan (CR-S, manufactured by Shin-Etsu Chemical, cyanoethylated substitution rate 85%) was added to acrylonitrile.
It was dissolved in 7.5 parts by weight, and 0.06 parts by weight (0.3 equivalent) of DBU was added. After leaving it at room temperature (about 20 ° C.) for about 10 days, it was neutralized with acetic acid to concentrate acrylonitrile. The residue was dissolved in a small amount of acetone and crystallized with a (water: methanol 1: 1) mixture, which was repeated 3 times. The crystallized product was vacuum dried to obtain 0.98 part by weight of the desired product (yield 90.7%).

【0017】得られた高シアノエチル化プルランの赤外
吸収スペクトルを図1に示す。2150cm-1にニトリル基の
ピークがみられ、3600cm-1付近の水酸基の吸収と加水分
解によるアミド、もしくはカルボン酸(カルボニル基)
のピーク1600〜1650cm-1はみられない。
The infrared absorption spectrum of the obtained highly cyanoethylated pullulan is shown in FIG. 2150 cm -1 peak of the nitrile groups found in the amide by absorption and hydrolysis of the hydroxyl group in the vicinity of 3600 cm -1 or carboxylic acid, (carbonyl group)
The peak of 1600 to 1650 cm -1 is not seen.

【0018】 N% 13.08 (シアノエチル化率 100%) 残存水酸基 未検出(アセチル化法による)比較例1 プルラン(PF−20 林原研究所製)1重量部及び5%
水酸化ナトリウム水溶液10重量部から成る溶液にアクリ
ロニトリル 7.5重量部とアセトン 7.5重量部の混合物を
加え、室温(15〜20℃)で24時間反応させた。次にこの
反応液に氷酢酸0.75重量部を加えて中和後、水中に撹拌
しながら注ぎ、シアノエチル化プルランを析出させた。
これをアセトンに溶解させて水中で晶出により精製し
た。この操作をさらにもう一度くりかえし、白色のシア
ノエチル化プルラン15重量部が得られた。
N% 13.08 (Cyanoethylation rate 100%) Residual hydroxyl group undetected (by acetylation method) Comparative Example 1 Pullulan (PF-20 manufactured by Hayashibara Laboratory) 1 part by weight and 5%
A mixture of 7.5 parts by weight of acrylonitrile and 7.5 parts by weight of acetone was added to a solution consisting of 10 parts by weight of an aqueous sodium hydroxide solution, and the mixture was reacted at room temperature (15 to 20 ° C.) for 24 hours. Next, 0.75 parts by weight of glacial acetic acid was added to the reaction solution to neutralize it, and the mixture was poured into water with stirring to precipitate cyanoethylated pullulan.
This was dissolved in acetone and purified by crystallization in water. This operation was repeated once more to obtain 15 parts by weight of white cyanoethylated pullulan.

【0019】 N% 12.0(シアノエチル化置換率85%) 残存水酸基 0.45 個/分子(アセチル化法による)比較例2 比較例1と同じ方法により反応時間をさらに延長し、2
日間反応を行った。比較例1と同様に反応液を中和後水
中に撹拌しながら水中に注いだ。折出物はアセトンに不
溶で大量の水に可溶であった。折出物を少量の水で2回
洗浄し、乾燥すると、無色の固体が得られた。このもの
の赤外線吸収スペクトル分析から1680cm-1付近にカルボ
ニル基のピークが見られた。長時間の反応により、シア
ノ基が加水分解して、アミドもしくはカルボン酸が生成
したものと考えられる。この赤外線吸収スペクトルを図
2に示す。
N% 12.0 (Cyanoethylation substitution rate 85%) 0.45 residual hydroxyl groups / molecule (by acetylation method) Comparative Example 2 By the same method as Comparative Example 1, the reaction time was further extended to 2
The reaction was carried out for a day. As in Comparative Example 1, the reaction solution was neutralized and then poured into water while stirring. The exudate was insoluble in acetone and soluble in a large amount of water. The exudate was washed twice with a small amount of water and dried to give a colorless solid. Infrared absorption spectrum analysis of this product showed a peak of carbonyl group at around 1680 cm -1 . It is considered that the cyano group was hydrolyzed by the reaction for a long time to generate an amide or a carboxylic acid. This infrared absorption spectrum is shown in FIG.

【0020】N% 12.0% このように水溶液の反応では長時間反応してもシアノエ
チル化は行われ難く、逆にシアノエチル基が加水分解す
るため、却って誘電率が低下する。
N% 12.0% As described above, in the reaction of the aqueous solution, cyanoethylation is difficult to be performed even if the reaction is carried out for a long time, and conversely, the cyanoethyl group is hydrolyzed, so that the dielectric constant is rather lowered.

【0021】実施例1及び比較例1で得られたシアノエ
チル化プルランの誘電率(25℃,1KHz)及び誘電正接(t
anδ)を第1表に示す。
The dielectric constant (25 ° C., 1 KHz) and dielectric loss tangent (t) of the cyanoethylated pullulan obtained in Example 1 and Comparative Example 1
an δ) is shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】分散型ELの製造 実施例1及び比較例1の各シアノエチル化プルランの30
%DMF溶液 100gに無機高誘電体としてのチタン酸バ
リウム(富士チタン社製BT−100M)の粉末 139.2
gを混練分散させ均一スラリーとし高誘電体ペーストを
作製しアルミニウム板に塗布して乾燥膜厚30μm の反射
絶縁体層を形成した。
Preparation of Dispersion Type EL 30 of each cyanoethylated pullulan of Example 1 and Comparative Example 1
Powder of barium titanate (BT-100M manufactured by Fuji Titanium Co., Ltd.) as an inorganic high dielectric substance in 100 g of a 100% DMF solution 139.2
g was kneaded and dispersed to form a uniform slurry, and a high dielectric paste was prepared and applied to an aluminum plate to form a reflective insulating layer having a dry film thickness of 30 μm.

【0024】一方上記バインダー溶液 100gに蛍光体と
して硫化亜鉛(GTEプロダクツ社製シルバニア72
3)の粉末98.4gと混練させ均一スラリーとして蛍光体
ペーストを作製し反射絶縁体層上に塗布して乾燥膜厚42
μm の発光層を形成した。
On the other hand, zinc sulfide (Silvania 72 manufactured by GTE Products Co., Ltd.) was used as a phosphor in 100 g of the binder solution.
3) The powder of 9) was mixed with 98.4 g of powder to prepare a phosphor paste as a uniform slurry, which was applied on the reflective insulator layer to obtain a dry film thickness of 42
A luminescent layer of μm was formed.

【0025】以上の一連の工程によって作製された積層
物は10cm×10cmの大きさに裁断され、リード端子を取付
けた後、乾燥させた。
The laminate produced by the above series of steps was cut into a size of 10 cm × 10 cm, attached with lead terminals, and then dried.

【0026】一方、ポリエチレンテレフタレートの片面
にITO膜を形成した透明導電性フイルムを同じく10cm
×10cmの大きさに切り、リード端子を取り付けた後に前
述の積層物の発光層と透明導電性フイルムのITO面と
を加熱、ラミネートした。その後背面電極の表面及び前
面電極の表面に対し、それぞれナイロンフイルムが積層
され、更にポリ三フッ化塩化エチレンフイルムで全周が
囲まれ、封止された。
On the other hand, a transparent conductive film having an ITO film formed on one side of polyethylene terephthalate is also 10 cm.
After cutting into a size of 10 cm and attaching a lead terminal, the light emitting layer of the above-mentioned laminate and the ITO surface of the transparent conductive film were heated and laminated. Then, a nylon film was laminated on each of the surface of the back electrode and the surface of the front electrode, and the entire circumference was surrounded by a polytrifluoroethylene chloride film and sealed.

【0027】得られたEL素子の両電極間に 100V−40
0Hz の交流電場を印加した時の輝度及び20℃−70%RH
の環境条件下で点灯し続けた時輝度が半減する迄の時間
(輝度半減時間)を第2表に示した。
Between the electrodes of the obtained EL device, 100 V-40
Luminance and 0 ℃ -70% RH when an AC electric field of 0Hz is applied
Table 2 shows the time until the luminance is reduced to half (Brightness half time) when the lamp is continuously lit under the above environmental conditions.

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【発明の効果】本発明の製造方法によって得られた高シ
アノエチル化プルランは誘電率が高いため、EL素子の
発光層形成用蛍光体ペースト及び絶縁体層形成用高誘電
体ペーストのバインダーとして使用する時、EL素子に
高い輝度を与えることができ、また残存水酸基が極めて
少ないため耐湿性に富み、EL素子の寿命を長くするこ
とができる。
Since the high cyanoethylated pullulan obtained by the production method of the present invention has a high dielectric constant, it is used as a binder for a phosphor paste for forming a light emitting layer of an EL device and a high dielectric paste for forming an insulator layer. At this time, high brightness can be given to the EL element, and since the residual hydroxyl groups are extremely small, the EL element is rich in moisture resistance and the life of the EL element can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1のシアノエチル化プルランの赤外吸収
スペクトル
FIG. 1 is an infrared absorption spectrum of cyanoethylated pullulan of Example 1.

【図2】比較例2のシアノエチル化プルランの赤外吸収
スペクトル
FIG. 2 Infrared absorption spectrum of cyanoethylated pullulan of Comparative Example 2.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シアノエチル化置換率50〜90%のシアノ
エチル化プルランを非水溶媒中で塩基触媒の存在下、そ
の残存水酸基をシアノエチル化することを特徴とするシ
アノエチル化置換率95〜 100%の高シアノエチル化プル
ランの製造方法。
1. A cyanoethylated pullulan having a cyanoethylated substitution ratio of 50 to 90% is cyanoethylated at the residual hydroxyl group in the presence of a base catalyst in a non-aqueous solvent. Method for producing high cyanoethylated pullulan.
【請求項2】 非水溶媒がアクリロニトリル、塩基触媒
が1,8−ジアザビシクロ[5,4,0]−7−ウンデ
センである請求項1記載の高シアノエチル化プルランの
製造方法。
2. The method for producing a highly cyanoethylated pullulan according to claim 1, wherein the non-aqueous solvent is acrylonitrile and the base catalyst is 1,8-diazabicyclo [5,4,0] -7-undecene.
JP3186553A 1991-07-25 1991-07-25 Method for producing highly cyanoethylated pullulan Expired - Lifetime JP2512352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3186553A JP2512352B2 (en) 1991-07-25 1991-07-25 Method for producing highly cyanoethylated pullulan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3186553A JP2512352B2 (en) 1991-07-25 1991-07-25 Method for producing highly cyanoethylated pullulan

Publications (2)

Publication Number Publication Date
JPH0525201A true JPH0525201A (en) 1993-02-02
JP2512352B2 JP2512352B2 (en) 1996-07-03

Family

ID=16190535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3186553A Expired - Lifetime JP2512352B2 (en) 1991-07-25 1991-07-25 Method for producing highly cyanoethylated pullulan

Country Status (1)

Country Link
JP (1) JP2512352B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0934925A1 (en) * 1998-01-30 1999-08-11 Basf Aktiengesellschaft Process for the preparation of beta-alkoxy nitriles
EP2378526A1 (en) * 2010-04-07 2011-10-19 Samsung Electronics Co., Ltd. Dielectric paste composition, method of forming dielectric layer, dielectric layer, and device including the dielectric layer
US10568839B2 (en) 2011-01-11 2020-02-25 Capsugel Belgium Nv Hard capsules
US11319566B2 (en) 2017-04-14 2022-05-03 Capsugel Belgium Nv Process for making pullulan
US11576870B2 (en) 2017-04-14 2023-02-14 Capsugel Belgium Nv Pullulan capsules

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0934925A1 (en) * 1998-01-30 1999-08-11 Basf Aktiengesellschaft Process for the preparation of beta-alkoxy nitriles
US6794530B1 (en) 1998-01-30 2004-09-21 Basf Aktiengesellschaft Process for making γ-alkoxyamines
EP2378526A1 (en) * 2010-04-07 2011-10-19 Samsung Electronics Co., Ltd. Dielectric paste composition, method of forming dielectric layer, dielectric layer, and device including the dielectric layer
US8586660B2 (en) 2010-04-07 2013-11-19 Samsung Electronics Co., Ltd. Dielectric paste composition, method of forming dielectric layer, dielectric layer, and device including the dielectric layer
US10568839B2 (en) 2011-01-11 2020-02-25 Capsugel Belgium Nv Hard capsules
US11319566B2 (en) 2017-04-14 2022-05-03 Capsugel Belgium Nv Process for making pullulan
US11576870B2 (en) 2017-04-14 2023-02-14 Capsugel Belgium Nv Pullulan capsules
US11878079B2 (en) 2017-04-14 2024-01-23 Capsugel Belgium Nv Pullulan capsules

Also Published As

Publication number Publication date
JP2512352B2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
JP5806163B2 (en) Method for producing 2-cyanoethyl group-containing organic compound
JPH01204393A (en) Electroluminescence element
JP2512352B2 (en) Method for producing highly cyanoethylated pullulan
JP2522861B2 (en) Binder for electroluminescent device and its manufacturing method
JP2656177B2 (en) Distributed EL lamp
JP3016939B2 (en) Low viscosity cyanoethyl pullulan and method for producing the same
JP3300742B2 (en) Composition for high dielectric binder of organic dispersion type light emitting device based on cyanoethylated compound
JPS6323903A (en) Organic binder
JP2512334B2 (en) Distributed EL lamp
JPS62264593A (en) Electric field light emitting device
JPH06145656A (en) Improved electroluminescence device
JPH04335088A (en) Dispersion-type electroluminescent element
JPH02103895A (en) Dispersed type electroluminescent element
JPH02309593A (en) Dielectric composition and dispersion-type electric field luminous element
JPH0260704B2 (en)
JPH07157752A (en) Dispersion-type el lamp
JPS6252439B2 (en)
JPH0825980B2 (en) Cyanoethylated compound and method for producing the same
JPH0464323B2 (en)
JPH04255693A (en) Dispersed type electroluminescence sheet and manufacture thereof
JPH03215465A (en) Purification of cyanoethylated polyol
JPS5996104A (en) Production of cyanoethylpullulan having extremely low degree of polymerization
JPH04247062A (en) New cyanoethylated polyol and its use
JPH05283167A (en) High-intensity dispersion type el lamp
JPH06196263A (en) Dispersion type el element