JP3016939B2 - Low viscosity cyanoethyl pullulan and method for producing the same - Google Patents

Low viscosity cyanoethyl pullulan and method for producing the same

Info

Publication number
JP3016939B2
JP3016939B2 JP4018165A JP1816592A JP3016939B2 JP 3016939 B2 JP3016939 B2 JP 3016939B2 JP 4018165 A JP4018165 A JP 4018165A JP 1816592 A JP1816592 A JP 1816592A JP 3016939 B2 JP3016939 B2 JP 3016939B2
Authority
JP
Japan
Prior art keywords
viscosity
pullulan
cyanoethyl
low
cyanoethyl pullulan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4018165A
Other languages
Japanese (ja)
Other versions
JPH05178903A (en
Inventor
誉志浩 皆本
亨 城下
秀明 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohjin Holdings Co Ltd
Original Assignee
Kohjin Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohjin Holdings Co Ltd filed Critical Kohjin Holdings Co Ltd
Priority to JP4018165A priority Critical patent/JP3016939B2/en
Publication of JPH05178903A publication Critical patent/JPH05178903A/en
Application granted granted Critical
Publication of JP3016939B2 publication Critical patent/JP3016939B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は低粘度シアノエチルプル
ランの製造方法に関するものであり、特にエレクトロル
ミネンス素子製造に用いられるバインダーとして好適と
される低重合度シアノエチルプルランの製造法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing low-viscosity cyanoethyl pullulan, and more particularly to a method for producing low-polymerization cyanoethyl pullulan which is suitable as a binder used for producing an electroluminescence element.

【0002】[0002]

【従来の技術並びにその問題点】近年、液晶ディスプレ
ー等のバックライトとして薄くて取り付けに便利な分離
型エレクトロルミネセンス素子(以下EL発光素子と略
称する)が注目されている。EL発光素子製造に用いら
れるバインダーとしては高誘電率を有すること、造膜性
にすぐれることのほかに適度な粘弾性特性を有し塗工適
性にすぐれること、適度な熱可塑性を有し熱圧着性にす
ぐれること、更にイオン性不純物が少なく誘電損失が少
ないこと等が要求される。高誘電率のバインダーを用い
て作製したEL発光素子は、高輝度となるが、適度な粘
弾性特性及び熱可塑性がないと塗工時の塗工斑、及び発
光層と表面電極との熱圧着不良等により発光斑が大きく
なったり、接着不良に基く発光層と表面電極界面での誘
電損失が大きくなったりする問題がある。尚、当然の事
ながら係る高誘電率バインダー中に含まれるイオン性不
純物は誘電損失増大の原因となり、得られるEL発光素
子の発光効率、寿命等に顕著な影響を及ぼすことにな
る。
2. Description of the Related Art In recent years, a separation type electroluminescent element (hereinafter abbreviated as EL light emitting element) which is thin and easy to mount as a backlight for a liquid crystal display or the like has been attracting attention. As a binder used in the manufacture of EL light-emitting devices, it has a high dielectric constant, has excellent film forming properties, has appropriate viscoelastic properties, has excellent coating suitability, and has a suitable thermoplasticity. It is required to be excellent in thermocompression bonding property, and to have less ionic impurities and less dielectric loss. An EL light emitting device manufactured using a binder having a high dielectric constant has high brightness, but without appropriate viscoelastic properties and thermoplasticity, uneven coating at the time of coating, and thermocompression bonding between a light emitting layer and a surface electrode. There is a problem that the unevenness of light emission is increased due to a defect or the like, and the dielectric loss at the interface between the light emitting layer and the surface electrode is increased due to poor adhesion. It should be noted that ionic impurities contained in such a high dielectric constant binder cause an increase in dielectric loss, and have a significant effect on the luminous efficiency, lifetime, and the like of the obtained EL light emitting device.

【0003】従来、EL発光素子用のバインダーとして
は、シアノエチルセルロース,シアノエチルスターチ,
シアノエチルポリビニルアルコール,シアノエチルセル
ロース,シアノエチルプルラン等の各種シアノエチル化
物が提案されている。これらの内で、誘電特性に最もす
ぐれるのが、シアノエチルプルランであるが、極めて高
重合度品であり、塗工適性並びに熱圧着特性が悪く実用
上諸々の問題を含むものであった。この点を改良すべく
低粘度シアノエチルプルランを製造すべく諸々の開発が
要望されており、例えば特開昭59−96104号記載
の方法が現在では一般に採用されている。プルランはグ
ルコースの三量体であるマルトトリオースを単位として
この三量体とは異なった結合であるα−1,6結合によ
り反復結合した高分子鎖状重合体であり、これはプルラ
リヤ菌の菌株を通気撹拌して培養することにより菌体外
に粘質物として蓄積されるものであり、菌体を分離し精
製することにより得られる。この場合のプルランの分子
量は培養時の諸条件にも異なるが通常極めて高重合度で
あり、そのままシアノエチル化して得られた高重合度
(つまり高粘度)シアノエチル化プルランは実用上の問
題を含むことは前述の通りである。低重合度(つまり低
粘度)シアノエチルプルランを得る方法としては高重合
度シアノエチルプルランを解重合する方法も考えられな
いではないが、高重合度プルランを解重合して得られる
低重合度プルランをシアノエチル化する方法が一般的で
ある。
Conventionally, as binders for EL light emitting devices, cyanoethyl cellulose, cyanoethyl starch,
Various cyanoethylated compounds such as cyanoethyl polyvinyl alcohol, cyanoethyl cellulose, and cyanoethyl pullulan have been proposed. Among them, cyanoethyl pullulan is most excellent in dielectric properties, but has a very high degree of polymerization, has poor coating suitability and thermocompression bonding properties, and has various practical problems. In order to improve this point, various developments have been demanded for producing low-viscosity cyanoethyl pullulan. For example, the method described in JP-A-59-96104 has been generally adopted at present. Pullulan is a high molecular chain polymer in which a unit of maltotriose, which is a trimer of glucose, is linked repeatedly by α-1,6 bonds which are different from the trimer. It is accumulated as a viscous substance outside the cells by culturing the strain with aeration and agitation, and is obtained by separating and purifying the cells. In this case, the molecular weight of pullulan differs depending on various conditions during culturing, but usually has a very high degree of polymerization, and the high degree of polymerization (that is, high viscosity) cyanoethylated pullulan obtained by directly cyanoethylating contains practical problems. Is as described above. As a method for obtaining low polymerization degree (that is, low viscosity) cyanoethyl pullulan, a method of depolymerizing high polymerization degree cyanoethyl pullulan is not conceivable, but a low polymerization degree pullulan obtained by depolymerizing high polymerization degree pullulan is used as cyanoethyl pullulan. Is generally used.

【0004】係る低粘度シアノエチルプルランの特性
は、まずプルランの解重合方法及び解重合プルランのシ
アノエチル化方法によって支配されることが予想され
る。従来公知のプルランの解重合方法は大別すると以下
の通りである。第1法…粉末状のプルランにハロゲン化
水素ガスを接触させ加水分解することにより低重合度の
プルランを得る方法である。しかしながら本法は基本的
に不均系での解重合であり、解重合の均一性は劣ること
が容易に理解される。第2法…プルラン水溶液に於て、
プルランを分解する酵素例えばプルラナーゼ,イソアミ
ラーゼ,グルコアミラーゼ等によって低重合度プルラン
を得る方法である。一方、シアノエチル化反応条件とし
ては例えば特開昭59−96104号に記載の通り、解
重合した原料プルランを水酸化ナトリウム等の苛性アル
カリ水溶液に溶解し、アクリロニトリル及び水,アクリ
ロニトリルに両溶性の溶媒例えばアセトン,ジオキサン
等を加え室温付近で反応させる方法、あるいは原料プル
ランをヘキサン,ベンゼン等の溶媒に分散させて、アク
リロニトリルと苛性アルカリ水溶液を加え40〜60℃
で反応させる方法が公知である。しかし乍ら、係る方法
で得られた低粘度シアノエチルプルランは低粘度なるが
故に高粘度シアノエチルプルランにないすぐれた特性を
有しており現在EL発光素子用のバインダーとして多用
されてはいるが、粘弾性特性及び熱可塑特性が不充分な
ため前述の如く、発光斑及び誘電損失が大きいという問
題を含むものであった。
It is expected that the properties of such low-viscosity cyanoethyl pullulan are firstly governed by the method of depolymerization of pullulan and the method of cyanoethylation of depolymerized pullulan. Conventionally known methods for depolymerizing pullulan are roughly classified as follows. First method: A method in which pullulan having a low degree of polymerization is obtained by bringing hydrogen halide gas into contact with powdery pullulan and hydrolyzing it. However, it is easily understood that this method is basically a depolymerization in an uneven system, and the uniformity of the depolymerization is inferior. Method 2: In the aqueous pullulan solution,
In this method, pullulan having a low degree of polymerization is obtained using an enzyme that decomposes pullulan, such as pullulanase, isoamylase, or glucoamylase. On the other hand, as the cyanoethylation reaction conditions, for example, as described in JP-A-59-96104, a depolymerized raw material pullulan is dissolved in an aqueous solution of caustic alkali such as sodium hydroxide, and a solvent compatible with acrylonitrile and water and acrylonitrile, for example, A method of adding acetone, dioxane, etc. and reacting at around room temperature, or dispersing the starting material pullulan in a solvent such as hexane, benzene, etc., adding acrylonitrile and an aqueous caustic solution to 40 to 60 ° C.
Are known. However, the low-viscosity cyanoethyl pullulan obtained by such a method has low viscosity and therefore has excellent properties not found in high-viscosity cyanoethyl pullulan, and is currently widely used as a binder for EL light emitting devices. Because of insufficient elasticity and thermoplastic properties, as described above, there was a problem that emission spots and dielectric loss were large.

【0005】[0005]

【問題点を解決するための手段】本発明はEL発光素子
の需要増加に伴なう発光斑の少ない寿命、発光効率に優
れたEL発光素子用バインダーを提供すべく為されたも
のである。この要求に応じる本発明の技術的手段は以下
の通りである。 A 無水グルコース単位におけるシアノエチル基の置換
度が2.0〜3.0であり、30重量%N,N’−ジメ
チルアセトアミド溶液の25℃における粘度が1700
±500センチポイズであり、かつ溶液の粘性特性がη
60/η6 ≦1であることを特徴とする低粘度シアノエチ
ルプルラン 但し、η60はB型粘度計(ロータNo3)にて、25
℃、60rpm での粘度であり、η6 は同じく25
℃,6rpm での粘度を示す。 B 水溶液系において硫酸による加水分解を行なって得
た低重合プルランとアクリロニトリルとを苛性アルカリ
触媒の存在下に反応させることを特徴とするA記載の低
粘度シアノエチルプルランの製造方法。 C B記載の方法において、プルランとアクリロニトリ
ルとを苛性アルカリ触媒の存在下で反応せしめるに際
し、該反応系の苛性アルカリをプルランの保有ヒドロキ
シル基当り0.05〜0.10モル,水を同じく0.2
0〜0.50モル,アクリロニトリルを同じく5.0〜
10.0モルとし、かつ反応温度を40〜60℃とする
ことを特徴とするA記載の低粘度シアノエチルプルラン
の製造方法。
SUMMARY OF THE INVENTION The present invention has been made to provide a binder for an EL light-emitting element which has a short lifespan and a high luminous efficiency with less uneven spots accompanying an increase in demand for the EL light-emitting element. The technical means of the present invention that meets this requirement is as follows. A The degree of substitution of cyanoethyl groups in anhydroglucose units is 2.0 to 3.0, and the viscosity of a 30% by weight N, N'-dimethylacetamide solution at 25 ° C is 1700.
± 500 centipoise and the viscosity of the solution is η
60 / η 6 ≦ 1 Low viscosity cyanoethyl pullulan, wherein η 60 is 25 using a B-type viscometer (rotor No. 3).
° C, viscosity at 60 rpm, η 6 is also 25
Indicates the viscosity at 6 ° C. and ° C. B. The process for producing low-viscosity cyanoethyl pullulan according to A, wherein the low-polymerized pullulan obtained by hydrolysis with sulfuric acid in an aqueous solution system is reacted with acrylonitrile in the presence of a caustic catalyst. In the method described in CB, when pullulan is reacted with acrylonitrile in the presence of a caustic alkali catalyst, the caustic alkali of the reaction system is 0.05 to 0.10 mol per hydroxyl group of pullulan and water is also 0.1 to 0.1 mol. 2
0 to 0.50 mol, acrylonitrile was also used at 5.0 to
The process for producing low-viscosity cyanoethyl pullulan according to A, wherein the amount is 10.0 mol and the reaction temperature is 40 to 60 ° C.

【0006】上述の手段によって、機械的せん断応力に
対する溶液粘度依存性に優れた低粘度シアノエチルプル
ランを得ることができるが、その理由は明確ではない
が、以下の通りと推定される。 1) プルランの均一な解重合:従来公知の粉末状のプ
ルランをハロゲン化水素ガスで加水分解する方法は、基
本的には固相不均一系の解重合であるに対し、本法では
均一水溶液系での解重合法を採用していることにより、
より均一な加水分解反応が行なわれる。 2) シアノエチル化反応:従来公知の方法との差は、
反応溶媒の差がまず挙げられる。従来公知の方法はアク
リロニトリルと同時に何らの有機溶媒の共存下に反応す
るのに対し、本発明方法はアクリロニトリルのみの単一
溶媒系で反応させる。即ち、本反応の如き高分子反応で
は、反応に伴なう高分子鎖のコンフォメーションは反応
系の溶媒種によって大きく異なることが予想される。従
って、従来公知の方法で得たシアノエチルプルランに比
較し、シアノエチル基の置換基分布が異なることが予想
される。係る置換基分布差が溶液粘性並びに可塑剤との
ブレンド適性に大きな影響を及ぼすことは容易に理解で
きる。又、反応系の水分量及び苛性アリカリ量も反応系
のプルラン高分子鎖のコンフォメーション及び反応中の
副反応(シアノエチル基の加水分解によるカルボキシル
基の副生等)に影響を及ぼすことも容易に推定される。
反応系の水分量及び苛性アルカリ量を必要量以上の過剰
量使用することは反応の均一性、副反応の抑制の目的か
らは好ましくなく、従来公知の方法に比較し大巾に低減
することで係る目的に合致した高品質の低粘度シアノエ
チルプルランを得ることができる。又、水分量、及び苛
性アルカリ量を必要量以下とすると、反応が円滑に進ま
ないことになり、好ましくない。
[0006] By the above-mentioned means, a low-viscosity cyanoethyl pullulan having excellent solution viscosity dependency on mechanical shear stress can be obtained. The reason is not clear, but is presumed as follows. 1) Uniform depolymerization of pullulan: The conventionally known method of hydrolyzing powdery pullulan with a hydrogen halide gas is basically a solid phase heterogeneous depolymerization, whereas in the present method, a homogeneous aqueous solution is used. By adopting the depolymerization method in the system,
A more uniform hydrolysis reaction is performed. 2) Cyanoethylation reaction: The difference from the conventionally known method is as follows.
The difference in the reaction solvent is first mentioned. Whereas conventionally known methods react simultaneously with acrylonitrile in the presence of any organic solvent, the method of the present invention uses a single solvent system of acrylonitrile alone. That is, in the polymer reaction such as the present reaction, it is expected that the conformation of the polymer chain accompanying the reaction greatly differs depending on the solvent type of the reaction system. Therefore, it is expected that the substituent distribution of the cyanoethyl group is different from that of cyanoethyl pullulan obtained by a conventionally known method. It can be easily understood that such a difference in substituent distribution has a great effect on solution viscosity and suitability for blending with a plasticizer. Also, the amount of water and the amount of caustic alkali in the reaction system can easily affect the conformation of the pullulan polymer chain in the reaction system and side reactions during the reaction (by-products of carboxyl groups due to hydrolysis of cyanoethyl groups). Presumed.
It is not preferable to use excess amounts of water and caustic in the reaction system more than necessary amounts from the viewpoint of uniformity of the reaction and suppression of side reactions. It is possible to obtain high-quality low-viscosity cyanoethyl pullulan that meets such a purpose. On the other hand, if the water content and the caustic alkali content are less than the required amounts, the reaction does not proceed smoothly, which is not preferable.

【0007】[0007]

【発明の効果】本発明の作用効果をEL発光素子の製造
との関係で説明すると、EL発光素子はZnS:Cu,
Cl等の蛍光体を含む発光層を少なくとも一方が透明な
電極間にはさみ込むことによって得られる。この場合、
先ず一方の電極上に、蛍光体粉末及び高誘電率バインダ
ーを有機溶媒中に分散したペーストをスクリーン印刷法
又はバーコート法等適当な方法にて塗工して得た発光層
シートと、更に他の電極板を加熱圧着等の手段により接
着させることにより製造されるが、本発明の低粘度シア
ノエチルプルランを高誘電率バインダーとして使用する
ことにより、次のような効果がある。 1) 本発明で得られた低粘度シアノエチルプルランの
最大の特性は溶液粘度の機械的せん断力に対する依存
性、即ち前述の粘性特性がη60/η6 ≦1を示す点にあ
る。従来公知の低粘度シアノエチルプルランはη60/η
6 >1である点で明確に本発明の低粘度シアノエチルプ
ルランと異なった粘性特性を示す。つまり、塗工時に於
ては塗工方法の手段を問わず、必ず何らかの機械的せん
断応力が、塗工用ペーストに加わることになるが、本発
明の低粘度シアノエチルプルランの粘性特性はη60/η
6 ≦1であり、機械的せん断応力が加わった時の方がよ
り低粘度となる性質を有することになる。よって、本発
明の低粘度シアノエチルプルランを蛍光体ペースト或い
は絶縁層ペーストに用いた場合、従来公知のバインダー
の様な塗工中の粘度上昇に伴なう塗工適性の低下が認め
られず、安定した塗工が可能となり塗工斑に基く発光斑
が顕著に改善される。 2) 可塑剤とのブレンド特性にすぐれ、同一可塑剤を
用いた場合、従来公知の低粘度シアノエチルプルランを
用いた場合よりも、得られる塗膜の加熱圧着適性に優れ
より均一な加熱圧着性が顕著に改善される。それ故に、
圧着不良に基くEL発光素子の発光斑、誘電損失が顕に
改善されることになり、高発光効率でかつ長寿命、なお
かつ均一発光特性に優れたEL発光素子を得ることが可
能となる。
The operation and effect of the present invention will be described in relation to the manufacture of the EL device.
It can be obtained by interposing at least one light emitting layer containing a phosphor such as Cl between electrodes that are transparent. in this case,
First, on one electrode, a luminescent layer sheet obtained by applying a paste obtained by dispersing a phosphor powder and a high dielectric constant binder in an organic solvent by an appropriate method such as a screen printing method or a bar coating method, and further, The electrode plate is manufactured by bonding the above-mentioned electrode plates by means such as heating and pressure bonding. The use of the low-viscosity cyanoethyl pullulan of the present invention as a high dielectric constant binder has the following effects. 1) The greatest characteristic of the low-viscosity cyanoethyl pullulan obtained in the present invention is that the solution viscosity depends on the mechanical shearing force, that is, the above-mentioned viscosity characteristic shows η 60 / η 6 ≦ 1. Conventionally known low-viscosity cyanoethyl pullulan has η 60 / η
6 > 1 clearly shows viscous properties different from the low viscosity cyanoethyl pullulan of the present invention. That is, at the time of coating, regardless of the method of the coating method, some mechanical shear stress is always applied to the coating paste, but the viscosity of the low-viscosity cyanoethyl pullulan of the present invention is η 60 / η
6 ≦ 1, and the viscosity is lower when a mechanical shear stress is applied. Therefore, when the low-viscosity cyanoethyl pullulan of the present invention is used for a phosphor paste or an insulating layer paste, a decrease in coating aptitude due to an increase in viscosity during coating such as a conventionally known binder is not observed, and stable. Coating can be performed, and luminescent spots based on coating spots are significantly improved. 2) Excellent blending properties with a plasticizer, and when the same plasticizer is used, the resulting coating film is more excellent in thermocompression bonding property than in the case of using a conventionally known low-viscosity cyanoethyl pullulan, and more uniform thermocompression bonding property is obtained. It is significantly improved. Therefore,
The unevenness of light emission and the dielectric loss of the EL light emitting element due to the poor pressure bonding are remarkably improved, and it becomes possible to obtain an EL light emitting element having high luminous efficiency, long life, and excellent uniform light emitting characteristics.

【0008】[0008]

【実施例】次に本発明を実施例並びに比較例でもって更
に具体的に説明するが、その主旨を越えない限り以下の
実施例に限定されないことは指摘するまでもない。 実施例1 水800gを撹拌機付ガラス製反応器に仕込み25℃に
おける10重量%水溶液の粘度が110センチポイズで
あるプルラン粉末100gを加え60℃に加熱し均一に
溶解した。次いで96%硫酸2.55gを水100gに
溶解した希硫酸を加え、25℃における粘度が25セン
チポイズとなるまで解重合した。次いで苛性ソーダ水溶
液で硫酸を中和したのち、大量のアセトン中に該解重合
反応液を投入し低粘度プルランを析出させた。固液分離
後充分に水洗し中和塩等の不純物を除去したのち、乾燥
し低粘度プルランを得た。撹拌機付き反応器に上記低粘
度プルラン81.6g、苛性ソーダ3.892gを水1
0.025gに溶解した苛性ソーダ水溶液を加え、室温
で30分間撹拌した。次いでアクリロニトリル720g
添加し55±3℃にて3時間反応させた。次いで室温ま
で冷却したのち酢酸にて余剰の苛性ソーダを中和したの
ち、水を適時添加しつつ過剰のアクリロニトリルを蒸留
回収した。回収操作収量後、多量の水で中和塩等の不純
物を水洗除去したのち、固液分離した。得られた固体を
多量のアセトンに溶解し、未溶解物を濾別したのち多量
の水中に撹拌下に注ぎ、シアノエチルプルランを析出さ
せた。純水でくり返し洗浄〜脱水をくり返し、減圧乾燥
して目的とする低粘度シアノエチルプルランを得た。こ
のものの無水グルコース単位におけるシアノエチル基の
置換度は2.80であり、30重量%N,N’−ジメチ
ルアセトアミド溶液の25℃での粘度は2000センチ
ポイズであった。
Next, the present invention will be described in more detail with reference to Examples and Comparative Examples, but it is needless to point out that the present invention is not limited to the following Examples as long as the gist of the present invention is not exceeded. Example 1 800 g of water was charged into a glass reactor equipped with a stirrer, 100 g of pullulan powder having a viscosity of 110 centipoise of a 10% by weight aqueous solution at 25 ° C was added, and the mixture was heated to 60 ° C and uniformly dissolved. Subsequently, dilute sulfuric acid obtained by dissolving 2.55 g of 96% sulfuric acid in 100 g of water was added, and depolymerized until the viscosity at 25 ° C. became 25 centipoise. Next, sulfuric acid was neutralized with a sodium hydroxide aqueous solution, and then the depolymerization reaction liquid was poured into a large amount of acetone to precipitate low-viscosity pullulan. After solid-liquid separation, it was sufficiently washed with water to remove impurities such as neutralized salts, and then dried to obtain low-viscosity pullulan. In a reactor equipped with a stirrer, 81.6 g of the above low-viscosity pullulan and 3.892 g of caustic soda were added to 1 part of water.
An aqueous solution of caustic soda dissolved in 0.025 g was added, and the mixture was stirred at room temperature for 30 minutes. Then 720 g of acrylonitrile
The mixture was added and reacted at 55 ± 3 ° C. for 3 hours. Then, after cooling to room temperature, excess caustic soda was neutralized with acetic acid, and excess acrylonitrile was distilled and recovered while adding water as needed. After the yield of the recovery operation, impurities such as neutralized salts were washed and removed with a large amount of water, followed by solid-liquid separation. The obtained solid was dissolved in a large amount of acetone, and the undissolved material was separated by filtration and poured into a large amount of water with stirring to precipitate cyanoethyl pullulan. The washing and dehydration were repeated with pure water and dried under reduced pressure to obtain the desired low-viscosity cyanoethyl pullulan. The degree of substitution of the cyanoethyl group in the anhydrous glucose unit was 2.80, and the viscosity of the 30% by weight N, N′-dimethylacetamide solution at 25 ° C. was 2000 centipoise.

【0009】又、参考の為に実施例1で得られた低粘度
シアノエチルプルランを用いてEL発光素子を以下の方
法にて作製した。BaTiO3 微粉末20重量部、シア
ノエチルポリビニルアルコール(信越化学工業製シアノ
レジンCR−V)1.5重量部、実施例1で得られた低
粘度シアノエチルプルラン3.5重量部、N,N’−ジ
メチルホルムアミド12重量部から成るペーストを厚さ
0.1mmのAl箔上にスクリーン印刷法によって塗工
し、膜厚20μmの反射絶縁層を形成した。更に該反射
絶縁層上に平均粒子径27.0μmのZnS:Cu,C
l蛍光体20重量部、シアノエチルポリビニルアルコー
ル(信越化学工業製シアノレジンCR−V)1.5重量
部、実施例1で得られた低粘度シアノエチルプルラン
3.5重量部、N,N’−ジメチルホルムアミド12重
量部から成るペーストをスクリーン印刷法によって塗工
し、膜厚60μmの発光層を形成した。厚さ75μmの
透明PETフィルムを用いたITO被覆透明PETのI
TO層表面に銀ペーストを塗工し、膜厚10μmの集電
帯を形成し、更に集電帯にリン青銅箔から成る厚さ10
0μmのリード端子を接続し表面電極を作製した。次に
発光層と表面電極とを熱ロールラミネーターにより加熱
圧着したのち、Al箔に前記同様のリード端子を接続
し、分散型EL発光素子本体を作成した。次に素子本体
の両面にナイロン6系の透明フィルム(ダイセル化学製
ダイアミドZS−185)を熱圧着ラミネーターによ
り加熱圧着し素子本体と補水層を積層させた。次に防湿
フィルム(日東電工製ニトフロン4820)で上積積層
体を包み、加熱圧着を行ない、分散型EL発光素子を作
製した。実施例1の反応条件、及び、シアノエチルプル
ラン特性、EL素子特性を表1〜表3に示す。
For reference, an EL light-emitting device was manufactured by using the low-viscosity cyanoethyl pullulan obtained in Example 1 by the following method. 20 parts by weight of BaTiO 3 fine powder, 1.5 parts by weight of cyanoethyl polyvinyl alcohol (Cyanoresin CR-V manufactured by Shin-Etsu Chemical Co., Ltd.), 3.5 parts by weight of low-viscosity cyanoethyl pullulan obtained in Example 1, N, N′-dimethyl A paste consisting of 12 parts by weight of formamide was applied on an Al foil having a thickness of 0.1 mm by a screen printing method to form a reflective insulating layer having a thickness of 20 μm. Further, ZnS: Cu, C having an average particle diameter of 27.0 μm is formed on the reflective insulating layer.
20 parts by weight of phosphor, 1.5 parts by weight of cyanoethyl polyvinyl alcohol (Cyanoresin CR-V manufactured by Shin-Etsu Chemical Co., Ltd.), 3.5 parts by weight of low-viscosity cyanoethyl pullulan obtained in Example 1, N, N'-dimethylformamide A paste consisting of 12 parts by weight was applied by a screen printing method to form a light emitting layer having a thickness of 60 μm. ITO-coated transparent PET using a 75 μm thick transparent PET film
A silver paste is applied to the surface of the TO layer to form a current collecting zone having a thickness of 10 μm, and the current collecting zone is further formed of a phosphor bronze foil having a thickness of 10 μm.
A surface electrode was prepared by connecting a lead terminal of 0 μm. Next, after the light emitting layer and the surface electrode were heat-pressed with a hot roll laminator, lead terminals similar to those described above were connected to the Al foil to produce a dispersed EL light emitting device body. Next, a nylon 6-based transparent film (Daiamide ZS-185, manufactured by Daicel Chemical Co., Ltd.) was heat-pressed on both surfaces of the element body using a thermocompression laminator to laminate the element body and the water refill layer. Next, the upper laminate was wrapped with a moisture-proof film (Nitoflon 4820 manufactured by Nitto Denko Corporation) and subjected to heat compression to produce a dispersion-type EL light-emitting device. Tables 1 to 3 show the reaction conditions, cyanoethyl pullulan characteristics, and EL device characteristics of Example 1.

【0010】実施例2〜3 実施例1と全く同様にして得た低粘度プルランを用い
て、シアノエチル化反応を行なった。シアノエチル化反
応条件については表1に記載した部分以外は全て実施例
1と同様に行ない目的とする低粘度シアノエチルプルラ
ンを得た。このものの無水グルコース単位におけるシア
ノエチル基の置換度は2.75及び2.85であり、3
0重量%N,N’−ジメチルアセトアミド溶液の25℃
での粘度は1800センチポイズ及び1900センチポ
イズであった。又、実施例2〜3で得られたシアノエチ
ルプルランを使用した以外は全て前述の通りの方法に従
ってEL発光素子を作製した。実施例2〜3の反応条
件、及び、シアノエチルプルラン特性、EL素子特性を
表1〜表3に示す。
Examples 2-3 Using a low-viscosity pullulan obtained in exactly the same manner as in Example 1, a cyanoethylation reaction was carried out. All the cyanoethylation reaction conditions were the same as in Example 1 except for the portions described in Table 1, to obtain the desired low-viscosity cyanoethyl pullulan. The degree of substitution of the cyanoethyl group in the anhydrous glucose unit was 2.75 and 2.85.
0% by weight of N, N′-dimethylacetamide solution at 25 ° C.
Were 1800 and 1900 centipoise. In addition, an EL light emitting device was manufactured in the same manner as described above except that the cyanoethyl pullulan obtained in Examples 2 and 3 was used. Tables 1 to 3 show the reaction conditions, cyanoethyl pullulan characteristics and EL device characteristics of Examples 2 and 3.

【0011】比較例1 実施例1で用いたものと同一の原料プルランを特開昭5
9−96104号記載の実施例1の方法に準じて解重合
した。即ち、原料プルラン150gをガラス製の反応器
に仕込み、塩化水素を13重量%含む無水メタノールを
15g撹拌下に注入し、40℃で3時間解重合させた
後、減圧下に塩化水素及びメタノールを揮散させたとこ
ろ10重量%水溶液の粘度が25℃で23センチポイズ
の低粘度プルランを得た。この低粘度プルランを用いた
以外は全て実施例1と同様に処理して目的とする低粘度
シアノエチルプルランを得た。このものの無水グルコー
ス単位におけるシアノエチル基の置換度は2.72であ
り、30重量%N,N’−ジメチルアセトアミド溶液の
25℃での粘度は2200センチポイズであった。又、
比較例1で得られたシアノエチルプルランを使用した以
外は全て前述の通りの方法に従ってEL発光素子を作製
した。比較例1の反応条件、及び、シアノエチルプルラ
ン特性、EL素子特性を表1〜表3に示す。
Comparative Example 1 The same raw pullulan as used in Example 1 was obtained by
Depolymerization was carried out according to the method of Example 1 described in No. 9-96104. That is, 150 g of the raw material pullulan was charged into a glass reactor, 15 g of anhydrous methanol containing 13% by weight of hydrogen chloride was injected under stirring, and depolymerization was performed at 40 ° C. for 3 hours. Upon volatilization, a low-viscosity pullulan with a viscosity of 23 centipoise at 25 ° C. of a 10% by weight aqueous solution was obtained. Except that this low-viscosity pullulan was used, the same treatment as in Example 1 was carried out to obtain a target low-viscosity cyanoethylpullulan. The degree of substitution of the cyanoethyl group in the anhydrous glucose unit was 2.72, and the viscosity at 25 ° C. of a 30% by weight N, N′-dimethylacetamide solution was 2,200 centipoise. or,
Except for using the cyanoethyl pullulan obtained in Comparative Example 1, an EL device was manufactured in the same manner as described above. Tables 1 to 3 show the reaction conditions, the cyanoethyl pullulan characteristics, and the EL device characteristics of Comparative Example 1.

【0012】比較例2 比較例1で得た低粘度プルランを用いて特開昭59−9
6104号記載の実施例1の方法に準じてシアノエチル
化反応を行なった。即ち、撹拌機付き反応器に、上記低
粘度プルラン100g、8重量%苛性ソーダ水溶液30
0g、アクリロニトリル500g、アセトン200gを
仕込み20℃で24時間反応した。ついで反応液を氷酢
酸で中和したのち、大量の水中に撹拌下に注ぎ、シアノ
エチルプルランを析出させた。以降は実施例1と同様に
処理して目的とする低粘度シアノエチルプルランを得
た。このものの無水グルコース単位におけるシアノエチ
ル基の置換度は2.80であり、30重量%N,N’−
ジメチルアセトアミド溶液の25℃での粘度は2400
センチポイズであった。又、比較例2で得られたシアノ
エチルプルランを使用した以外は全て前述の通りの方法
に従ってEL発光素子を作製した。比較例2の反応条
件、及び、シアノエチルプルラン特性、EL素子特性を
表1〜表3に示す。
Comparative Example 2 Using the low viscosity pullulan obtained in Comparative Example 1,
The cyanoethylation reaction was carried out according to the method of Example 1 described in No. 6104. That is, 100 g of the low-viscosity pullulan and 30% of an 8% by weight aqueous sodium hydroxide solution were placed in a reactor equipped with a stirrer.
0 g, acrylonitrile 500 g, and acetone 200 g were charged and reacted at 20 ° C. for 24 hours. Then, the reaction solution was neutralized with glacial acetic acid, and then poured into a large amount of water with stirring to precipitate cyanoethyl pullulan. Thereafter, the same treatment as in Example 1 was performed to obtain a target low-viscosity cyanoethyl pullulan. The substitution degree of the cyanoethyl group in the anhydrous glucose unit was 2.80, and 30% by weight of N, N'-
The viscosity of the dimethylacetamide solution at 25 ° C. is 2400.
It was centipoise. In addition, an EL light emitting device was manufactured in the same manner as described above except that the cyanoethyl pullulan obtained in Comparative Example 2 was used. Tables 1 to 3 show reaction conditions, cyanoethyl pullulan characteristics, and EL device characteristics of Comparative Example 2.

【0013】比較例3 実施例1で用いたものと同一の原料プルランを特開昭5
9−96104号記載の実施例2の方法に準じて解重合
し、更に同様の方法に準じてシアノエチル化して目的と
する低粘度シアノエチルプルランを得た。即ち、実施例
1で用いたものと同一の原料プルラン100gを400
gの水に溶解し、ついで1重量%イソアミラーゼ水懸濁
液をイソアミラーゼがプルランに対し300ppmとな
るように3ml添加し、25℃にてときどき撹拌しなが
ら10重量%水溶液の粘度が25℃で24センチポイズ
になるまで解重合した。次いで25重量%苛性ソーダ水
溶液を100g加え、更にアクリロニトリル600g、
アセトン400gを加えて撹拌下に25℃で、12時間
反応させた。次いで反応液を20重量%塩酸で中和した
のち、反応液を大量の水中に注いでシアノエチルプルラ
ンを析出させた。以降は実施例1と同様に処理して目的
とする低粘度シアノエチルプルランを得た。このものの
無水グルコース単位におけるシアノエチル基の置換度は
2.73であり、30重量%N,N’−ジメチルアセト
アミド溶液の25℃での粘度は2,500センチポイズ
であった。又、比較例3で得られたシアノエチルプルラ
ンを使用した以外は全て前述の通りの方法に従ってEL
発光素子を作製した。比較例3の反応条件、及び、シア
ノエチルプルラン特性、EL素子特性を表1〜表3に示
す。
Comparative Example 3 The same raw pullulan as used in Example 1 was obtained by
Depolymerization was carried out according to the method of Example 2 described in No. 9-96104, and further cyanoethylation was carried out according to the same method to obtain the desired low-viscosity cyanoethyl pullulan. That is, 100 g of the same raw material pullulan used in Example 1 was
g of water, and then 3 ml of a 1 wt% aqueous solution of isoamylase was added so that the isoamylase became 300 ppm with respect to pullulan. To depolymerize to 24 centipoise. Next, 100 g of a 25% by weight aqueous sodium hydroxide solution was added, and 600 g of acrylonitrile was further added.
400 g of acetone was added and reacted at 25 ° C. for 12 hours with stirring. Next, the reaction solution was neutralized with 20% by weight hydrochloric acid, and the reaction solution was poured into a large amount of water to precipitate cyanoethyl pullulan. Thereafter, the same treatment as in Example 1 was performed to obtain a target low-viscosity cyanoethyl pullulan. The degree of substitution of the cyanoethyl group in the anhydrous glucose unit was 2.73, and the viscosity at 25 ° C. of the 30% by weight N, N′-dimethylacetamide solution was 2,500 centipoise. In addition, except that the cyanoethyl pullulan obtained in Comparative Example 3 was used, EL was prepared according to the method described above.
A light-emitting element was manufactured. Tables 1 to 3 show the reaction conditions, the cyanoethyl pullulan characteristics, and the EL device characteristics of Comparative Example 3.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 ※シアノエチルプルラン特性:溶液粘度は30重量%
N,N’−ジメチルアセトアミド溶液を25℃の環境下
で測定した値。
[Table 2] * Cyanoethyl pullulan properties: solution viscosity is 30% by weight
The value obtained by measuring the N, N′-dimethylacetamide solution in an environment at 25 ° C.

【0016】[0016]

【表3】 ※EL素子特性:100V,400Hzの交流電界を印
加し、温度20℃、湿度65%RHの環境下で測定した
値。寿命は同条件下での連続点灯において初輝度の1/
2輝度に至るまでの所要時間を示す。
[Table 3] * EL element characteristics: A value measured under an environment of a temperature of 20 ° C. and a humidity of 65% RH when an AC electric field of 100 V and 400 Hz is applied. The service life is 1/1 of the initial brightness under continuous lighting under the same conditions.
2 shows the time required to reach the luminance.

【0017】表1〜表3にまとめて示した通り、本発明
の低粘度シアノエチルプルランは、従来公知の低粘度シ
アノエチルプルランに対しEL発光素子用バインダーと
して極めてすぐれていることは明らかであり、本発明の
工業的意義は極めて大きいものである。
As summarized in Tables 1 to 3, it is clear that the low-viscosity cyanoethyl pullulan of the present invention is extremely excellent as a binder for EL light-emitting elements, compared with the conventionally known low-viscosity cyanoethyl pullulan. The industrial significance of the invention is extremely large.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 無水グルコース単位におけるシアノエチ
ル基の置換度が2.0〜3.0であり、30重量%N,
N−ジメチルアセトアミド溶液の25℃における粘度が
1700±500センチポイズであり、かつ溶液の粘性
特性η60/η6 ≦1.0であることを特徴とする低粘度
シアノエチルプルラン。但し、η60はB型粘度計にて2
5℃、60rpm での粘度であり、η6 は同じく6r
pm での粘度を示す。
1. The method according to claim 1, wherein the degree of substitution of the cyanoethyl group in the anhydrous glucose unit is 2.0 to 3.0, and 30% by weight of N,
A low-viscosity cyanoethyl pullulan, wherein the viscosity of the N-dimethylacetamide solution at 25 ° C. is 1700 ± 500 centipoise and the viscosity property of the solution is η 60 / η 6 ≦ 1.0. However, η 60 is 2 using a B-type viscometer.
The viscosity at 5 ° C. and 60 rpm, η 6 is also 6 r
Shows the viscosity in pm.
JP4018165A 1992-01-06 1992-01-06 Low viscosity cyanoethyl pullulan and method for producing the same Expired - Fee Related JP3016939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4018165A JP3016939B2 (en) 1992-01-06 1992-01-06 Low viscosity cyanoethyl pullulan and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4018165A JP3016939B2 (en) 1992-01-06 1992-01-06 Low viscosity cyanoethyl pullulan and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05178903A JPH05178903A (en) 1993-07-20
JP3016939B2 true JP3016939B2 (en) 2000-03-06

Family

ID=11964000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4018165A Expired - Fee Related JP3016939B2 (en) 1992-01-06 1992-01-06 Low viscosity cyanoethyl pullulan and method for producing the same

Country Status (1)

Country Link
JP (1) JP3016939B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8729185B2 (en) 2011-04-05 2014-05-20 Shin-Etsu Chemical Co., Ltd. Method for producing 2-cyanoethyl group-containing organic compound
US8771880B2 (en) 2011-04-05 2014-07-08 Shin-Etsu Chemical Co., Ltd. Binder for separator of non-aqueous electrolyte battery comprising 2-cyanoethyl group-containing polymer and separator and battery using the same
US8916283B2 (en) 2011-04-05 2014-12-23 Shin-Etsu Chemical Co., Ltd. Binder for separator of non-aqueous electrolyte battery comprising 2-cyanoethyl group-containing polymer and separator and battery using the same

Also Published As

Publication number Publication date
JPH05178903A (en) 1993-07-20

Similar Documents

Publication Publication Date Title
EP0328120B1 (en) Electroluminescent composition and electroluminescent device therewith
EP3091035B1 (en) Method for producing 2-cyanoethyl group-containing organic compound
CN112457501A (en) Electro-reversible skin-adhesive hydrogel and preparation method and application thereof
JPH11508081A (en) Electroluminescent lamp with terpolymer binder
JP3016939B2 (en) Low viscosity cyanoethyl pullulan and method for producing the same
KR20180075912A (en) Polymer containing cyanoethyl group and preparation method thereof
JP2522861B2 (en) Binder for electroluminescent device and its manufacturing method
US4413090A (en) Cyanoethylated olefin-vinyl alcohol copolymer and dielectric material and adhesive comprising the same
JP2512352B2 (en) Method for producing highly cyanoethylated pullulan
JP2512334B2 (en) Distributed EL lamp
JPS6323903A (en) Organic binder
JPH02103895A (en) Dispersed type electroluminescent element
JPH0825980B2 (en) Cyanoethylated compound and method for producing the same
JP2656177B2 (en) Distributed EL lamp
JPH02309593A (en) Dielectric composition and dispersion-type electric field luminous element
JPH0236121B2 (en)
JP4420167B2 (en) Electroluminescent device
JPH0776685A (en) Binder composition for dispersion-type electroluminescence element
JPH05283167A (en) High-intensity dispersion type el lamp
JPH06145656A (en) Improved electroluminescence device
JPH04335088A (en) Dispersion-type electroluminescent element
JPS62264593A (en) Electric field light emitting device
JPH06196263A (en) Dispersion type el element
WO2024040689A1 (en) Dealcoholization-type room temperature vulcanized silicone rubber and preparation method therefor
JPH07103084B2 (en) Crystalline cyanoethyl inositol, its production method and use

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees