JPH0525193Y2 - - Google Patents

Info

Publication number
JPH0525193Y2
JPH0525193Y2 JP11011191U JP11011191U JPH0525193Y2 JP H0525193 Y2 JPH0525193 Y2 JP H0525193Y2 JP 11011191 U JP11011191 U JP 11011191U JP 11011191 U JP11011191 U JP 11011191U JP H0525193 Y2 JPH0525193 Y2 JP H0525193Y2
Authority
JP
Japan
Prior art keywords
far
lattice
radiator
shaped
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11011191U
Other languages
Japanese (ja)
Other versions
JPH04102596U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11011191U priority Critical patent/JPH04102596U/en
Publication of JPH04102596U publication Critical patent/JPH04102596U/en
Application granted granted Critical
Publication of JPH0525193Y2 publication Critical patent/JPH0525193Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Physical Water Treatments (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

【0001】[0001]

【産業上の利用分野】 本考案は、遠赤外線を放
射して例えば熱交換器、触媒担体として使用する
ことができる格子状遠赤外線放射体に関するもの
である。
[Field of Industrial Application] The present invention relates to a lattice-shaped far-infrared radiator that emits far-infrared rays and can be used, for example, as a heat exchanger or a catalyst carrier.

【0002】[0002]

【従来の技術】 従来、遠赤外線を放射する図7
のような棒状の放射体11と反射板12とを用い
て気体、固体、液体等の被体を加熱する手段は公
知である。
[Prior art] Conventionally, far-infrared rays are emitted in Fig. 7.
A means for heating an object such as a gas, solid, or liquid using a rod-shaped radiator 11 and a reflector 12 is known.

【0003】【0003】

【考案が解決しようとする課題】 しかしなが
ら、前記従来の遠赤外線放射エネルギーを利用し
て被体を加熱する放射体は、一方向からのみの遠
赤外線の放射であるためにその放射体の加熱表面
積が小さく、遠赤外線放射エネルギーを効率よく
被体に吸収させることができないという問題点が
あつた。
[Problems to be solved by the invention] However, the conventional radiator that heats the object using far-infrared radiant energy radiates far-infrared rays from only one direction, so the heating surface area of the radiator is limited. There was a problem in that the far-infrared radiant energy was small and the far-infrared radiant energy could not be efficiently absorbed by the object.

【0004】 本考案は上記問題点を解決することを
目的とする格子状遠赤外線放射体を提供しようと
するものである。
[0004] The present invention aims to provide a lattice-shaped far-infrared radiator to solve the above problems.

【0005】[0005]

【課題を解決するための手段】 本考案は、遠赤
外線放射特性を有するアルミナ系、マグネシア
系、ジルコニア系、或いはこれらの複合体より成
るセラミツクス粒子に対して、添加剤として合成
樹脂、助剤として油成分を夫々添加して乾式法に
より攪拌混合して得られた原材料を、押出機によ
り押出して焼成し、多数の格子状のセルを有する
放射部を形成し、且つ該格子状の放射部の外周に
熱源体を周設し、更に該熱源体の外周を反射板で
被覆するという手段を採用することにより、上記
問題点を解決した。
[Means for Solving the Problems] The present invention provides ceramic particles made of alumina, magnesia, zirconia, or composites thereof, which have far-infrared radiation characteristics, by adding a synthetic resin as an additive and a auxiliary agent to the ceramic particles. The raw materials obtained by adding each oil component and stirring and mixing using a dry method are extruded using an extruder and fired to form a radial part having a large number of lattice-shaped cells, and the radial parts of the lattice-shaped radial part are The above problem was solved by providing a heat source around the outer periphery and further covering the outer periphery of the heat source with a reflective plate.

【0006】[0006]

【作用】 上記構成より成る本考案によれば、熱
源体を加熱すると、放射部より遠赤外線が放射さ
れるが、この遠赤外線の放射は反射板に反射され
て外部へは漏出せず、且つ放射部が格子状形状で
放射表面積が大となり、各格子を通過する気体、
固体、液体等の被体への遠赤外線の吸収効率を大
とする。
[Operation] According to the present invention having the above configuration, when the heat source body is heated, far infrared rays are emitted from the radiating part, but this far infrared rays are reflected by the reflector and do not leak to the outside. The radiation part has a lattice shape and the radiation surface area is large, and the gas passing through each lattice,
Increases the absorption efficiency of far infrared rays into objects such as solids and liquids.

【0007】[0007]

【実施例】 セラミツクスのうち、特にアルミナ
系、マグネシア系、及びジルコニア系のセラミツ
クスは遠赤外線放射特性を有することが広く知ら
れている。
[Example] Among ceramics, it is widely known that alumina-based, magnesia-based, and zirconia-based ceramics in particular have far-infrared radiation characteristics.

【0008】 本考案はこれら遠赤外線放射特性を有
するアルミナ系、マグネシア系、ジルコニア系、
或いはこれらの複合体よりなるセラミツクス粒子
を素材とした格子状構造の遠赤外線放射体であ
り、以下更に詳細に説明する。
[0008] The present invention uses alumina, magnesia, zirconia, and
Alternatively, it is a far-infrared radiator with a lattice structure made of ceramic particles made of a composite of these, and will be explained in more detail below.

【0009】 遠赤外線放射特性を有するセラミツク
ス中、アルミナ系、マグネシア系、ジルコニア
系、或いはこれらの複合体よりなるセラミツクス
粒子、特に限定する必要はないが、好ましくは2
〜50μmの粒径を有するセラミツクス粒子を55〜
75重量%、これに添加剤としてポリエチレン等の
合成樹脂を24〜44重量%添加し、更にこれらに助
剤として植物油等の油成分を1重量%加えて乾式
法を採用し攪拌混合し、原材料に可塑性を持た
せ、そして格子状の口金を取付けた押出機(図示
せず)より原材料を押出し、所定の長さに切断し
て成形体とし、更にこの成形体を焼成して格子状
のセル1を多数有する放射部2を形成する。
[0009] Among ceramics having far-infrared radiation characteristics, ceramic particles made of alumina, magnesia, zirconia, or a composite thereof are not particularly limited, but preferably 2
~55 ~ ceramic particles with a particle size of ~50 μm
75% by weight, 24 to 44% by weight of synthetic resin such as polyethylene as an additive, and 1% by weight of an oil component such as vegetable oil as an auxiliary agent. The raw material is extruded from an extruder (not shown) equipped with a lattice-shaped mouthpiece, cut into a predetermined length to form a molded body, and this molded body is fired to form lattice-shaped cells. 1 is formed.

【0010】 放射部2は前記のように格子状のセル
1を有する構造にすることが好ましいが、一般的
に格子状構造とはハチの巣(Honey comb)で
あつて、その格子状の形状は四角形、六角形であ
り、本考案におけるセル1は特に限定する必要は
ないが四角形にすることが遠赤外線放射効率が良
い。また放射部2は好ましくは円形状に形成さ
れ、直径が5〜15cm程度、長さは5cm以上に構成
することが推奨され、且つまたセル1の数が1平
方cm当り25〜100個あることが好ましい。
[0010] It is preferable that the radiating section 2 has a structure having the lattice-like cells 1 as described above, but the lattice-like structure is generally a honey comb, and the lattice-like shape is are square or hexagonal, and although the cell 1 in the present invention does not need to be particularly limited, it is better to make it square for better far-infrared radiation efficiency. Furthermore, it is recommended that the radiating part 2 is formed into a circular shape, with a diameter of about 5 to 15 cm and a length of 5 cm or more, and the number of cells 1 is 25 to 100 per 1 square cm. is preferred.

【0011】 放射部2の外周には電気ヒーター等の
熱源体3が周設され、更に該熱源体3の外周には
放射エネルギーが外部へ漏出しないようアルミニ
ウム、ステンレス等の鋼板より成る反射板4を被
覆して放射体5が形成されている。
[0011] A heat source body 3 such as an electric heater is provided around the outer periphery of the radiating section 2, and a reflector plate 4 made of a steel plate such as aluminum or stainless steel is further disposed around the outer periphery of the heat source body 3 to prevent radiant energy from leaking to the outside. A radiator 5 is formed by covering the radiator.

【0012】 放射体5に多数の格子状のセル1を設
けることにより表面積が大となり、またセル1の
部分を気体、固体、液体が通過でき、且つ機械的
強度の異方向性が大きくなる。その結果、熱源体
3を加熱すると放射部2が加熱されてセラミツク
ス粒子より遠赤外線が放射される。
[0012] By providing the radiator 5 with a large number of lattice-shaped cells 1, the surface area becomes large, gas, solid, and liquid can pass through the cells 1, and the anisotropy of mechanical strength becomes large. As a result, when the heat source body 3 is heated, the radiation part 2 is heated and far infrared rays are emitted from the ceramic particles.

【0013】 図4は、放射部2の直径が5cmで、セ
ル1の数が400個の放射体5の表面温度が250℃の
ときの遠赤外線放射スペクトル分布を示すもの
で、図に於いて曲線aはアルミナ系、曲線bはマ
グネシア系、曲線cはジルコニア系の放射スペク
トルであり、いずれも遠赤外線放射特性に優れ、
透過力の強い遠赤外線を多量に放射することが理
解される。
[0013] Figure 4 shows the far-infrared radiation spectral distribution when the surface temperature of the radiator 5 is 250°C and the diameter of the radiator 2 is 5 cm and the number of cells 1 is 400. Curve a is the radiation spectrum of alumina, curve b is the radiation spectrum of magnesia, and curve c is the radiation spectrum of zirconia, all of which have excellent far-infrared radiation characteristics.
It is understood that a large amount of far-infrared rays with strong penetrating power is emitted.

【0014】 更に、放射部2よりの遠赤外線は図3
に示すように各セル1の四周壁より矢印方向(空
間部方向)へ遠赤外線が放射されると共に、放射
部2より外周部へ放射された遠赤外線は反射板4
によつて内方へ反射されて遠赤外線の漏出はな
く、セル1中を通路する気体、固体、液体等の被
体に効率良く遠赤外線を吸収させることができる
のである。特に、放射部2は表面積が大であるた
め遠赤外線の気体、固体、液体等の被体に対する
放射効率が良く、被体の遠赤外線吸収スペクトル
等を充分考慮すればその効率は大きいのである。
[0014] Furthermore, the far infrared rays from the radiation part 2 are shown in FIG.
As shown in the figure, far infrared rays are radiated from the four peripheral walls of each cell 1 in the direction of the arrow (towards the space), and far infrared rays radiated from the radiation section 2 to the outer periphery are reflected by the reflector 4.
There is no leakage of the far infrared rays as they are reflected inward by the cell 1, and the far infrared rays can be efficiently absorbed by objects such as gases, solids, and liquids passing through the cell 1. In particular, since the radiation section 2 has a large surface area, the radiation efficiency of far-infrared rays to objects such as gases, solids, and liquids is high, and the efficiency is high if the far-infrared absorption spectrum of the object is taken into consideration.

【0015】 粒径10μmのアルミナを74重量%、こ
れに添加剤としてポリエチレンを24重量%添加
し、更にこれに助剤として植物油を1重量%加え
て乾式法を採用し攪拌混合して得られた原材料を
押出機により押出して成形された格子状遠赤外線
放射体5を、超純水の加熱器の熱源に使用し、汎
用のヒーターを熱源としたものと対比した処、表
1の結果が得られ、本考案放射体5が優れている
ことが立証できた。
[0015] It was obtained by adding 74% by weight of alumina with a particle size of 10 μm, 24% by weight of polyethylene as an additive, and further adding 1% by weight of vegetable oil as an auxiliary agent and stirring and mixing using a dry method. The lattice-shaped far-infrared radiator 5, which was formed by extruding raw materials using an extruder, was used as the heat source of an ultrapure water heater, and compared with that using a general-purpose heater as the heat source, the results shown in Table 1 were obtained. It was verified that the radiator 5 of the present invention is excellent.

【0016】 ■■■ 亀の甲 [0005] ■■■[0016] ■■■ Turtle shell [0005] ■■■

【0017】 なお、図5は水の吸収スペクトル分布
図であり、本考案放射体5を超純水の加熱器の熱
源として効率よく使用する場合は、この水の吸収
スペクトル分布図で吸収率のよい6〜15μmの波
長の遠赤外線を放射するセラミツクスを使用する
のが効果的である。
[0017] Note that FIG. 5 is an absorption spectrum distribution diagram of water, and when the present invention radiator 5 is used efficiently as a heat source for an ultrapure water heater, the absorption rate can be determined using this water absorption spectrum distribution diagram. It is effective to use ceramics that emit far infrared rays with a wavelength of 6 to 15 μm.

【0018】 また、粒径10μmのアルミナを75重量
%、これに添加剤としてポリエチレンを24重量%
添加し、更にこれらに助剤として植物油を1重量
%加えて乾式法を採用し攪拌混合して得られた原
材料を押出機により押出して成形された格子状遠
赤外線放射体5を、デイーゼルエンジンの排気ガ
ス除去の触媒担体として使用し、従来の電気フイ
ルターを使用したものと対比した処、表2の結果
が得られ、本考案放射体5が優れていることが立
証できた。
[0018] In addition, 75% by weight of alumina with a particle size of 10 μm, and 24% by weight of polyethylene as an additive.
The lattice-shaped far-infrared radiator 5 is molded by extruding the raw materials obtained by adding 1% by weight of vegetable oil as an auxiliary agent and stirring and mixing using a dry method using an extruder. When used as a catalyst carrier for exhaust gas removal and compared with that using a conventional electric filter, the results shown in Table 2 were obtained, proving that the radiator 5 of the present invention is superior.

【0019】 ■■■ 亀の甲 [0006] ■■■[0019] ■■■ Turtle shell [0006] ■■■

【0020】 なお、図6は窒素酸化物吸収スペクト
ル分布図であり、本考案放射体5を窒素酸化物除
去の触媒担体として効率よく使用する場合は、こ
の窒素酸化物の吸収スペクトル分布図で吸収率の
よい4〜10μmの波長の遠赤外線を放射するセラ
ミツクスを使用するのが効果的である。
[0020] FIG. 6 is a nitrogen oxide absorption spectrum distribution diagram, and when the present invention radiator 5 is used efficiently as a catalyst carrier for removing nitrogen oxides, this absorption spectrum diagram shows the nitrogen oxide absorption spectrum distribution diagram. It is effective to use ceramics that emit far infrared rays with a wavelength of 4 to 10 μm.

【0021】[0021]

【考案の効果】 本考案は上述のようであるか
ら、熱源体を加熱することにより放射部より遠赤
外線が放射され、放射された遠赤外線は反射板に
反射されて外部へ漏出することなく、然も放射部
が格子状で放射表面積が大となるため、格子状部
を通過する気体、固体、液体等の被体への遠赤外
線の吸収効率を大ならしめることができ、特に本
考案は熱交換器、触媒担体として優れている。
[Effect of the invention] Since the present invention is as described above, far infrared rays are emitted from the radiating part by heating the heat source, and the emitted far infrared rays are reflected by the reflector and do not leak to the outside. Moreover, since the radiation part has a lattice shape and the radiation surface area is large, it is possible to increase the absorption efficiency of far infrared rays passing through the lattice part into objects such as gases, solids, and liquids. Excellent as a heat exchanger and catalyst carrier.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本考案格子状遠赤外線放射体の正面図で
ある。
FIG. 1 is a front view of the lattice-shaped far-infrared radiator of the present invention.

【図2】本考案格子状遠赤外線放射体の横断面図
である。
FIG. 2 is a cross-sectional view of the lattice-shaped far-infrared radiator of the present invention.

【図3】本考案格子状遠赤外線放射体の一部拡大
縦断面図である。
FIG. 3 is a partially enlarged vertical cross-sectional view of the lattice-shaped far-infrared radiator of the present invention.

【図4】本考案格子状遠赤外線放射体の遠赤外線
放射スペクトル分布図である。
FIG. 4 is a far-infrared radiation spectrum distribution diagram of the lattice-shaped far-infrared radiator of the present invention.

【図5】水の吸収スペクトル分布図である。FIG. 5 is an absorption spectrum distribution diagram of water.

【図6】窒素酸化物の吸収スペクトル分布図であ
る。
FIG. 6 is an absorption spectrum distribution diagram of nitrogen oxides.

【図7】従来の放射体を示す縦断面図である。FIG. 7 is a vertical cross-sectional view showing a conventional radiator.

【符号の説明】[Explanation of symbols]

1……セル 2……放射部 3……熱源体 4……反射板 5……放射体。 1...Cell 2... Radiation part 3...Heat source 4...Reflector 5...Radiator.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 遠赤外線放射特性を有するアルミナ系、マグネ
シア系、ジルコニア系、或いはこれらの複合体よ
り成るセラミツクス粒子に対して、添加剤として
合成樹脂、助剤として油成分を夫々添加して乾式
法により攪拌混合して得られた原材料を、押出機
により押出して焼成し、多数の格子状のセルを有
する放射部を形成し、且つ該格子状の放射部の外
周に熱源体を周設し、更に該熱源体の外周を反射
板で被覆したことを特徴とする格子状遠赤外線放
射体。
A synthetic resin as an additive and an oil component as an auxiliary agent are added to ceramic particles made of alumina, magnesia, zirconia, or a composite of these materials that have far-infrared radiation characteristics, and the mixture is stirred and mixed using a dry method. The obtained raw material is extruded and fired using an extruder to form a radiating section having a large number of lattice-shaped cells, and a heat source is provided around the outer periphery of the lattice-shaped radiating section. A lattice-shaped far-infrared radiator characterized by having its outer periphery covered with a reflective plate.
JP11011191U 1991-12-13 1991-12-13 Grid-shaped far infrared radiator Granted JPH04102596U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11011191U JPH04102596U (en) 1991-12-13 1991-12-13 Grid-shaped far infrared radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11011191U JPH04102596U (en) 1991-12-13 1991-12-13 Grid-shaped far infrared radiator

Publications (2)

Publication Number Publication Date
JPH04102596U JPH04102596U (en) 1992-09-03
JPH0525193Y2 true JPH0525193Y2 (en) 1993-06-25

Family

ID=31857400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11011191U Granted JPH04102596U (en) 1991-12-13 1991-12-13 Grid-shaped far infrared radiator

Country Status (1)

Country Link
JP (1) JPH04102596U (en)

Also Published As

Publication number Publication date
JPH04102596U (en) 1992-09-03

Similar Documents

Publication Publication Date Title
JPH0663625B2 (en) Far infrared radiation device
TW201327884A (en) A combustor applied in thermophotovoltaic system
JPH0525193Y2 (en)
JPS59210228A (en) Radiant-energy heating or cooking device
JPS6378474A (en) Lattice type far-infrared radiation unit
CN211041708U (en) Drying bin for alumina balls
JPH0321501B2 (en)
KR100583673B1 (en) Heater for radiating infrared ray with high sensitivity to heat
JPH0195227A (en) Heat generating element for microwave oven
JPH0210648A (en) Infrared ray radiating device
KR950008189B1 (en) The method of making far-infra red ray radiation ceramics for charcoal
JP2879450B2 (en) Microwave absorption heating element
CN1787701A (en) Built-in microwave heater
JPH0325713Y2 (en)
JPH0467819A (en) Cooking container for microwave oven
JPS60213716A (en) Heating device utilizing radiation of long wavelength infrared ray
JPH03226962A (en) Far infrared radiator
JPS6146426B2 (en)
CN208998450U (en) A kind of microwave dryer for organic fertilizer
JPS62276783A (en) Far-infrared rays emitting unit
JPH11246262A (en) Far-infrared radiating material and radiating body
JPS6297283A (en) Far-infrared internal surface radiation unit
RU4430U1 (en) INFRARED HEATING ELECTRIC FURNACE
JP2001288475A (en) Heating apparatus and preparation method of chaff carbon using this
JPH0310039Y2 (en)